The Prometheus monitoring system and time series database.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

2213 lines
72 KiB

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tsdb
import (
"fmt"
"io"
"math"
"path/filepath"
"runtime"
"sync"
"time"
"github.com/go-kit/log"
"github.com/go-kit/log/level"
"github.com/oklog/ulid"
"github.com/pkg/errors"
"go.uber.org/atomic"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/prometheus/config"
"github.com/prometheus/prometheus/model/exemplar"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/model/metadata"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors"
"github.com/prometheus/prometheus/tsdb/index"
"github.com/prometheus/prometheus/tsdb/record"
"github.com/prometheus/prometheus/tsdb/tombstones"
"github.com/prometheus/prometheus/tsdb/wlog"
"github.com/prometheus/prometheus/util/zeropool"
)
var (
// ErrInvalidSample is returned if an appended sample is not valid and can't
// be ingested.
ErrInvalidSample = errors.New("invalid sample")
// ErrInvalidExemplar is returned if an appended exemplar is not valid and can't
// be ingested.
ErrInvalidExemplar = errors.New("invalid exemplar")
// ErrAppenderClosed is returned if an appender has already be successfully
// rolled back or committed.
ErrAppenderClosed = errors.New("appender closed")
// defaultIsolationDisabled is true if isolation is disabled by default.
defaultIsolationDisabled = false
defaultWALReplayConcurrency = runtime.GOMAXPROCS(0)
)
// Head handles reads and writes of time series data within a time window.
type Head struct {
chunkRange atomic.Int64
numSeries atomic.Uint64
minOOOTime, maxOOOTime atomic.Int64 // TODO(jesusvazquez) These should be updated after garbage collection.
minTime, maxTime atomic.Int64 // Current min and max of the samples included in the head. TODO(jesusvazquez) Ensure these are properly tracked.
minValidTime atomic.Int64 // Mint allowed to be added to the head. It shouldn't be lower than the maxt of the last persisted block.
lastWALTruncationTime atomic.Int64
lastMemoryTruncationTime atomic.Int64
lastSeriesID atomic.Uint64
// All the ooo m-map chunks should be after this. This is used to truncate old ooo m-map chunks.
// This should be typecasted to chunks.ChunkDiskMapperRef after loading.
minOOOMmapRef atomic.Uint64
metrics *headMetrics
opts *HeadOptions
wal, wbl *wlog.WL
exemplarMetrics *ExemplarMetrics
exemplars ExemplarStorage
logger log.Logger
appendPool zeropool.Pool[[]record.RefSample]
exemplarsPool zeropool.Pool[[]exemplarWithSeriesRef]
histogramsPool zeropool.Pool[[]record.RefHistogramSample]
floatHistogramsPool zeropool.Pool[[]record.RefFloatHistogramSample]
metadataPool zeropool.Pool[[]record.RefMetadata]
seriesPool zeropool.Pool[[]*memSeries]
bytesPool zeropool.Pool[[]byte]
memChunkPool sync.Pool
// All series addressable by their ID or hash.
series *stripeSeries
deletedMtx sync.Mutex
deleted map[chunks.HeadSeriesRef]int // Deleted series, and what WAL segment they must be kept until.
// TODO(codesome): Extend MemPostings to return only OOOPostings, Set OOOStatus, ... Like an additional map of ooo postings.
postings *index.MemPostings // Postings lists for terms.
tombstones *tombstones.MemTombstones
iso *isolation
cardinalityMutex sync.Mutex
cardinalityCache *index.PostingsStats // Posting stats cache which will expire after 30sec.
lastPostingsStatsCall time.Duration // Last posting stats call (PostingsCardinalityStats()) time for caching.
// chunkDiskMapper is used to write and read Head chunks to/from disk.
chunkDiskMapper *chunks.ChunkDiskMapper
chunkSnapshotMtx sync.Mutex
closedMtx sync.Mutex
closed bool
stats *HeadStats
reg prometheus.Registerer
writeNotified wlog.WriteNotified
memTruncationInProcess atomic.Bool
}
type ExemplarStorage interface {
storage.ExemplarQueryable
AddExemplar(labels.Labels, exemplar.Exemplar) error
ValidateExemplar(labels.Labels, exemplar.Exemplar) error
IterateExemplars(f func(seriesLabels labels.Labels, e exemplar.Exemplar) error) error
}
// HeadOptions are parameters for the Head block.
type HeadOptions struct {
// Runtime reloadable option. At the top of the struct for 32 bit OS:
// https://pkg.go.dev/sync/atomic#pkg-note-BUG
MaxExemplars atomic.Int64
OutOfOrderTimeWindow atomic.Int64
OutOfOrderCapMax atomic.Int64
// EnableNativeHistograms enables the ingestion of native histograms.
