You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/storage/local/storage_test.go

2247 lines
61 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package local
import (
"fmt"
"hash/fnv"
"math"
"math/rand"
"os"
"runtime"
"strconv"
"sync/atomic"
"testing"
"testing/quick"
"time"
"github.com/prometheus/common/log"
"github.com/prometheus/common/model"
"golang.org/x/net/context"
"github.com/prometheus/prometheus/storage/local/chunk"
"github.com/prometheus/prometheus/storage/metric"
"github.com/prometheus/prometheus/util/testutil"
)
func TestMatches(t *testing.T) {
storage, closer := NewTestStorage(t, 2)
defer closer.Close()
storage.archiveHighWatermark = 90
samples := make([]*model.Sample, 100)
fingerprints := make(model.Fingerprints, 100)
for i := range samples {
metric := model.Metric{
model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i)),
"label1": model.LabelValue(fmt.Sprintf("test_%d", i/10)),
"label2": model.LabelValue(fmt.Sprintf("test_%d", (i+5)/10)),
"all": "const",
}
samples[i] = &model.Sample{
Metric: metric,
Timestamp: model.Time(i),
Value: model.SampleValue(i),
}
fingerprints[i] = metric.FastFingerprint()
}
for _, s := range samples {
storage.Append(s)
}
storage.WaitForIndexing()
// Archive every tenth metric.
for i, fp := range fingerprints {
if i%10 != 0 {
continue
}
s, ok := storage.fpToSeries.get(fp)
if !ok {
t.Fatal("could not retrieve series for fp", fp)
}
storage.fpLocker.Lock(fp)
storage.persistence.archiveMetric(fp, s.metric, s.firstTime(), s.lastTime)
storage.fpLocker.Unlock(fp)
}
newMatcher := func(matchType metric.MatchType, name model.LabelName, value model.LabelValue) *metric.LabelMatcher {
lm, err := metric.NewLabelMatcher(matchType, name, value)
if err != nil {
t.Fatalf("error creating label matcher: %s", err)
}
return lm
}
var matcherTests = []struct {
matchers metric.LabelMatchers
expected model.Fingerprints
}{
{
matchers: metric.LabelMatchers{newMatcher(metric.Equal, "label1", "x")},
expected: model.Fingerprints{},
},
{
matchers: metric.LabelMatchers{newMatcher(metric.Equal, "label1", "test_0")},
expected: fingerprints[:10],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "label1", "test_0"),
newMatcher(metric.Equal, "label2", "test_1"),
},
expected: fingerprints[5:10],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "all", "const"),
newMatcher(metric.NotEqual, "label1", "x"),
},
expected: fingerprints,
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "all", "const"),
newMatcher(metric.NotEqual, "label1", "test_0"),
},
expected: fingerprints[10:],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "all", "const"),
newMatcher(metric.NotEqual, "label1", "test_0"),
newMatcher(metric.NotEqual, "label1", "test_1"),
newMatcher(metric.NotEqual, "label1", "test_2"),
},
expected: fingerprints[30:],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "label1", ""),
},
expected: fingerprints[:0],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.NotEqual, "label1", "test_0"),
newMatcher(metric.Equal, "label1", ""),
},
expected: fingerprints[:0],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.NotEqual, "label1", "test_0"),
newMatcher(metric.Equal, "label2", ""),
},
expected: fingerprints[:0],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "all", "const"),
newMatcher(metric.NotEqual, "label1", "test_0"),
newMatcher(metric.Equal, "not_existent", ""),
},
expected: fingerprints[10:],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.RegexMatch, "label1", `test_[3-5]`),
},
expected: fingerprints[30:60],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "all", "const"),
newMatcher(metric.RegexNoMatch, "label1", `test_[3-5]`),
},
expected: append(append(model.Fingerprints{}, fingerprints[:30]...), fingerprints[60:]...),
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.RegexMatch, "label1", `test_[3-5]`),
newMatcher(metric.RegexMatch, "label2", `test_[4-6]`),
},
expected: fingerprints[35:60],
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.RegexMatch, "label1", `test_[3-5]`),
newMatcher(metric.NotEqual, "label2", `test_4`),
},
expected: append(append(model.Fingerprints{}, fingerprints[30:35]...), fingerprints[45:60]...),
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "label1", `nonexistent`),
newMatcher(metric.RegexMatch, "label2", `test`),
},
expected: model.Fingerprints{},
},
{
matchers: metric.LabelMatchers{
newMatcher(metric.Equal, "label1", `test_0`),
newMatcher(metric.RegexMatch, "label2", `nonexistent`),
},
expected: model.Fingerprints{},
},
}
for _, mt := range matcherTests {
metrics, err := storage.MetricsForLabelMatchers(
context.Background(),
model.Earliest, model.Latest,
mt.matchers,
)
if err != nil {
t.Fatal(err)
}
if len(mt.expected) != len(metrics) {
t.Fatalf("expected %d matches for %q, found %d", len(mt.expected), mt.matchers, len(metrics))
}
for _, m := range metrics {
fp1 := m.Metric.FastFingerprint()
found := false
for _, fp2 := range mt.expected {
if fp1 == fp2 {
found = true
break
}
}
if !found {
t.Errorf("expected fingerprint %s for %q not in result", fp1, mt.matchers)
}
}
// Smoketest for from/through.
metrics, err = storage.MetricsForLabelMatchers(
context.Background(),
model.Earliest, -10000,
mt.matchers,
)
if err != nil {
t.Fatal(err)
}
if len(metrics) > 0 {
t.Error("expected no matches with 'through' older than any sample")
}
metrics, err = storage.MetricsForLabelMatchers(
context.Background(),
10000, model.Latest,
mt.matchers,
)
if err != nil {
t.Fatal(err)
}
if len(metrics) > 0 {
t.Error("expected no matches with 'from' newer than any sample")
}
// Now the tricky one, cut out something from the middle.
