mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
6.7 KiB
216 lines
6.7 KiB
// Copyright 2013 Prometheus Team |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
package format |
|
|
|
import ( |
|
"container/list" |
|
"fmt" |
|
"github.com/prometheus/prometheus/model" |
|
"github.com/prometheus/prometheus/utility/test" |
|
"os" |
|
"path" |
|
"testing" |
|
"time" |
|
) |
|
|
|
func testProcessor002Process(t test.Tester) { |
|
var scenarios = []struct { |
|
in string |
|
baseLabels model.LabelSet |
|
out model.Samples |
|
err error |
|
}{ |
|
{ |
|
in: "empty.json", |
|
err: fmt.Errorf("EOF"), |
|
}, |
|
{ |
|
in: "test0_0_1-0_0_2.json", |
|
baseLabels: model.LabelSet{ |
|
model.JobLabel: "batch_exporter", |
|
}, |
|
out: model.Samples{ |
|
model.Sample{ |
|
Metric: model.Metric{"service": "zed", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"}, |
|
Value: 25, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"service": "bar", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"}, |
|
Value: 25, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"service": "foo", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"}, |
|
Value: 25, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"}, |
|
Value: 0.0459814091918713, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"}, |
|
Value: 78.48563317257356, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"}, |
|
Value: 15.890724674774395, |
|
}, |
|
model.Sample{ |
|
|
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"}, |
|
Value: 0.0459814091918713, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"}, |
|
Value: 78.48563317257356, |
|
}, |
|
model.Sample{ |
|
|
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"}, |
|
Value: 15.890724674774395, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"}, |
|
Value: 0.6120456642749681, |
|
}, |
|
model.Sample{ |
|
|
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"}, |
|
Value: 97.31798360385088, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"}, |
|
Value: 84.63044031436561, |
|
}, |
|
model.Sample{ |
|
|
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"}, |
|
Value: 1.355915069887731, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"}, |
|
Value: 109.89202084295582, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"}, |
|
Value: 160.21100853053224, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"}, |
|
Value: 1.772733213161236, |
|
}, |
|
model.Sample{ |
|
|
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"}, |
|
Value: 109.99626121011262, |
|
}, |
|
model.Sample{ |
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"}, |
|
Value: 172.49828748957728, |
|
}, |
|
}, |
|
}, |
|
} |
|
|
|
for i, scenario := range scenarios { |
|
inputChannel := make(chan Result, 1024) |
|
|
|
defer func(c chan Result) { |
|
close(c) |
|
}(inputChannel) |
|
|
|
reader, err := os.Open(path.Join("fixtures", scenario.in)) |
|
if err != nil { |
|
t.Fatalf("%d. couldn't open scenario input file %s: %s", i, scenario.in, err) |
|
} |
|
|
|
err = Processor002.Process(reader, time.Now(), scenario.baseLabels, inputChannel) |
|
if !test.ErrorEqual(scenario.err, err) { |
|
t.Errorf("%d. expected err of %s, got %s", i, scenario.err, err) |
|
continue |
|
} |
|
|
|
delivered := model.Samples{} |
|
|
|
for len(inputChannel) != 0 { |
|
result := <-inputChannel |
|
if result.Err != nil { |
|
t.Fatalf("%d. expected no error, got: %s", i, result.Err) |
|
} |
|
delivered = append(delivered, result.Samples...) |
|
} |
|
|
|
if len(delivered) != len(scenario.out) { |
|
t.Errorf("%d. expected output length of %d, got %d", i, len(scenario.out), len(delivered)) |
|
|
|
continue |
|
} |
|
|
|
expectedElements := list.New() |
|
for _, j := range scenario.out { |
|
expectedElements.PushBack(j) |
|
} |
|
|
|
for j := 0; j < len(delivered); j++ { |
|
actual := delivered[j] |
|
|
|
found := false |
|
for element := expectedElements.Front(); element != nil && found == false; element = element.Next() { |
|
candidate := element.Value.(model.Sample) |
|
|
|
if candidate.Value != actual.Value { |
|
continue |
|
} |
|
|
|
if len(candidate.Metric) != len(actual.Metric) { |
|
continue |
|
} |
|
|
|
labelsMatch := false |
|
|
|
for key, value := range candidate.Metric { |
|
actualValue, ok := actual.Metric[key] |
|
if !ok { |
|
break |
|
} |
|
if actualValue == value { |
|
labelsMatch = true |
|
break |
|
} |
|
} |
|
|
|
if !labelsMatch { |
|
continue |
|
} |
|
|
|
// XXX: Test time. |
|
found = true |
|
expectedElements.Remove(element) |
|
} |
|
|
|
if !found { |
|
t.Errorf("%d.%d. expected to find %s among candidate, absent", i, j, actual) |
|
} |
|
} |
|
} |
|
} |
|
|
|
func TestProcessor002Process(t *testing.T) { |
|
testProcessor002Process(t) |
|
} |
|
|
|
func BenchmarkProcessor002Process(b *testing.B) { |
|
for i := 0; i < b.N; i++ { |
|
testProcessor002Process(b) |
|
} |
|
}
|
|
|