EnableNativeHistograms atomic.Bool
ChunkRange int64
// ChunkDirRoot is the parent directory of the chunks directory.
ChunkDirRoot string
ChunkPool chunkenc.Pool
ChunkWriteBufferSize int
ChunkWriteQueueSize int
SamplesPerChunk int
// StripeSize sets the number of entries in the hash map, it must be a power of 2.
// A larger StripeSize will allocate more memory up-front, but will increase performance when handling a large number of series.
// A smaller StripeSize reduces the memory allocated, but can decrease performance with large number of series.
StripeSize int
SeriesCallback SeriesLifecycleCallback
EnableExemplarStorage bool
EnableMemorySnapshotOnShutdown bool
IsolationDisabled bool
// Maximum number of CPUs that can simultaneously processes WAL replay.
// The default value is GOMAXPROCS.
// If it is set to a negative value or zero, the default value is used.
WALReplayConcurrency int
}
const (
// DefaultOutOfOrderCapMax is the default maximum size of an in-memory out-of-order chunk.
DefaultOutOfOrderCapMax int64 = 32
// DefaultSamplesPerChunk provides a default target number of samples per chunk.
DefaultSamplesPerChunk = 120
)
func DefaultHeadOptions() *HeadOptions {
ho := &HeadOptions{
ChunkRange: DefaultBlockDuration,
ChunkDirRoot: "",
ChunkPool: chunkenc.NewPool(),
ChunkWriteBufferSize: chunks.DefaultWriteBufferSize,
ChunkWriteQueueSize: chunks.DefaultWriteQueueSize,
SamplesPerChunk: DefaultSamplesPerChunk,
StripeSize: DefaultStripeSize,
SeriesCallback: &noopSeriesLifecycleCallback{},
IsolationDisabled: defaultIsolationDisabled,
WALReplayConcurrency: defaultWALReplayConcurrency,
}
ho.OutOfOrderCapMax.Store(DefaultOutOfOrderCapMax)
return ho
}
// SeriesLifecycleCallback specifies a list of callbacks that will be called during a lifecycle of a series.
// It is always a no-op in Prometheus and mainly meant for external users who import TSDB.
// All the callbacks should be safe to be called concurrently.
// It is up to the user to implement soft or hard consistency by making the callbacks
// atomic or non-atomic. Atomic callbacks can cause degradation performance.
type SeriesLifecycleCallback interface {
// PreCreation is called before creating a series to indicate if the series can be created.
// A non nil error means the series should not be created.
PreCreation(labels.Labels) error
// PostCreation is called after creating a series to indicate a creation of series.
PostCreation(labels.Labels)
// PostDeletion is called after deletion of series.
PostDeletion(map[chunks.HeadSeriesRef]labels.Labels)
}
// NewHead opens the head block in dir.
func NewHead(r prometheus.Registerer, l log.Logger, wal, wbl *wlog.WL, opts *HeadOptions, stats *HeadStats) (*Head, error) {
var err error
if l == nil {
l = log.NewNopLogger()
}
if opts.OutOfOrderTimeWindow.Load() < 0 {
opts.OutOfOrderTimeWindow.Store(0)
}
// Time window can be set on runtime. So the capMin and capMax should be valid
// even if ooo is not enabled yet.
capMax := opts.OutOfOrderCapMax.Load()
if capMax <= 0 || capMax > 255 {
return nil, errors.Errorf("OOOCapMax of %d is invalid. must be > 0 and <= 255", capMax)
}
if opts.ChunkRange < 1 {
return nil, errors.Errorf("invalid chunk range %d", opts.ChunkRange)
}
if opts.SeriesCallback == nil {
opts.SeriesCallback = &noopSeriesLifecycleCallback{}
}
if stats == nil {
stats = NewHeadStats()
}
if !opts.EnableExemplarStorage {
opts.MaxExemplars.Store(0)
}
h := &Head{
wal: wal,
wbl: wbl,
logger: l,
opts: opts,
memChunkPool: sync.Pool{
New: func() interface{} {
return &memChunk{}
},
},
stats: stats,
reg: r,
}
if err := h.resetInMemoryState(); err != nil {
return nil, err
}
h.metrics = newHeadMetrics(h, r)
if opts.ChunkPool == nil {
opts.ChunkPool = chunkenc.NewPool()
}
if opts.WALReplayConcurrency <= 0 {
opts.WALReplayConcurrency = defaultWALReplayConcurrency
}
h.chunkDiskMapper, err = chunks.NewChunkDiskMapper(
r,
mmappedChunksDir(opts.ChunkDirRoot),
opts.ChunkPool,
opts.ChunkWriteBufferSize,
opts.ChunkWriteQueueSize,
)
if err != nil {
return nil, err
}
return h, nil
}
func (h *Head) resetInMemoryState() error {
var err error
var em *ExemplarMetrics
if h.exemplars != nil {
ce, ok := h.exemplars.(*CircularExemplarStorage)
if ok {
em = ce.metrics
}
}
if em == nil {
em = NewExemplarMetrics(h.reg)
}
es, err := NewCircularExemplarStorage(h.opts.MaxExemplars.Load(), em)
if err != nil {
return err
}
h.iso = newIsolation(h.opts.IsolationDisabled)
h.exemplarMetrics = em
h.exemplars = es
h.series = newStripeSeries(h.opts.StripeSize, h.opts.SeriesCallback)
h.postings = index.NewUnorderedMemPostings()
h.tombstones = tombstones.NewMemTombstones()