var (
from model.Time = 25
through model.Time = 75
)
metrics, err = storage.MetricsForLabelMatchers(
context.Background(),
from, through,
mt.matchers,
)
if err != nil {
t.Fatal(err)
}
expected := model.Fingerprints{}
for _, fp := range mt.expected {
i := 0
for ; fingerprints[i] != fp && i < len(fingerprints); i++ {
}
if i == len(fingerprints) {
t.Fatal("expected fingerprint does not exist")
}
if !model.Time(i).Before(from) && !model.Time(i).After(through) {
expected = append(expected, fp)
}
}
if len(expected) != len(metrics) {
t.Errorf("expected %d range-limited matches for %q, found %d", len(expected), mt.matchers, len(metrics))
}
for _, m := range metrics {
fp1 := m.Metric.FastFingerprint()
found := false
for _, fp2 := range expected {
if fp1 == fp2 {
found = true
break
}
}
if !found {
t.Errorf("expected fingerprint %s for %q not in range-limited result", fp1, mt.matchers)
}
}
}
}
func TestFingerprintsForLabels(t *testing.T) {
storage, closer := NewTestStorage(t, 2)
defer closer.Close()
samples := make([]*model.Sample, 100)
fingerprints := make(model.Fingerprints, 100)
for i := range samples {
metric := model.Metric{
model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i)),
"label1": model.LabelValue(fmt.Sprintf("test_%d", i/10)),
"label2": model.LabelValue(fmt.Sprintf("test_%d", (i+5)/10)),
}
samples[i] = &model.Sample{
Metric: metric,
Timestamp: model.Time(i),
Value: model.SampleValue(i),
}
fingerprints[i] = metric.FastFingerprint()
}
for _, s := range samples {
storage.Append(s)
}
storage.WaitForIndexing()
var matcherTests = []struct {
pairs []model.LabelPair
expected model.Fingerprints
}{
{
pairs: []model.LabelPair{{Name: "label1", Value: "x"}},
expected: fingerprints[:0],
},
{
pairs: []model.LabelPair{{Name: "label1", Value: "test_0"}},
expected: fingerprints[:10],
},
{
pairs: []model.LabelPair{
{Name: "label1", Value: "test_0"},
{Name: "label1", Value: "test_1"},
},
expected: fingerprints[:0],
},
{
pairs: []model.LabelPair{
{Name: "label1", Value: "test_0"},
{Name: "label2", Value: "test_1"},
},
expected: fingerprints[5:10],
},
{
pairs: []model.LabelPair{
{Name: "label1", Value: "test_1"},
{Name: "label2", Value: "test_2"},
},
expected: fingerprints[15:20],
},
}
for _, mt := range matcherTests {
var resfps map[model.Fingerprint]struct{}
for _, pair := range mt.pairs {
resfps = storage.fingerprintsForLabelPair(pair, nil, resfps)
}
if len(mt.expected) != len(resfps) {
t.Fatalf("expected %d matches for %q, found %d", len(mt.expected), mt.pairs, len(resfps))
}
for fp1 := range resfps {
found := false
for _, fp2 := range mt.expected {
if fp1 == fp2 {
found = true
break
}
}
if !found {
t.Errorf("expected fingerprint %s for %q not in result", fp1, mt.pairs)
}
}
}
}
var benchLabelMatchingRes []metric.Metric
func BenchmarkLabelMatching(b *testing.B) {
s, closer := NewTestStorage(b, 2)
defer closer.Close()
h := fnv.New64a()
lbl := func(x int) model.LabelValue {
h.Reset()
h.Write([]byte(fmt.Sprintf("%d", x)))
return model.LabelValue(fmt.Sprintf("%d", h.Sum64()))
}
M := 32
met := model.Metric{}
for i := 0; i < M; i++ {
met["label_a"] = lbl(i)
for j := 0; j < M; j++ {
met["label_b"] = lbl(j)
for k := 0; k < M; k++ {
met["label_c"] = lbl(k)
for l := 0; l < M; l++ {
met["label_d"] = lbl(l)
s.Append(&model.Sample{
Metric: met.Clone(),
Timestamp: 0,
Value: 1,
})
}
}
}
}
s.WaitForIndexing()
newMatcher := func(matchType metric.MatchType, name model.LabelName, value model.LabelValue) *metric.LabelMatcher {
lm, err := metric.NewLabelMatcher(matchType, name, value)
if err != nil {
b.Fatalf("error creating label matcher: %s", err)
}
return lm
}
var matcherTests = []metric.LabelMatchers{
{
newMatcher(metric.Equal, "label_a", lbl(1)),
},
{
newMatcher(metric.Equal, "label_a", lbl(3)),
newMatcher(metric.Equal, "label_c", lbl(3)),
},
{
newMatcher(metric.Equal, "label_a", lbl(3)),
newMatcher(metric.Equal, "label_c", lbl(3)),
newMatcher(metric.NotEqual, "label_d", lbl(3)),
},
{
newMatcher(metric.Equal, "label_a", lbl(3)),
newMatcher(metric.Equal, "label_b", lbl(3)),
newMatcher(metric.Equal, "label_c", lbl(3)),
newMatcher(metric.NotEqual, "label_d", lbl(3)),
},
{
newMatcher(metric.RegexMatch, "label_a", ".+"),
},
{
newMatcher(metric.Equal, "label_a", lbl(3)),
newMatcher(metric.RegexMatch, "label_a", ".+"),
},
{
newMatcher(metric.Equal, "label_a", lbl(1)),
newMatcher(metric.RegexMatch, "label_c", "("+lbl(3)+"|"+lbl(10)+")"),
},
{
newMatcher(metric.Equal, "label_a", lbl(3)),
newMatcher(metric.Equal, "label_a", lbl(4)),
newMatcher(metric.RegexMatch, "label_c", "("+lbl(3)+"|"+lbl(10)+")"),
},
}
b.ReportAllocs()
b.ResetTimer()
var err error
for i := 0; i < b.N; i++ {
benchLabelMatchingRes = []metric.Metric{}
for _, mt := range matcherTests {
benchLabelMatchingRes, err = s.MetricsForLabelMatchers(
context.Background(),
model.Earliest, model.Latest,
mt,
)
if err != nil {
b.Fatal(err)
}
}
}
// Stop timer to not count the storage closing.
b.StopTimer()
}
func BenchmarkQueryRange(b *testing.B) {
now := model.Now()
insertStart := now.Add(-2 * time.Hour)
s, closer := NewTestStorage(b, 2)
defer closer.Close()
// Stop maintenance loop to prevent actual purging.
close(s.loopStopping)
<-s.loopStopped
<-s.logThrottlingStopped
// Recreate channel to avoid panic when we really shut down.
s.loopStopping = make(chan struct{})
for i := 0; i < 8192; i++ {
s.Append(&model.Sample{
Metric: model.Metric{"__name__": model.LabelValue(strconv.Itoa(i)), "job": "test"},
Timestamp: insertStart,
Value: 1,
})
}
s.WaitForIndexing()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
lm, _ := metric.NewLabelMatcher(metric.Equal, "job", "test")
for pb.Next() {
s.QueryRange(context.Background(), insertStart, now, lm)
}
})
}
func TestQueryRangeThroughBeforeFrom(t *testing.T) {
now := model.Now()
insertStart := now.Add(-2 * time.Hour)
s, closer := NewTestStorage(t, 2)
defer closer.Close()
// Stop maintenance loop to prevent actual purging.
close(s.loopStopping)
<-s.loopStopped
<-s.logThrottlingStopped
// Recreate channel to avoid panic when we really shut down.
s.loopStopping = make(chan struct{})
for i := 0; i < 8192; i++ {
s.Append(&model.Sample{
Metric: model.Metric{"__name__": "testmetric", "job": "test"},
Timestamp: insertStart.Add(time.Duration(i) * time.Second),
Value: model.SampleValue(rand.Float64()),
})
}
s.WaitForIndexing()
lm, _ := metric.NewLabelMatcher(metric.Equal, "job", "test")
iters, err := s.QueryRange(context.Background(), now.Add(-30*time.Minute), now.Add(-90*time.Minute), lm)
if err != nil {
t.Error(err)
}
if len(iters) != 0 {
t.Errorf("expected no iters to be returned, got %d", len(iters))
}
}
func TestRetentionCutoff(t *testing.T) {
now := model.Now()
insertStart := now.Add(-2 * time.Hour)
s, closer := NewTestStorage(t, 2)
defer closer.Close()
// Stop maintenance loop to prevent actual purging.
close(s.loopStopping)
<-s.loopStopped
<-s.logThrottlingStopped
// Recreate channel to avoid panic when we really shut down.
s.loopStopping = make(chan struct{})
s.dropAfter = 1 * time.Hour
for i := 0; i < 120; i++ {
smpl := &model.Sample{
Metric: model.Metric{"job": "test"},
Timestamp: insertStart.Add(time.Duration(i) * time.Minute), // 1 minute intervals.
Value: 1,
}
s.Append(smpl)
}
s.WaitForIndexing()
lm, err := metric.NewLabelMatcher(metric.Equal, "job", "test")
if err != nil {
t.Fatalf("error creating label matcher: %s", err)
}
its, err := s.QueryRange(context.Background(), insertStart, now, lm)
if err != nil {
t.Fatal(err)
}
if len(its) != 1 {
t.Fatalf("expected one iterator but got %d", len(its))
}
val := its[0].ValueAtOrBeforeTime(now.Add(-61 * time.Minute))
if val.Timestamp != model.Earliest {
t.Errorf("unexpected result for timestamp before retention period")
}
vals := its[0].RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now})
// We get 59 values here because the model.Now() is slightly later
// than our now.
if len(vals) != 59 {
t.Errorf("expected 59 values but got %d", len(vals))
}
if expt := now.Add(-1 * time.Hour).Add(time.Minute); vals[0].Timestamp != expt {
t.Errorf("unexpected timestamp for first sample: %v, expected %v", vals[0].Timestamp.Time(), expt.Time())
}
}
func TestDropMetrics(t *testing.T) {
now := model.Now()
insertStart := now.Add(-2 * time.Hour)
s, closer := NewTestStorage(t, 2)
defer closer.Close()
chunkFileExists := func(fp model.Fingerprint) (bool, error) {
f, err := s.persistence.openChunkFileForReading(fp)
if err == nil {
f.Close()
return true, nil
}
if os.IsNotExist(err) {
return false, nil
}
return false, err
}
m1 := model.Metric{model.MetricNameLabel: "test", "n1": "v1"}
m2 := model.Metric{model.MetricNameLabel: "test", "n1": "v2"}
m3 := model.Metric{model.MetricNameLabel: "test", "n1": "v3"}
lm1, err := metric.NewLabelMatcher(metric.Equal, "n1", "v1")
if err != nil {
t.Fatal(err)
}
lmAll, err := metric.NewLabelMatcher(metric.Equal, model.MetricNameLabel, "test")
if err != nil {
t.Fatal(err)
}
N := 120000
for j, m := range []model.Metric{m1, m2, m3} {
for i := 0; i < N; i++ {
smpl := &model.Sample{
Metric: m,
Timestamp: insertStart.Add(time.Duration(i) * time.Millisecond), // 1 millisecond intervals.
Value: model.SampleValue(j),
}
s.Append(smpl)
}
}
s.WaitForIndexing()
// Archive m3, but first maintain it so that at least something is written to disk.
fpToBeArchived := m3.FastFingerprint()
s.maintainMemorySeries(fpToBeArchived, 0)
s.fpLocker.Lock(fpToBeArchived)
s.fpToSeries.del(fpToBeArchived)
s.persistence.archiveMetric(fpToBeArchived, m3, 0, insertStart.Add(time.Duration(N-1)*time.Millisecond))
s.fpLocker.Unlock(fpToBeArchived)
fps := s.fingerprintsForLabelPair(model.LabelPair{
Name: model.MetricNameLabel, Value: "test",
}, nil, nil)
if len(fps) != 3 {
t.Errorf("unexpected number of fingerprints: %d", len(fps))
}
fpList := model.Fingerprints{m1.FastFingerprint(), m2.FastFingerprint(), fpToBeArchived}
n, err := s.DropMetricsForLabelMatchers(context.Background(), lm1)
if err != nil {
t.Fatal(err)
}
if n != 1 {
t.Fatalf("expected 1 series to be dropped, got %d", n)
}
s.WaitForIndexing()
fps2 := s.fingerprintsForLabelPair(model.LabelPair{
Name: model.MetricNameLabel, Value: "test",
}, nil, nil)
if len(fps2) != 2 {
t.Errorf("unexpected number of fingerprints: %d", len(fps2))
}
it := s.preloadChunksForRange(makeFingerprintSeriesPair(s, fpList[0]), model.Earliest, model.Latest)
if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 {
t.Errorf("unexpected number of samples: %d", len(vals))
}
it = s.preloadChunksForRange(makeFingerprintSeriesPair(s, fpList[1]), model.Earliest, model.Latest)
if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != N {
t.Errorf("unexpected number of samples: %d", len(vals))
}
exists, err := chunkFileExists(fpList[2])
if err != nil {
t.Fatal(err)
}
if !exists {
t.Errorf("chunk file does not exist for fp=%v", fpList[2])
}
n, err = s.DropMetricsForLabelMatchers(context.Background(), lmAll)
if err != nil {
t.Fatal(err)
}
if n != 2 {
t.Fatalf("expected 2 series to be dropped, got %d", n)
}
s.WaitForIndexing()
fps3 := s.fingerprintsForLabelPair(model.LabelPair{
Name: model.MetricNameLabel, Value: "test",
}, nil, nil)
if len(fps3) != 0 {
t.Errorf("unexpected number of fingerprints: %d", len(fps3))
}
it = s.preloadChunksForRange(makeFingerprintSeriesPair(s, fpList[0]), model.Earliest, model.Latest)
if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 {
t.Errorf("unexpected number of samples: %d", len(vals))
}
it = s.preloadChunksForRange(makeFingerprintSeriesPair(s, fpList[1]), model.Earliest, model.Latest)
if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 {
t.Errorf("unexpected number of samples: %d", len(vals))
}
exists, err = chunkFileExists(fpList[2])
if err != nil {
t.Fatal(err)
}
if exists {
t.Errorf("chunk file still exists for fp=%v", fpList[2])
}
}
func TestQuarantineMetric(t *testing.T) {
now := model.Now()
insertStart := now.Add(-2 * time.Hour)
s, closer := NewTestStorage(t, 2)
defer closer.Close()
chunkFileExists := func(fp model.Fingerprint) (bool, error) {
f, err := s.persistence.openChunkFileForReading(fp)
if err == nil {
f.Close()
return true, nil
}
if os.IsNotExist(err) {
return false, nil
}
return false, err
}
m1 := model.Metric{model.MetricNameLabel: "test", "n1": "v1"}
m2 := model.Metric{model.MetricNameLabel: "test", "n1": "v2"}
m3 := model.Metric{model.MetricNameLabel: "test", "n1": "v3"}
N := 120000
for j, m := range []model.Metric{m1, m2, m3} {
for i := 0; i < N; i++ {
smpl := &model.Sample{
Metric: m,
Timestamp: insertStart.Add(time.Duration(i) * time.Millisecond), // 1 millisecond intervals.
Value: model.SampleValue(j),
}
s.Append(smpl)
}
}
s.WaitForIndexing()
// Archive m3, but first maintain it so that at least something is written to disk.
fpToBeArchived := m3.FastFingerprint()
s.maintainMemorySeries(fpToBeArchived, 0)
s.fpLocker.Lock(fpToBeArchived)
s.fpToSeries.del(fpToBeArchived)
s.persistence.archiveMetric(fpToBeArchived, m3, 0, insertStart.Add(time.Duration(N-1)*time.Millisecond))
s.fpLocker.Unlock(fpToBeArchived)
// Corrupt the series file for m3.
f, err := os.Create(s.persistence.fileNameForFingerprint(fpToBeArchived))
if err != nil {
t.Fatal(err)
}
if _, err := f.WriteString("This is clearly not the content of a series file."); err != nil {
t.Fatal(err)
}
if f.Close(); err != nil {
t.Fatal(err)
}
fps := s.fingerprintsForLabelPair(model.LabelPair{
Name: model.MetricNameLabel, Value: "test",
}, nil, nil)
if len(fps) != 3 {
t.Errorf("unexpected number of fingerprints: %d", len(fps))
}
// This will access the corrupt file and lead to quarantining.
iter := s.preloadChunksForInstant(makeFingerprintSeriesPair(s, fpToBeArchived), now.Add(-2*time.Hour-1*time.Minute), now.Add(-2*time.Hour))
iter.Close()
time.Sleep(time.Second) // Give time to quarantine. TODO(beorn7): Find a better way to wait.
s.WaitForIndexing()
fps2 := s.fingerprintsForLabelPair(model.LabelPair{
Name: model.MetricNameLabel, Value: "test",
}, nil, nil)
if len(fps2) != 2 {
t.Errorf("unexpected number of fingerprints: %d", len(fps2))
}
exists, err := chunkFileExists(fpToBeArchived)
if err != nil {
t.Fatal(err)
}
if exists {
t.Errorf("chunk file exists for fp=%v", fpToBeArchived)
}
}
// TestLoop is just a smoke test for the loop method, if we can switch it on and
// off without disaster.
func TestLoop(t *testing.T) {
if testing.Short() {
t.Skip("Skipping test in short mode.")