h.deleted = map[chunks.HeadSeriesRef]int{}
h.chunkRange.Store(h.opts.ChunkRange)
h.minTime.Store(math.MaxInt64)
h.maxTime.Store(math.MinInt64)
h.minOOOTime.Store(math.MaxInt64)
h.maxOOOTime.Store(math.MinInt64)
h.lastWALTruncationTime.Store(math.MinInt64)
h.lastMemoryTruncationTime.Store(math.MinInt64)
return nil
}
type headMetrics struct {
activeAppenders prometheus.Gauge
series prometheus.GaugeFunc
seriesCreated prometheus.Counter
seriesRemoved prometheus.Counter
seriesNotFound prometheus.Counter
chunks prometheus.Gauge
chunksCreated prometheus.Counter
chunksRemoved prometheus.Counter
gcDuration prometheus.Summary
samplesAppended *prometheus.CounterVec
outOfOrderSamplesAppended prometheus.Counter
outOfBoundSamples *prometheus.CounterVec
outOfOrderSamples *prometheus.CounterVec
tooOldSamples *prometheus.CounterVec
walTruncateDuration prometheus.Summary
walCorruptionsTotal prometheus.Counter
dataTotalReplayDuration prometheus.Gauge
headTruncateFail prometheus.Counter
headTruncateTotal prometheus.Counter
checkpointDeleteFail prometheus.Counter
checkpointDeleteTotal prometheus.Counter
checkpointCreationFail prometheus.Counter
checkpointCreationTotal prometheus.Counter
mmapChunkCorruptionTotal prometheus.Counter
snapshotReplayErrorTotal prometheus.Counter // Will be either 0 or 1.
oooHistogram prometheus.Histogram
mmapChunksTotal prometheus.Counter
}
const (
sampleMetricTypeFloat = "float"
sampleMetricTypeHistogram = "histogram"
)
func newHeadMetrics(h *Head, r prometheus.Registerer) *headMetrics {
m := &headMetrics{
activeAppenders: prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_active_appenders",
Help: "Number of currently active appender transactions",
}),
series: prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_series",
Help: "Total number of series in the head block.",
}, func() float64 {
return float64(h.NumSeries())
}),
seriesCreated: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_series_created_total",
Help: "Total number of series created in the head",
}),
seriesRemoved: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_series_removed_total",
Help: "Total number of series removed in the head",
}),
seriesNotFound: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_series_not_found_total",
Help: "Total number of requests for series that were not found.",
}),
chunks: prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_chunks",
Help: "Total number of chunks in the head block.",
}),
chunksCreated: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_chunks_created_total",
Help: "Total number of chunks created in the head",
}),
chunksRemoved: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_chunks_removed_total",
Help: "Total number of chunks removed in the head",
}),
gcDuration: prometheus.NewSummary(prometheus.SummaryOpts{
Name: "prometheus_tsdb_head_gc_duration_seconds",
Help: "Runtime of garbage collection in the head block.",
}),
walTruncateDuration: prometheus.NewSummary(prometheus.SummaryOpts{
Name: "prometheus_tsdb_wal_truncate_duration_seconds",
Help: "Duration of WAL truncation.",
}),
walCorruptionsTotal: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_wal_corruptions_total",
Help: "Total number of WAL corruptions.",
}),
dataTotalReplayDuration: prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_data_replay_duration_seconds",
Help: "Time taken to replay the data on disk.",
}),
samplesAppended: prometheus.NewCounterVec(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_samples_appended_total",
Help: "Total number of appended samples.",
}, []string{"type"}),
outOfOrderSamplesAppended: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_out_of_order_samples_appended_total",
Help: "Total number of appended out of order samples.",
}),
outOfBoundSamples: prometheus.NewCounterVec(prometheus.CounterOpts{
Name: "prometheus_tsdb_out_of_bound_samples_total",
Help: "Total number of out of bound samples ingestion failed attempts with out of order support disabled.",
}, []string{"type"}),
outOfOrderSamples: prometheus.NewCounterVec(prometheus.CounterOpts{
Name: "prometheus_tsdb_out_of_order_samples_total",
Help: "Total number of out of order samples ingestion failed attempts due to out of order being disabled.",
}, []string{"type"}),
tooOldSamples: prometheus.NewCounterVec(prometheus.CounterOpts{
Name: "prometheus_tsdb_too_old_samples_total",
Help: "Total number of out of order samples ingestion failed attempts with out of support enabled, but sample outside of time window.",
}, []string{"type"}),
headTruncateFail: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_truncations_failed_total",
Help: "Total number of head truncations that failed.",
}),
headTruncateTotal: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_head_truncations_total",
Help: "Total number of head truncations attempted.",
}),
checkpointDeleteFail: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_checkpoint_deletions_failed_total",
Help: "Total number of checkpoint deletions that failed.",
}),
checkpointDeleteTotal: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_checkpoint_deletions_total",
Help: "Total number of checkpoint deletions attempted.",
}),
checkpointCreationFail: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_checkpoint_creations_failed_total",
Help: "Total number of checkpoint creations that failed.",
}),
checkpointCreationTotal: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_checkpoint_creations_total",
Help: "Total number of checkpoint creations attempted.",
}),
mmapChunkCorruptionTotal: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_mmap_chunk_corruptions_total",
Help: "Total number of memory-mapped chunk corruptions.",
}),
snapshotReplayErrorTotal: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_snapshot_replay_error_total",
Help: "Total number snapshot replays that failed.",
}),
oooHistogram: prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "prometheus_tsdb_sample_ooo_delta",
Help: "Delta in seconds by which a sample is considered out of order (reported regardless of OOO time window and whether sample is accepted or not).",
Buckets: []float64{
60 * 10, // 10 min
60 * 30, // 30 min
60 * 60, // 60 min
60 * 60 * 2, // 2h
60 * 60 * 3, // 3h
60 * 60 * 6, // 6h
60 * 60 * 12, // 12h
},
}),
mmapChunksTotal: prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_mmap_chunks_total",
Help: "Total number of chunks that were memory-mapped.",
}),
}
if r != nil {
r.MustRegister(
m.activeAppenders,
m.series,
m.chunks,
m.chunksCreated,
m.chunksRemoved,
m.seriesCreated,
m.seriesRemoved,
m.seriesNotFound,
m.gcDuration,
m.walTruncateDuration,
m.walCorruptionsTotal,
m.dataTotalReplayDuration,
m.samplesAppended,
m.outOfOrderSamplesAppended,
m.outOfBoundSamples,
m.outOfOrderSamples,
m.tooOldSamples,
m.headTruncateFail,
m.headTruncateTotal,
m.checkpointDeleteFail,
m.checkpointDeleteTotal,
m.checkpointCreationFail,
m.checkpointCreationTotal,
m.mmapChunksTotal,
m.mmapChunkCorruptionTotal,
m.snapshotReplayErrorTotal,
// Metrics bound to functions and not needed in tests
// can be created and registered on the spot.
prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_max_time",
Help: "Maximum timestamp of the head block. The unit is decided by the library consumer.",
}, func() float64 {
return float64(h.MaxTime())
}),
prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_min_time",
Help: "Minimum time bound of the head block. The unit is decided by the library consumer.",
}, func() float64 {
return float64(h.MinTime())
}),
prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_isolation_low_watermark",
Help: "The lowest TSDB append ID that is still referenced.",
}, func() float64 {
return float64(h.iso.lowWatermark())
}),
prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_isolation_high_watermark",
Help: "The highest TSDB append ID that has been given out.",
}, func() float64 {
return float64(h.iso.lastAppendID())
}),
prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_head_chunks_storage_size_bytes",
Help: "Size of the chunks_head directory.",
}, func() float64 {
val, err := h.chunkDiskMapper.Size()
if err != nil {
level.Error(h.logger).Log("msg", "Failed to calculate size of \"chunks_head\" dir",
"err", err.Error())
}
return float64(val)
}),
)
}
return m
}
func mmappedChunksDir(dir string) string { return filepath.Join(dir, "chunks_head") }
// HeadStats are the statistics for the head component of the DB.
type HeadStats struct {
WALReplayStatus *WALReplayStatus
}
// NewHeadStats returns a new HeadStats object.
func NewHeadStats() *HeadStats {
return &HeadStats{
WALReplayStatus: &WALReplayStatus{},
}
}
// WALReplayStatus contains status information about the WAL replay.
type WALReplayStatus struct {
sync.RWMutex
Min int
Max int
Current int
}
// GetWALReplayStatus returns the WAL replay status information.
func (s *WALReplayStatus) GetWALReplayStatus() WALReplayStatus {
s.RLock()
defer s.RUnlock()
return WALReplayStatus{
Min: s.Min,
Max: s.Max,
Current: s.Current,
}
}
const cardinalityCacheExpirationTime = time.Duration(30) * time.Second
// Init loads data from the write ahead log and prepares the head for writes.