}
samples := make(model.Samples, 1000)
for i := range samples {
samples[i] = &model.Sample{
Timestamp: model.Time(2 * i),
Value: model.SampleValue(float64(i) * 0.2),
}
}
directory := testutil.NewTemporaryDirectory("test_storage", t)
defer directory.Close()
o := &MemorySeriesStorageOptions{
TargetHeapSize: 100000,
PersistenceRetentionPeriod: 24 * 7 * time.Hour,
PersistenceStoragePath: directory.Path(),
HeadChunkTimeout: 5 * time.Minute,
CheckpointInterval: 250 * time.Millisecond,
SyncStrategy: Adaptive,
MinShrinkRatio: 0.1,
}
storage := NewMemorySeriesStorage(o)
if err := storage.Start(); err != nil {
t.Errorf("Error starting storage: %s", err)
}
for _, s := range samples {
storage.Append(s)
}
storage.WaitForIndexing()
fp := model.Metric{}.FastFingerprint()
series, _ := storage.fpToSeries.get(fp)
storage.fpLocker.Lock(fp)
cdsBefore := len(series.chunkDescs)
storage.fpLocker.Unlock(fp)
time.Sleep(fpMaxWaitDuration + time.Second) // TODO(beorn7): Ugh, need to wait for maintenance to kick in.
storage.fpLocker.Lock(fp)
cdsAfter := len(series.chunkDescs)
storage.fpLocker.Unlock(fp)
storage.Stop()
if cdsBefore <= cdsAfter {
t.Errorf(
"Number of chunk descriptors should have gone down by now. Got before %d, after %d.",
cdsBefore, cdsAfter,
)
}
}
func testChunk(t *testing.T, encoding chunk.Encoding) {
samples := make(model.Samples, 500000)
for i := range samples {
samples[i] = &model.Sample{
Timestamp: model.Time(i),
Value: model.SampleValue(float64(i) * 0.2),
}
}
s, closer := NewTestStorage(t, encoding)
defer closer.Close()
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
for m := range s.fpToSeries.iter() {
s.fpLocker.Lock(m.fp)
var values []model.SamplePair
for _, cd := range m.series.chunkDescs {
if cd.IsEvicted() {
continue
}
it := cd.C.NewIterator()
for it.Scan() {
values = append(values, it.Value())
}
if it.Err() != nil {
t.Error(it.Err())
}
}
for i, v := range values {
if samples[i].Timestamp != v.Timestamp {
t.Errorf("%d. Got %v; want %v", i, v.Timestamp, samples[i].Timestamp)
}
if samples[i].Value != v.Value {
t.Errorf("%d. Got %v; want %v", i, v.Value, samples[i].Value)
}
}
s.fpLocker.Unlock(m.fp)
}
log.Info("test done, closing")
}
func TestChunkType0(t *testing.T) {
testChunk(t, 0)
}
func TestChunkType1(t *testing.T) {
testChunk(t, 1)
}
func TestChunkType2(t *testing.T) {
testChunk(t, 2)
}
func testValueAtOrBeforeTime(t *testing.T, encoding chunk.Encoding) {
samples := make(model.Samples, 10000)
for i := range samples {
samples[i] = &model.Sample{
Timestamp: model.Time(2 * i),
Value: model.SampleValue(float64(i) * 0.2),
}
}
s, closer := NewTestStorage(t, encoding)
defer closer.Close()
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
fp := model.Metric{}.FastFingerprint()
it := s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), model.Earliest, model.Latest)
// #1 Exactly on a sample.
for i, expected := range samples {
actual := it.ValueAtOrBeforeTime(expected.Timestamp)
if expected.Timestamp != actual.Timestamp {
t.Errorf("1.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp)
}
if expected.Value != actual.Value {
t.Errorf("1.%d. Got %v; want %v", i, actual.Value, expected.Value)
}
}
// #2 Between samples.
for i, expected := range samples {
if i == len(samples)-1 {
continue
}
actual := it.ValueAtOrBeforeTime(expected.Timestamp + 1)
if expected.Timestamp != actual.Timestamp {
t.Errorf("2.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp)
}
if expected.Value != actual.Value {
t.Errorf("2.%d. Got %v; want %v", i, actual.Value, expected.Value)
}
}
// #3 Corner cases: Just before the first sample, just after the last.
expected := &model.Sample{Timestamp: model.Earliest}
actual := it.ValueAtOrBeforeTime(samples[0].Timestamp - 1)
if expected.Timestamp != actual.Timestamp {
t.Errorf("3.1. Got %v; want %v", actual.Timestamp, expected.Timestamp)
}
if expected.Value != actual.Value {
t.Errorf("3.1. Got %v; want %v", actual.Value, expected.Value)
}
expected = samples[len(samples)-1]
actual = it.ValueAtOrBeforeTime(expected.Timestamp + 1)
if expected.Timestamp != actual.Timestamp {
t.Errorf("3.2. Got %v; want %v", actual.Timestamp, expected.Timestamp)
}
if expected.Value != actual.Value {
t.Errorf("3.2. Got %v; want %v", actual.Value, expected.Value)
}
}
func TestValueAtTimeChunkType0(t *testing.T) {
testValueAtOrBeforeTime(t, 0)
}
func TestValueAtTimeChunkType1(t *testing.T) {
testValueAtOrBeforeTime(t, 1)
}
func TestValueAtTimeChunkType2(t *testing.T) {
testValueAtOrBeforeTime(t, 2)
}
func benchmarkValueAtOrBeforeTime(b *testing.B, encoding chunk.Encoding) {
samples := make(model.Samples, 10000)
for i := range samples {
samples[i] = &model.Sample{
Timestamp: model.Time(2 * i),
Value: model.SampleValue(float64(i) * 0.2),
}
}
s, closer := NewTestStorage(b, encoding)
defer closer.Close()
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
fp := model.Metric{}.FastFingerprint()
it := s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), model.Earliest, model.Latest)
b.ResetTimer()
for i := 0; i < b.N; i++ {
// #1 Exactly on a sample.
for i, expected := range samples {
actual := it.ValueAtOrBeforeTime(expected.Timestamp)
if expected.Timestamp != actual.Timestamp {
b.Errorf("1.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp)
}
if expected.Value != actual.Value {
b.Errorf("1.%d. Got %v; want %v", i, actual.Value, expected.Value)
}
}
// #2 Between samples.
for i, expected := range samples {
if i == len(samples)-1 {
continue
}
actual := it.ValueAtOrBeforeTime(expected.Timestamp + 1)
if expected.Timestamp != actual.Timestamp {
b.Errorf("2.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp)
}
if expected.Value != actual.Value {
b.Errorf("2.%d. Got %v; want %v", i, actual.Value, expected.Value)
}
}
// #3 Corner cases: Just before the first sample, just after the last.
expected := &model.Sample{Timestamp: model.Earliest}
actual := it.ValueAtOrBeforeTime(samples[0].Timestamp - 1)
if expected.Timestamp != actual.Timestamp {
b.Errorf("3.1. Got %v; want %v", actual.Timestamp, expected.Timestamp)
}
if expected.Value != actual.Value {
b.Errorf("3.1. Got %v; want %v", actual.Value, expected.Value)
}
expected = samples[len(samples)-1]
actual = it.ValueAtOrBeforeTime(expected.Timestamp + 1)
if expected.Timestamp != actual.Timestamp {
b.Errorf("3.2. Got %v; want %v", actual.Timestamp, expected.Timestamp)
}
if expected.Value != actual.Value {
b.Errorf("3.2. Got %v; want %v", actual.Value, expected.Value)
}
}
}
func BenchmarkValueAtOrBeforeTimeChunkType0(b *testing.B) {
benchmarkValueAtOrBeforeTime(b, 0)
}
func BenchmarkValueAtTimeChunkType1(b *testing.B) {
benchmarkValueAtOrBeforeTime(b, 1)
}
func BenchmarkValueAtTimeChunkType2(b *testing.B) {
benchmarkValueAtOrBeforeTime(b, 2)
}
func testRangeValues(t *testing.T, encoding chunk.Encoding) {
samples := make(model.Samples, 10000)
for i := range samples {
samples[i] = &model.Sample{
Timestamp: model.Time(2 * i),
Value: model.SampleValue(float64(i) * 0.2),
}
}
s, closer := NewTestStorage(t, encoding)
defer closer.Close()
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
fp := model.Metric{}.FastFingerprint()
it := s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), model.Earliest, model.Latest)
// #1 Zero length interval at sample.
for i, expected := range samples {
actual := it.RangeValues(metric.Interval{
OldestInclusive: expected.Timestamp,
NewestInclusive: expected.Timestamp,
})
if len(actual) != 1 {
t.Fatalf("1.%d. Expected exactly one result, got %d.", i, len(actual))
}
if expected.Timestamp != actual[0].Timestamp {
t.Errorf("1.%d. Got %v; want %v.", i, actual[0].Timestamp, expected.Timestamp)
}
if expected.Value != actual[0].Value {
t.Errorf("1.%d. Got %v; want %v.", i, actual[0].Value, expected.Value)
}
}
// #2 Zero length interval off sample.
for i, expected := range samples {
actual := it.RangeValues(metric.Interval{
OldestInclusive: expected.Timestamp + 1,
NewestInclusive: expected.Timestamp + 1,
})
if len(actual) != 0 {
t.Fatalf("2.%d. Expected no result, got %d.", i, len(actual))
}
}
// #3 2sec interval around sample.