// It should be called before using an appender so that it
// limits the ingested samples to the head min valid time.
func (h *Head) Init(minValidTime int64) error {
h.minValidTime.Store(minValidTime)
defer func() {
h.postings.EnsureOrder(h.opts.WALReplayConcurrency)
}()
defer h.gc() // After loading the wal remove the obsolete data from the head.
defer func() {
// Loading of m-mapped chunks and snapshot can make the mint of the Head
// to go below minValidTime.
if h.MinTime() < h.minValidTime.Load() {
h.minTime.Store(h.minValidTime.Load())
}
}()
level.Info(h.logger).Log("msg", "Replaying on-disk memory mappable chunks if any")
start := time.Now()
snapIdx, snapOffset := -1, 0
refSeries := make(map[chunks.HeadSeriesRef]*memSeries)
snapshotLoaded := false
if h.opts.EnableMemorySnapshotOnShutdown {
level.Info(h.logger).Log("msg", "Chunk snapshot is enabled, replaying from the snapshot")
// If there are any WAL files, there should be at least one WAL file with an index that is current or newer
// than the snapshot index. If the WAL index is behind the snapshot index somehow, the snapshot is assumed
// to be outdated.
loadSnapshot := true
if h.wal != nil {
_, endAt, err := wlog.Segments(h.wal.Dir())
if err != nil {
return errors.Wrap(err, "finding WAL segments")
}
_, idx, _, err := LastChunkSnapshot(h.opts.ChunkDirRoot)
if err != nil && err != record.ErrNotFound {
level.Error(h.logger).Log("msg", "Could not find last snapshot", "err", err)
}
if err == nil && endAt < idx {
loadSnapshot = false
level.Warn(h.logger).Log("msg", "Last WAL file is behind snapshot, removing snapshots")
if err := DeleteChunkSnapshots(h.opts.ChunkDirRoot, math.MaxInt, math.MaxInt); err != nil {
level.Error(h.logger).Log("msg", "Error while deleting snapshot directories", "err", err)
}
}
}
if loadSnapshot {
var err error
snapIdx, snapOffset, refSeries, err = h.loadChunkSnapshot()
if err == nil {
snapshotLoaded = true
level.Info(h.logger).Log("msg", "Chunk snapshot loading time", "duration", time.Since(start).String())
}
if err != nil {
snapIdx, snapOffset = -1, 0
refSeries = make(map[chunks.HeadSeriesRef]*memSeries)
h.metrics.snapshotReplayErrorTotal.Inc()
level.Error(h.logger).Log("msg", "Failed to load chunk snapshot", "err", err)
// We clear the partially loaded data to replay fresh from the WAL.
if err := h.resetInMemoryState(); err != nil {
return err
}
}
}
}
mmapChunkReplayStart := time.Now()
var (
mmappedChunks map[chunks.HeadSeriesRef][]*mmappedChunk
oooMmappedChunks map[chunks.HeadSeriesRef][]*mmappedChunk
lastMmapRef chunks.ChunkDiskMapperRef
err error
)
if snapshotLoaded || h.wal != nil {
// If snapshot was not loaded and if there is no WAL, then m-map chunks will be discarded
// anyway. So we only load m-map chunks when it won't be discarded.
mmappedChunks, oooMmappedChunks, lastMmapRef, err = h.loadMmappedChunks(refSeries)
if err != nil {
// TODO(codesome): clear out all m-map chunks here for refSeries.
level.Error(h.logger).Log("msg", "Loading on-disk chunks failed", "err", err)
if _, ok := errors.Cause(err).(*chunks.CorruptionErr); ok {
h.metrics.mmapChunkCorruptionTotal.Inc()
}
// Discard snapshot data since we need to replay the WAL for the missed m-map chunks data.
snapIdx, snapOffset = -1, 0
// If this fails, data will be recovered from WAL.
// Hence we wont lose any data (given WAL is not corrupt).
mmappedChunks, oooMmappedChunks, lastMmapRef, err = h.removeCorruptedMmappedChunks(err)
if err != nil {
return err
}
}
level.Info(h.logger).Log("msg", "On-disk memory mappable chunks replay completed", "duration", time.Since(mmapChunkReplayStart).String())
}
if h.wal == nil {
level.Info(h.logger).Log("msg", "WAL not found")
return nil
}
level.Info(h.logger).Log("msg", "Replaying WAL, this may take a while")
checkpointReplayStart := time.Now()
// Backfill the checkpoint first if it exists.
dir, startFrom, err := wlog.LastCheckpoint(h.wal.Dir())
if err != nil && err != record.ErrNotFound {
return errors.Wrap(err, "find last checkpoint")
}
// Find the last segment.
_, endAt, e := wlog.Segments(h.wal.Dir())
if e != nil {
return errors.Wrap(e, "finding WAL segments")
}
h.startWALReplayStatus(startFrom, endAt)
multiRef := map[chunks.HeadSeriesRef]chunks.HeadSeriesRef{}
if err == nil && startFrom >= snapIdx {
sr, err := wlog.NewSegmentsReader(dir)
if err != nil {
return errors.Wrap(err, "open checkpoint")
}
defer func() {
if err := sr.Close(); err != nil {
level.Warn(h.logger).Log("msg", "Error while closing the wal segments reader", "err", err)
}
}()
// A corrupted checkpoint is a hard error for now and requires user
// intervention. There's likely little data that can be recovered anyway.
if err := h.loadWAL(wlog.NewReader(sr), multiRef, mmappedChunks, oooMmappedChunks); err != nil {
return errors.Wrap(err, "backfill checkpoint")
}
h.updateWALReplayStatusRead(startFrom)
startFrom++
level.Info(h.logger).Log("msg", "WAL checkpoint loaded")
}
checkpointReplayDuration := time.Since(checkpointReplayStart)
walReplayStart := time.Now()
if snapIdx > startFrom {
startFrom = snapIdx
}
// Backfill segments from the most recent checkpoint onwards.
for i := startFrom; i <= endAt; i++ {
s, err := wlog.OpenReadSegment(wlog.SegmentName(h.wal.Dir(), i))
if err != nil {
return errors.Wrap(err, fmt.Sprintf("open WAL segment: %d", i))
}
offset := 0
if i == snapIdx {
offset = snapOffset
}
sr, err := wlog.NewSegmentBufReaderWithOffset(offset, s)
if errors.Is(err, io.EOF) {
// File does not exist.
continue
}
if err != nil {
return errors.Wrapf(err, "segment reader (offset=%d)", offset)
}
err = h.loadWAL(wlog.NewReader(sr), multiRef, mmappedChunks, oooMmappedChunks)
if err := sr.Close(); err != nil {
level.Warn(h.logger).Log("msg", "Error while closing the wal segments reader", "err", err)
}
if err != nil {
return err
}
level.Info(h.logger).Log("msg", "WAL segment loaded", "segment", i, "maxSegment", endAt)
h.updateWALReplayStatusRead(i)
}
walReplayDuration := time.Since(walReplayStart)
wblReplayStart := time.Now()
if h.wbl != nil {
// Replay OOO WAL.
startFrom, endAt, e = wlog.Segments(h.wbl.Dir())
if e != nil {
return errors.Wrap(e, "finding OOO WAL segments")
}
h.startWALReplayStatus(startFrom, endAt)
for i := startFrom; i <= endAt; i++ {
s, err := wlog.OpenReadSegment(wlog.SegmentName(h.wbl.Dir(), i))
if err != nil {
return errors.Wrap(err, fmt.Sprintf("open WBL segment: %d", i))
}
sr := wlog.NewSegmentBufReader(s)
err = h.loadWBL(wlog.NewReader(sr), multiRef, lastMmapRef)
if err := sr.Close(); err != nil {
level.Warn(h.logger).Log("msg", "Error while closing the wbl segments reader", "err", err)
}
if err != nil {
return err
}
level.Info(h.logger).Log("msg", "WBL segment loaded", "segment", i, "maxSegment", endAt)
h.updateWALReplayStatusRead(i)
}
}
wblReplayDuration := time.Since(wblReplayStart)
totalReplayDuration := time.Since(start)
h.metrics.dataTotalReplayDuration.Set(totalReplayDuration.Seconds())
level.Info(h.logger).Log(
"msg", "WAL replay completed",
"checkpoint_replay_duration", checkpointReplayDuration.String(),
"wal_replay_duration", walReplayDuration.String(),
"wbl_replay_duration", wblReplayDuration.String(),
"total_replay_duration", totalReplayDuration.String(),
)
return nil
}