for i, expected := range samples {
actual := it.RangeValues(metric.Interval{
OldestInclusive: expected.Timestamp - 1,
NewestInclusive: expected.Timestamp + 1,
})
if len(actual) != 1 {
t.Fatalf("3.%d. Expected exactly one result, got %d.", i, len(actual))
}
if expected.Timestamp != actual[0].Timestamp {
t.Errorf("3.%d. Got %v; want %v.", i, actual[0].Timestamp, expected.Timestamp)
}
if expected.Value != actual[0].Value {
t.Errorf("3.%d. Got %v; want %v.", i, actual[0].Value, expected.Value)
}
}
// #4 2sec interval sample to sample.
for i, expected1 := range samples {
if i == len(samples)-1 {
continue
}
expected2 := samples[i+1]
actual := it.RangeValues(metric.Interval{
OldestInclusive: expected1.Timestamp,
NewestInclusive: expected1.Timestamp + 2,
})
if len(actual) != 2 {
t.Fatalf("4.%d. Expected exactly 2 results, got %d.", i, len(actual))
}
if expected1.Timestamp != actual[0].Timestamp {
t.Errorf("4.%d. Got %v for 1st result; want %v.", i, actual[0].Timestamp, expected1.Timestamp)
}
if expected1.Value != actual[0].Value {
t.Errorf("4.%d. Got %v for 1st result; want %v.", i, actual[0].Value, expected1.Value)
}
if expected2.Timestamp != actual[1].Timestamp {
t.Errorf("4.%d. Got %v for 2nd result; want %v.", i, actual[1].Timestamp, expected2.Timestamp)
}
if expected2.Value != actual[1].Value {
t.Errorf("4.%d. Got %v for 2nd result; want %v.", i, actual[1].Value, expected2.Value)
}
}
// #5 corner cases: Interval ends at first sample, interval starts
// at last sample, interval entirely before/after samples.
expected := samples[0]
actual := it.RangeValues(metric.Interval{
OldestInclusive: expected.Timestamp - 2,
NewestInclusive: expected.Timestamp,
})
if len(actual) != 1 {
t.Fatalf("5.1. Expected exactly one result, got %d.", len(actual))
}
if expected.Timestamp != actual[0].Timestamp {
t.Errorf("5.1. Got %v; want %v.", actual[0].Timestamp, expected.Timestamp)
}
if expected.Value != actual[0].Value {
t.Errorf("5.1. Got %v; want %v.", actual[0].Value, expected.Value)
}
expected = samples[len(samples)-1]
actual = it.RangeValues(metric.Interval{
OldestInclusive: expected.Timestamp,
NewestInclusive: expected.Timestamp + 2,
})
if len(actual) != 1 {
t.Fatalf("5.2. Expected exactly one result, got %d.", len(actual))
}
if expected.Timestamp != actual[0].Timestamp {
t.Errorf("5.2. Got %v; want %v.", actual[0].Timestamp, expected.Timestamp)
}
if expected.Value != actual[0].Value {
t.Errorf("5.2. Got %v; want %v.", actual[0].Value, expected.Value)
}
firstSample := samples[0]
actual = it.RangeValues(metric.Interval{
OldestInclusive: firstSample.Timestamp - 4,
NewestInclusive: firstSample.Timestamp - 2,
})
if len(actual) != 0 {
t.Fatalf("5.3. Expected no results, got %d.", len(actual))
}
lastSample := samples[len(samples)-1]
actual = it.RangeValues(metric.Interval{
OldestInclusive: lastSample.Timestamp + 2,
NewestInclusive: lastSample.Timestamp + 4,
})
if len(actual) != 0 {
t.Fatalf("5.3. Expected no results, got %d.", len(actual))
}
}
func TestRangeValuesChunkType0(t *testing.T) {
testRangeValues(t, 0)
}
func TestRangeValuesChunkType1(t *testing.T) {
testRangeValues(t, 1)
}
func TestRangeValuesChunkType2(t *testing.T) {
testRangeValues(t, 2)
}
func benchmarkRangeValues(b *testing.B, encoding chunk.Encoding) {
samples := make(model.Samples, 10000)
for i := range samples {
samples[i] = &model.Sample{
Timestamp: model.Time(2 * i),
Value: model.SampleValue(float64(i) * 0.2),
}
}
s, closer := NewTestStorage(b, encoding)
defer closer.Close()
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
fp := model.Metric{}.FastFingerprint()
it := s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), model.Earliest, model.Latest)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for _, sample := range samples {
actual := it.RangeValues(metric.Interval{
OldestInclusive: sample.Timestamp - 20,
NewestInclusive: sample.Timestamp + 20,
})
if len(actual) < 10 {
b.Fatalf("not enough samples found")
}
}
}
}
func BenchmarkRangeValuesChunkType0(b *testing.B) {
benchmarkRangeValues(b, 0)
}
func BenchmarkRangeValuesChunkType1(b *testing.B) {
benchmarkRangeValues(b, 1)
}
func BenchmarkRangeValuesChunkType2(b *testing.B) {
benchmarkRangeValues(b, 2)
}
func testEvictAndPurgeSeries(t *testing.T, encoding chunk.Encoding) {
samples := make(model.Samples, 10000)
for i := range samples {
samples[i] = &model.Sample{
Timestamp: model.Time(2 * i),
Value: model.SampleValue(float64(i * i)),
}
}
s, closer := NewTestStorage(t, encoding)
defer closer.Close()
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
fp := model.Metric{}.FastFingerprint()
// Drop ~half of the chunks.
s.maintainMemorySeries(fp, 10000)
it := s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), model.Earliest, model.Latest)
actual := it.RangeValues(metric.Interval{
OldestInclusive: 0,
NewestInclusive: 100000,
})
if len(actual) < 4000 {
t.Fatalf("expected more than %d results after purging half of series, got %d", 4000, len(actual))
}
if actual[0].Timestamp < 6000 || actual[0].Timestamp > 10000 {
t.Errorf("1st timestamp out of expected range: %v", actual[0].Timestamp)
}
want := model.Time(19998)
if actual[len(actual)-1].Timestamp != want {
t.Errorf("2nd timestamp: want %v, got %v", want, actual[1].Timestamp)
}
// Drop everything.
s.maintainMemorySeries(fp, 100000)
it = s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), model.Earliest, model.Latest)
actual = it.RangeValues(metric.Interval{
OldestInclusive: 0,
NewestInclusive: 100000,
})
if len(actual) != 0 {
t.Fatal("expected zero results after purging the whole series")
}
// Recreate series.
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
series, ok := s.fpToSeries.get(fp)
if !ok {
t.Fatal("could not find series")
}
// Persist head chunk so we can safely archive.
series.headChunkClosed = true
s.maintainMemorySeries(fp, model.Earliest)
// Archive metrics.
s.fpToSeries.del(fp)
lastTime, err := series.head().LastTime()
if err != nil {
t.Fatal(err)
}
s.persistence.archiveMetric(fp, series.metric, series.firstTime(), lastTime)
archived, _, _ := s.persistence.hasArchivedMetric(fp)
if !archived {
t.Fatal("not archived")
}
// Drop ~half of the chunks of an archived series.
s.maintainArchivedSeries(fp, 10000)
archived, _, _ = s.persistence.hasArchivedMetric(fp)
if !archived {
t.Fatal("archived series purged although only half of the chunks dropped")
}
// Drop everything.
s.maintainArchivedSeries(fp, 100000)
archived, _, _ = s.persistence.hasArchivedMetric(fp)
if archived {
t.Fatal("archived series not dropped")
}
// Recreate series.