func (h *Head) loadMmappedChunks(refSeries map[chunks.HeadSeriesRef]*memSeries) (map[chunks.HeadSeriesRef][]*mmappedChunk, map[chunks.HeadSeriesRef][]*mmappedChunk, chunks.ChunkDiskMapperRef, error) {
mmappedChunks := map[chunks.HeadSeriesRef][]*mmappedChunk{}
oooMmappedChunks := map[chunks.HeadSeriesRef][]*mmappedChunk{}
var lastRef, secondLastRef chunks.ChunkDiskMapperRef
if err := h.chunkDiskMapper.IterateAllChunks(func(seriesRef chunks.HeadSeriesRef, chunkRef chunks.ChunkDiskMapperRef, mint, maxt int64, numSamples uint16, encoding chunkenc.Encoding, isOOO bool) error {
secondLastRef = lastRef
lastRef = chunkRef
if !isOOO && maxt < h.minValidTime.Load() {
return nil
}
// We ignore any chunk that doesn't have a valid encoding
if !chunkenc.IsValidEncoding(encoding) {
return nil
}
ms, ok := refSeries[seriesRef]
if isOOO {
if !ok {
oooMmappedChunks[seriesRef] = append(oooMmappedChunks[seriesRef], &mmappedChunk{
ref: chunkRef,
minTime: mint,
maxTime: maxt,
numSamples: numSamples,
})
return nil
}
h.metrics.chunks.Inc()
h.metrics.chunksCreated.Inc()
if ms.ooo == nil {
ms.ooo = &memSeriesOOOFields{}
}
ms.ooo.oooMmappedChunks = append(ms.ooo.oooMmappedChunks, &mmappedChunk{
ref: chunkRef,
minTime: mint,
maxTime: maxt,
numSamples: numSamples,
})
h.updateMinOOOMaxOOOTime(mint, maxt)
return nil
}
if !ok {
slice := mmappedChunks[seriesRef]
if len(slice) > 0 && slice[len(slice)-1].maxTime >= mint {
h.metrics.mmapChunkCorruptionTotal.Inc()
return errors.Errorf("out of sequence m-mapped chunk for series ref %d, last chunk: [%d, %d], new: [%d, %d]",
seriesRef, slice[len(slice)-1].minTime, slice[len(slice)-1].maxTime, mint, maxt)
}
slice = append(slice, &mmappedChunk{
ref: chunkRef,
minTime: mint,
maxTime: maxt,
numSamples: numSamples,
})
mmappedChunks[seriesRef] = slice
return nil
}
if len(ms.mmappedChunks) > 0 && ms.mmappedChunks[len(ms.mmappedChunks)-1].maxTime >= mint {
h.metrics.mmapChunkCorruptionTotal.Inc()
return errors.Errorf("out of sequence m-mapped chunk for series ref %d, last chunk: [%d, %d], new: [%d, %d]",
seriesRef, ms.mmappedChunks[len(ms.mmappedChunks)-1].minTime, ms.mmappedChunks[len(ms.mmappedChunks)-1].maxTime,
mint, maxt)
}
h.metrics.chunks.Inc()
h.metrics.chunksCreated.Inc()
ms.mmappedChunks = append(ms.mmappedChunks, &mmappedChunk{
ref: chunkRef,
minTime: mint,
maxTime: maxt,
numSamples: numSamples,
})
h.updateMinMaxTime(mint, maxt)
if ms.headChunks != nil && maxt >= ms.headChunks.minTime {
// The head chunk was completed and was m-mapped after taking the snapshot.
// Hence remove this chunk.
ms.nextAt = 0
ms.headChunks = nil
ms.app = nil
}
return nil
}); err != nil {
// secondLastRef because the lastRef caused an error.
return nil, nil, secondLastRef, errors.Wrap(err, "iterate on on-disk chunks")
}
return mmappedChunks, oooMmappedChunks, lastRef, nil
}
// removeCorruptedMmappedChunks attempts to delete the corrupted mmapped chunks and if it fails, it clears all the previously
// loaded mmapped chunks.
func (h *Head) removeCorruptedMmappedChunks(err error) (map[chunks.HeadSeriesRef][]*mmappedChunk, map[chunks.HeadSeriesRef][]*mmappedChunk, chunks.ChunkDiskMapperRef, error) {
level.Info(h.logger).Log("msg", "Deleting mmapped chunk files")
// We never want to preserve the in-memory series from snapshots if we are repairing m-map chunks.