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
series, ok = s.fpToSeries.get(fp)
if !ok {
t.Fatal("could not find series")
}
// Persist head chunk so we can safely archive.
series.headChunkClosed = true
s.maintainMemorySeries(fp, model.Earliest)
// Archive metrics.
s.fpToSeries.del(fp)
lastTime, err = series.head().LastTime()
if err != nil {
t.Fatal(err)
}
s.persistence.archiveMetric(fp, series.metric, series.firstTime(), lastTime)
archived, _, _ = s.persistence.hasArchivedMetric(fp)
if !archived {
t.Fatal("not archived")
}
// Unarchive metrics.
s.getOrCreateSeries(fp, model.Metric{})
series, ok = s.fpToSeries.get(fp)
if !ok {
t.Fatal("could not find series")
}
archived, _, _ = s.persistence.hasArchivedMetric(fp)
if archived {
t.Fatal("archived")
}
// Set archiveHighWatermark to a low value so that we can see it increase.
s.archiveHighWatermark = 42
// This will archive again, but must not drop it completely, despite the
// memorySeries being empty.
s.maintainMemorySeries(fp, 10000)
archived, _, _ = s.persistence.hasArchivedMetric(fp)
if !archived {
t.Fatal("series purged completely")
}
// archiveHighWatermark must have been set by maintainMemorySeries.
if want, got := model.Time(19998), s.archiveHighWatermark; want != got {
t.Errorf("want archiveHighWatermark %v, got %v", want, got)
}
}
func TestEvictAndPurgeSeriesChunkType0(t *testing.T) {
testEvictAndPurgeSeries(t, 0)
}
func TestEvictAndPurgeSeriesChunkType1(t *testing.T) {
testEvictAndPurgeSeries(t, 1)
}
func TestEvictAndPurgeSeriesChunkType2(t *testing.T) {
testEvictAndPurgeSeries(t, 2)
}
func testEvictAndLoadChunkDescs(t *testing.T, encoding chunk.Encoding) {
samples := make(model.Samples, 10000)
for i := range samples {
samples[i] = &model.Sample{
Timestamp: model.Time(2 * i),
Value: model.SampleValue(float64(i * i)),
}
}
// Give last sample a timestamp of now so that the head chunk will not
// be closed (which would then archive the time series later as
// everything will get evicted).
samples[len(samples)-1] = &model.Sample{
Timestamp: model.Now(),
Value: model.SampleValue(3.14),
}
// Sadly, chunk.NumMemChunks is a global variable. We have to reset it
// explicitly here.
atomic.StoreInt64(&chunk.NumMemChunks, 0)
s, closer := NewTestStorage(t, encoding)
defer closer.Close()
// Adjust target heap size to lower value to see evictions.
s.targetHeapSize = 1000000
for _, sample := range samples {
s.Append(sample)
}
s.WaitForIndexing()
fp := model.Metric{}.FastFingerprint()
series, ok := s.fpToSeries.get(fp)
if !ok {
t.Fatal("could not find series")
}
oldLen := len(series.chunkDescs)
// Maintain series without any dropped chunks.
s.maintainMemorySeries(fp, 0)
// Give the evict goroutine an opportunity to run.
time.Sleep(1250 * time.Millisecond)
// Maintain series again to trigger chunk.Desc eviction.
s.maintainMemorySeries(fp, 0)
if oldLen <= len(series.chunkDescs) {
t.Errorf("Expected number of chunkDescs to decrease, old number %d, current number %d.", oldLen, len(series.chunkDescs))
}
if int64(len(series.chunkDescs)) < atomic.LoadInt64(&chunk.NumMemChunks) {
t.Errorf("NumMemChunks is larger than number of chunk descs, number of chunk descs: %d, NumMemChunks: %d.", len(series.chunkDescs), atomic.LoadInt64(&chunk.NumMemChunks))
}
// Load everything back.
it := s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), 0, 100000)
if oldLen != len(series.chunkDescs) {
t.Errorf("Expected number of chunkDescs to have reached old value again, old number %d, current number %d.", oldLen, len(series.chunkDescs))
}
it.Close()
// Now maintain series with drops to make sure nothing crazy happens.
s.maintainMemorySeries(fp, 100000)
if len(series.chunkDescs) != 1 {
t.Errorf("Expected exactly one chunk.Desc left, got %d.", len(series.chunkDescs))
}
}
func TestEvictAndLoadChunkDescsType0(t *testing.T) {
testEvictAndLoadChunkDescs(t, 0)
}
func TestEvictAndLoadChunkDescsType1(t *testing.T) {
testEvictAndLoadChunkDescs(t, 1)
}
func benchmarkAppend(b *testing.B, encoding chunk.Encoding) {
samples := make(model.Samples, b.N)
for i := range samples {
samples[i] = &model.Sample{
Metric: model.Metric{
model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)),
"label1": model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)),
"label2": model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)),
},
Timestamp: model.Time(i),
Value: model.SampleValue(i),
}
}
b.ResetTimer()
s, closer := NewTestStorage(b, encoding)
defer closer.Close()
for _, sample := range samples {
s.Append(sample)
}
}
func BenchmarkAppendType0(b *testing.B) {
benchmarkAppend(b, 0)
}
func BenchmarkAppendType1(b *testing.B) {
benchmarkAppend(b, 1)
}
func BenchmarkAppendType2(b *testing.B) {
benchmarkAppend(b, 2)
}
// Append a large number of random samples and then check if we can get them out
// of the storage alright.
func testFuzz(t *testing.T, encoding chunk.Encoding) {
if testing.Short() {
t.Skip("Skipping test in short mode.")
}
check := func(seed int64) bool {
rand.Seed(seed)
s, c := NewTestStorage(t, encoding)
defer c.Close()
samples := createRandomSamples("test_fuzz", 10000)
for _, sample := range samples {
s.Append(sample)
}
if !verifyStorageRandom(t, s, samples) {
return false
}
return verifyStorageSequential(t, s, samples)
}
if err := quick.Check(check, nil); err != nil {
t.Fatal(err)
}
}
func TestFuzzChunkType0(t *testing.T) {
testFuzz(t, 0)
}
func TestFuzzChunkType1(t *testing.T) {
testFuzz(t, 1)
}
func TestFuzzChunkType2(t *testing.T) {
testFuzz(t, 2)
}
// benchmarkFuzz is the benchmark version of testFuzz. The storage options are
// set such that evictions, checkpoints, and purging will happen concurrently,
// too. This benchmark will have a very long runtime (up to minutes). You can
// use it as an actual benchmark. Run it like this:
//
// go test -cpu 1,2,4,8 -run=NONE -bench BenchmarkFuzzChunkType -benchmem
//
// You can also use it as a test for races. In that case, run it like this (will
// make things even slower):
//
// go test -race -cpu 8 -short -bench BenchmarkFuzzChunkType
func benchmarkFuzz(b *testing.B, encoding chunk.Encoding) {
chunk.DefaultEncoding = encoding
const samplesPerRun = 100000
rand.Seed(42)
directory := testutil.NewTemporaryDirectory("test_storage", b)
defer directory.Close()
o := &MemorySeriesStorageOptions{
TargetHeapSize: 200000,
PersistenceRetentionPeriod: time.Hour,
PersistenceStoragePath: directory.Path(),
HeadChunkTimeout: 5 * time.Minute,
CheckpointInterval: time.Second,
SyncStrategy: Adaptive,
MinShrinkRatio: 0.1,
}
s := NewMemorySeriesStorage(o)
if err := s.Start(); err != nil {
b.Fatalf("Error starting storage: %s", err)
}
s.Start()
defer s.Stop()
samples := createRandomSamples("benchmark_fuzz", samplesPerRun*b.N)
b.ResetTimer()
for i := 0; i < b.N; i++ {
start := samplesPerRun * i
end := samplesPerRun * (i + 1)
middle := (start + end) / 2
for _, sample := range samples[start:middle] {
s.Append(sample)
}
verifyStorageRandom(b, s, samples[:middle])
for _, sample := range samples[middle:end] {
s.Append(sample)
}
verifyStorageRandom(b, s, samples[:end])
verifyStorageSequential(b, s, samples)
}
}
func BenchmarkFuzzChunkType0(b *testing.B) {
benchmarkFuzz(b, 0)
}
func BenchmarkFuzzChunkType1(b *testing.B) {
benchmarkFuzz(b, 1)
}
func BenchmarkFuzzChunkType2(b *testing.B) {
benchmarkFuzz(b, 2)
}
func createRandomSamples(metricName string, minLen int) model.Samples {
type valueCreator func() model.SampleValue
type deltaApplier func(model.SampleValue) model.SampleValue
var (
maxMetrics = 5
maxStreakLength = 2000
maxTimeDelta = 10000
timestamp = model.Now() - model.Time(maxTimeDelta*minLen) // So that some timestamps are in the future.
generators = []struct {
createValue valueCreator
applyDelta []deltaApplier
}{
{ // "Boolean".
createValue: func() model.SampleValue {
return model.SampleValue(rand.Intn(2))
},
applyDelta: []deltaApplier{
func(_ model.SampleValue) model.SampleValue {
return model.SampleValue(rand.Intn(2))
},
},
},
{ // Integer with int deltas of various byte length.
createValue: func() model.SampleValue {
return model.SampleValue(rand.Int63() - 1<<62)
},
applyDelta: []deltaApplier{
func(v model.SampleValue) model.SampleValue {
return model.SampleValue(rand.Intn(1<<8) - 1<<7 + int(v))
},
func(v model.SampleValue) model.SampleValue {
return model.SampleValue(rand.Intn(1<<16) - 1<<15 + int(v))
},
func(v model.SampleValue) model.SampleValue {
return model.SampleValue(rand.Int63n(1<<32) - 1<<31 + int64(v))
},
},
},
{ // Float with float32 and float64 deltas.
createValue: func() model.SampleValue {
return model.SampleValue(rand.NormFloat64())
},
applyDelta: []deltaApplier{
func(v model.SampleValue) model.SampleValue {
return v + model.SampleValue(float32(rand.NormFloat64()))
},
func(v model.SampleValue) model.SampleValue {
return v + model.SampleValue(rand.NormFloat64())
},
},
},
}
timestampIncrementers = []func(baseDelta model.Time) model.Time{
// Regular increments.
func(delta model.Time) model.Time {
return delta
},
// Jittered increments. σ is 1/100 of delta, e.g. 10ms for 10s scrape interval.
func(delta model.Time) model.Time {
return delta + model.Time(rand.NormFloat64()*float64(delta)/100)
},
// Regular increments, but missing a scrape with 10% chance.
func(delta model.Time) model.Time {
i := rand.Intn(100)
if i < 90 {
return delta
}
if i < 99 {
return 2 * delta
}
return 3 * delta
// Ignoring the case with more than two missed scrapes in a row.
},
}
)
// Prefill result with two samples with colliding metrics (to test fingerprint mapping).
result := model.Samples{
&model.Sample{
Metric: model.Metric{
"instance": "ip-10-33-84-73.l05.ams5.s-cloud.net:24483",
"status": "503",
},
Value: 42,
Timestamp: timestamp,
},
&model.Sample{
Metric: model.Metric{
"instance": "ip-10-33-84-73.l05.ams5.s-cloud.net:24480",
"status": "500",
},
Value: 2010,
Timestamp: timestamp + 1,
},
}
metrics := []model.Metric{}
for n := rand.Intn(maxMetrics); n >= 0; n-- {
metrics = append(metrics, model.Metric{
model.MetricNameLabel: model.LabelValue(metricName),
model.LabelName(fmt.Sprintf("labelname_%d", n+1)): model.LabelValue(fmt.Sprintf("labelvalue_%d", rand.Int())),
})
}
for len(result) < minLen {
var (
// Pick a metric for this cycle.
metric = metrics[rand.Intn(len(metrics))]
timeDelta = model.Time(rand.Intn(maxTimeDelta) + 1)
generator = generators[rand.Intn(len(generators))]
createValue = generator.createValue
applyDelta = generator.applyDelta[rand.Intn(len(generator.applyDelta))]
incTimestamp = timestampIncrementers[rand.Intn(len(timestampIncrementers))]
)
switch rand.Intn(4) {
case 0: // A single sample.
result = append(result, &model.Sample{
Metric: metric,
Value: createValue(),
Timestamp: timestamp,
})
timestamp += incTimestamp(timeDelta)
case 1: // A streak of random sample values.
for n := rand.Intn(maxStreakLength); n >= 0; n-- {
result = append(result, &model.Sample{
Metric: metric,
Value: createValue(),
Timestamp: timestamp,
})
timestamp += incTimestamp(timeDelta)
}
case 2: // A streak of sample values with incremental changes.
value := createValue()
for n := rand.Intn(maxStreakLength); n >= 0; n-- {
result = append(result, &model.Sample{
Metric: metric,
Value: value,
Timestamp: timestamp,
})
timestamp += incTimestamp(timeDelta)
value = applyDelta(value)
}
case 3: // A streak of constant sample values.
value := createValue()
for n := rand.Intn(maxStreakLength); n >= 0; n-- {
result = append(result, &model.Sample{
Metric: metric,
Value: value,
Timestamp: timestamp,
})
timestamp += incTimestamp(timeDelta)
}
}
}
return result
}
func verifyStorageRandom(t testing.TB, s *MemorySeriesStorage, samples model.Samples) bool {
s.WaitForIndexing()
result := true
for _, i := range rand.Perm(len(samples)) {
sample := samples[i]
fp := s.mapper.mapFP(sample.Metric.FastFingerprint(), sample.Metric)
it := s.preloadChunksForInstant(makeFingerprintSeriesPair(s, fp), sample.Timestamp, sample.Timestamp)
found := it.ValueAtOrBeforeTime(sample.Timestamp)
startTime := it.(*boundedIterator).start
switch {
case found.Timestamp != model.Earliest && sample.Timestamp.Before(startTime):
t.Errorf("Sample #%d %#v: Expected outdated sample to be excluded.", i, sample)
result = false
case found.Timestamp == model.Earliest && !sample.Timestamp.Before(startTime):
t.Errorf("Sample #%d %#v: Expected sample not found.", i, sample)
result = false
case found.Timestamp == model.Earliest && sample.Timestamp.Before(startTime):
// All good. Outdated sample dropped.
case sample.Value != found.Value || sample.Timestamp != found.Timestamp:
t.Errorf(
"Sample #%d %#v: Value (or timestamp) mismatch, want %f (at time %v), got %f (at time %v).",
i, sample, sample.Value, sample.Timestamp, found.Value, found.Timestamp,
)
result = false
}
it.Close()
}
return result
}
func verifyStorageSequential(t testing.TB, s *MemorySeriesStorage, samples model.Samples) bool {
s.WaitForIndexing()
var (
result = true
fp model.Fingerprint
it SeriesIterator
r []model.SamplePair
j int
)
defer func() {
it.Close()
}()
for i, sample := range samples {
newFP := s.mapper.mapFP(sample.Metric.FastFingerprint(), sample.Metric)
if it == nil || newFP != fp {
fp = newFP
if it != nil {
it.Close()
}
it = s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), sample.Timestamp, model.Latest)
r = it.RangeValues(metric.Interval{
OldestInclusive: sample.Timestamp,
NewestInclusive: model.Latest,
})
j = -1
}
startTime := it.(*boundedIterator).start
if sample.Timestamp.Before(startTime) {
continue
}
j++
if j >= len(r) {
t.Errorf(
"Sample #%d %v not found.",
i, sample,
)
result = false
continue
}
found := r[j]
if sample.Value != found.Value || sample.Timestamp != found.Timestamp {
t.Errorf(
"Sample #%d %v: Value (or timestamp) mismatch, want %f (at time %v), got %f (at time %v).",
i, sample, sample.Value, sample.Timestamp, found.Value, found.Timestamp,
)
result = false
}
}
return result
}
func TestAppendOutOfOrder(t *testing.T) {
s, closer := NewTestStorage(t, 2)
defer closer.Close()
m := model.Metric{
model.MetricNameLabel: "out_of_order",
}
tests := []struct {
name string
timestamp model.Time
value model.SampleValue
wantErr error
}{
{
name: "1st sample",
timestamp: 0,
value: 0,
wantErr: nil,
},
{
name: "regular append",
timestamp: 2,
value: 1,
wantErr: nil,
},
{
name: "same timestamp, same value (no-op)",
timestamp: 2,
value: 1,
wantErr: nil,
},
{
name: "same timestamp, different value",
timestamp: 2,
value: 2,
wantErr: ErrDuplicateSampleForTimestamp,
},
{
name: "earlier timestamp, same value",
timestamp: 1,
value: 2,
wantErr: ErrOutOfOrderSample,
},
{
name: "earlier timestamp, different value",
timestamp: 1,
value: 3,
wantErr: ErrOutOfOrderSample,
},
{
name: "regular append of NaN",
timestamp: 3,
value: model.SampleValue(math.NaN()),
wantErr: nil,
},
{
name: "no-op append of NaN",
timestamp: 3,
value: model.SampleValue(math.NaN()),
wantErr: nil,
},
{
name: "append of NaN with earlier timestamp",
timestamp: 2,
value: model.SampleValue(math.NaN()),
wantErr: ErrOutOfOrderSample,
},
{
name: "append of normal sample after NaN with same timestamp",
timestamp: 3,
value: 3.14,
wantErr: ErrDuplicateSampleForTimestamp,
},
}
for _, test := range tests {
gotErr := s.Append(&model.Sample{
Metric: m,
Timestamp: test.timestamp,
Value: test.value,
})
if gotErr != test.wantErr {
t.Errorf("%s: got %q, want %q", test.name, gotErr, test.wantErr)
}
}
fp := s.mapper.mapFP(m.FastFingerprint(), m)
it := s.preloadChunksForRange(makeFingerprintSeriesPair(s, fp), 0, 2)
defer it.Close()
want := []model.SamplePair{
{
Timestamp: 0,
Value: 0,
},
{
Timestamp: 2,
Value: 1,
},
{
Timestamp: 3,
Value: model.SampleValue(math.NaN()),
},
}
got := it.RangeValues(metric.Interval{OldestInclusive: 0, NewestInclusive: 3})
// Note that we cannot just reflect.DeepEqual(want, got) because it has
// the semantics of NaN != NaN.
for i, gotSamplePair := range got {
wantSamplePair := want[i]
if !wantSamplePair.Equal(&gotSamplePair) {
t.Fatalf("want %v, got %v", wantSamplePair, gotSamplePair)
}
}
}
func TestCalculatePersistUrgency(t *testing.T) {
tests := map[string]struct {
persistUrgency int32
lenEvictList int
numChunksToPersist int64
targetHeapSize, msNextGC, msHeapAlloc uint64
msNumGC, lastNumGC uint32
wantPersistUrgency int32
wantChunksToEvict int
wantLastNumGC uint32
}{
"all zeros": {
persistUrgency: 0,
lenEvictList: 0,
numChunksToPersist: 0,
targetHeapSize: 0,
msNextGC: 0,
msHeapAlloc: 0,
msNumGC: 0,
lastNumGC: 0,
wantPersistUrgency: 0,
wantChunksToEvict: 0,
wantLastNumGC: 0,
},
"far from target heap size, plenty of chunks to persist, GC has happened": {
persistUrgency: 500,
lenEvictList: 1000,
numChunksToPersist: 100,
targetHeapSize: 1000000,
msNextGC: 500000,
msHeapAlloc: 400000,
msNumGC: 42,
lastNumGC: 41,
wantPersistUrgency: 45,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"far from target heap size, plenty of chunks to persist, GC hasn't happened, urgency must not decrease": {
persistUrgency: 500,
lenEvictList: 1000,
numChunksToPersist: 100,
targetHeapSize: 1000000,
msNextGC: 500000,
msHeapAlloc: 400000,
msNumGC: 42,
lastNumGC: 42,
wantPersistUrgency: 500,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"far from target heap size but no chunks to persist": {
persistUrgency: 50,
lenEvictList: 0,
numChunksToPersist: 100,
targetHeapSize: 1000000,
msNextGC: 500000,
msHeapAlloc: 400000,
msNumGC: 42,
lastNumGC: 41,
wantPersistUrgency: 500,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"far from target heap size but no chunks to persist, HeapAlloc > NextGC": {
persistUrgency: 50,
lenEvictList: 0,
numChunksToPersist: 100,
targetHeapSize: 1000000,
msNextGC: 500000,
msHeapAlloc: 600000,
msNumGC: 42,
lastNumGC: 41,
wantPersistUrgency: 600,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"target heap size exceeded but GC hasn't happened": {
persistUrgency: 50,
lenEvictList: 3000,
numChunksToPersist: 1000,
targetHeapSize: 1000000,
msNextGC: 1100000,
msHeapAlloc: 900000,
msNumGC: 42,
lastNumGC: 42,
wantPersistUrgency: 275,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"target heap size exceeded, GC has happened": {
persistUrgency: 50,
lenEvictList: 3000,
numChunksToPersist: 1000,
targetHeapSize: 1000000,
msNextGC: 1100000,
msHeapAlloc: 900000,
msNumGC: 42,
lastNumGC: 41,
wantPersistUrgency: 275,
wantChunksToEvict: 97,
wantLastNumGC: 42,
},
"target heap size exceeded, GC has happened, urgency bumped due to low number of evictable chunks": {
persistUrgency: 50,
lenEvictList: 300,
numChunksToPersist: 100,
targetHeapSize: 1000000,
msNextGC: 1100000,
msHeapAlloc: 900000,
msNumGC: 42,
lastNumGC: 41,
wantPersistUrgency: 323,
wantChunksToEvict: 97,
wantLastNumGC: 42,
},
"target heap size exceeded but no evictable chunks and GC hasn't happened": {
persistUrgency: 50,
lenEvictList: 0,
numChunksToPersist: 1000,
targetHeapSize: 1000000,
msNextGC: 1100000,
msHeapAlloc: 900000,
msNumGC: 42,
lastNumGC: 42,
wantPersistUrgency: 1000,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"target heap size exceeded but no evictable chunks and GC has happened": {
persistUrgency: 50,
lenEvictList: 0,
numChunksToPersist: 1000,
targetHeapSize: 1000000,
msNextGC: 1100000,
msHeapAlloc: 900000,
msNumGC: 42,
lastNumGC: 41,
wantPersistUrgency: 1000,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"target heap size exceeded, very few evictable chunks, GC hasn't happened": {
persistUrgency: 50,
lenEvictList: 10,
numChunksToPersist: 1000,
targetHeapSize: 1000000,
msNextGC: 1100000,
msHeapAlloc: 900000,
msNumGC: 42,
lastNumGC: 42,
wantPersistUrgency: 1000,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"target heap size exceeded, some evictable chunks (but not enough), GC hasn't happened": {
persistUrgency: 50,
lenEvictList: 50,
numChunksToPersist: 250,
targetHeapSize: 1000000,
msNextGC: 1100000,
msHeapAlloc: 900000,
msNumGC: 42,
lastNumGC: 42,
wantPersistUrgency: 916,
wantChunksToEvict: 0,
wantLastNumGC: 42,
},
"target heap size exceeded, some evictable chunks (but not enough), GC has happened": {
persistUrgency: 50,
lenEvictList: 50,
numChunksToPersist: 250,
targetHeapSize: 1000000,
msNextGC: 1100000,
msHeapAlloc: 900000,
msNumGC: 42,
lastNumGC: 41,
wantPersistUrgency: 1000,
wantChunksToEvict: 50,
wantLastNumGC: 42,
},
}
s, closer := NewTestStorage(t, 1)
defer closer.Close()
for scenario, test := range tests {
s.persistUrgency = test.persistUrgency
s.numChunksToPersist = test.numChunksToPersist
s.targetHeapSize = test.targetHeapSize
s.lastNumGC = test.lastNumGC
s.evictList.Init()
for i := 0; i < test.lenEvictList; i++ {
s.evictList.PushBack(&struct{}{})
}
ms := runtime.MemStats{
NextGC: test.msNextGC,
HeapAlloc: test.msHeapAlloc,
NumGC: test.msNumGC,
}
chunksToEvict := s.calculatePersistUrgency(&ms)
if chunksToEvict != test.wantChunksToEvict {
t.Errorf(
"scenario %q: got %d chunks to evict, want %d",
scenario, chunksToEvict, test.wantChunksToEvict,
)
}
if s.persistUrgency != test.wantPersistUrgency {
t.Errorf(
"scenario %q: got persist urgency %d, want %d",
scenario, s.persistUrgency, test.wantPersistUrgency,
)
}
if s.lastNumGC != test.wantLastNumGC {
t.Errorf(
"scenario %q: got lastNumGC %d , want %d",
scenario, s.lastNumGC, test.wantLastNumGC,
)
}
}
}