if err := h.resetInMemoryState(); err != nil {
return map[chunks.HeadSeriesRef][]*mmappedChunk{}, map[chunks.HeadSeriesRef][]*mmappedChunk{}, 0, err
}
level.Info(h.logger).Log("msg", "Deleting mmapped chunk files")
if err := h.chunkDiskMapper.DeleteCorrupted(err); err != nil {
level.Info(h.logger).Log("msg", "Deletion of corrupted mmap chunk files failed, discarding chunk files completely", "err", err)
if err := h.chunkDiskMapper.Truncate(math.MaxUint32); err != nil {
level.Error(h.logger).Log("msg", "Deletion of all mmap chunk files failed", "err", err)
}
return map[chunks.HeadSeriesRef][]*mmappedChunk{}, map[chunks.HeadSeriesRef][]*mmappedChunk{}, 0, nil
}
level.Info(h.logger).Log("msg", "Deletion of mmap chunk files successful, reattempting m-mapping the on-disk chunks")
mmappedChunks, oooMmappedChunks, lastRef, err := h.loadMmappedChunks(make(map[chunks.HeadSeriesRef]*memSeries))
if err != nil {
level.Error(h.logger).Log("msg", "Loading on-disk chunks failed, discarding chunk files completely", "err", err)
if err := h.chunkDiskMapper.Truncate(math.MaxUint32); err != nil {
level.Error(h.logger).Log("msg", "Deletion of all mmap chunk files failed after failed loading", "err", err)
}
mmappedChunks = map[chunks.HeadSeriesRef][]*mmappedChunk{}
}
return mmappedChunks, oooMmappedChunks, lastRef, nil
}
func (h *Head) ApplyConfig(cfg *config.Config, wbl *wlog.WL) {
oooTimeWindow := int64(0)
if cfg.StorageConfig.TSDBConfig != nil {
oooTimeWindow = cfg.StorageConfig.TSDBConfig.OutOfOrderTimeWindow
}
if oooTimeWindow < 0 {
oooTimeWindow = 0
}
h.SetOutOfOrderTimeWindow(oooTimeWindow, wbl)
if !h.opts.EnableExemplarStorage {
return
}
// Head uses opts.MaxExemplars in combination with opts.EnableExemplarStorage
// to decide if it should pass exemplars along to its exemplar storage, so we
// need to update opts.MaxExemplars here.
prevSize := h.opts.MaxExemplars.Load()
h.opts.MaxExemplars.Store(cfg.StorageConfig.ExemplarsConfig.MaxExemplars)
newSize := h.opts.MaxExemplars.Load()
if prevSize == newSize {
return
}
migrated := h.exemplars.(*CircularExemplarStorage).Resize(newSize)
level.Info(h.logger).Log("msg", "Exemplar storage resized", "from", prevSize, "to", newSize, "migrated", migrated)
}
// SetOutOfOrderTimeWindow updates the out of order related parameters.
// If the Head already has a WBL set, then the wbl will be ignored.
func (h *Head) SetOutOfOrderTimeWindow(oooTimeWindow int64, wbl *wlog.WL) {
if oooTimeWindow > 0 && h.wbl == nil {
h.wbl = wbl
}
h.opts.OutOfOrderTimeWindow.Store(oooTimeWindow)
}
// EnableNativeHistograms enables the native histogram feature.
func (h *Head) EnableNativeHistograms() {
h.opts.EnableNativeHistograms.Store(true)
}
// DisableNativeHistograms disables the native histogram feature.
func (h *Head) DisableNativeHistograms() {
h.opts.EnableNativeHistograms.Store(false)
}
// PostingsCardinalityStats returns highest cardinality stats by label and value names.
func (h *Head) PostingsCardinalityStats(statsByLabelName string, limit int) *index.PostingsStats {
h.cardinalityMutex.Lock()
defer h.cardinalityMutex.Unlock()
currentTime := time.Duration(time.Now().Unix()) * time.Second
seconds := currentTime - h.lastPostingsStatsCall
if seconds > cardinalityCacheExpirationTime {
h.cardinalityCache = nil
}
if h.cardinalityCache != nil {
return h.cardinalityCache
}
h.cardinalityCache = h.postings.Stats(statsByLabelName, limit)
h.lastPostingsStatsCall = time.Duration(time.Now().Unix()) * time.Second
return h.cardinalityCache
}
func (h *Head) updateMinMaxTime(mint, maxt int64) {
for {
lt := h.MinTime()
if mint >= lt {
break
}
if h.minTime.CompareAndSwap(lt, mint) {
break
}
}
for {
ht := h.MaxTime()
if maxt <= ht {
break
}
if h.maxTime.CompareAndSwap(ht, maxt) {
break
}
}
}
func (h *Head) updateMinOOOMaxOOOTime(mint, maxt int64) {
for {
lt := h.MinOOOTime()
if mint >= lt {
break
}
if h.minOOOTime.CompareAndSwap(lt, mint) {
break
}
}
for {
ht := h.MaxOOOTime()
if maxt <= ht {
break
}
if h.maxOOOTime.CompareAndSwap(ht, maxt) {
break
}
}
}
// SetMinValidTime sets the minimum timestamp the head can ingest.
func (h *Head) SetMinValidTime(minValidTime int64) {
h.minValidTime.Store(minValidTime)
}
// Truncate removes old data before mint from the head and WAL.
func (h *Head) Truncate(mint int64) (err error) {
initialize := h.MinTime() == math.MaxInt64
if err := h.truncateMemory(mint); err != nil {
return err
}
if initialize {
return nil
}
return h.truncateWAL(mint)
}
// OverlapsClosedInterval returns true if the head overlaps [mint, maxt].
func (h *Head) OverlapsClosedInterval(mint, maxt int64) bool {
return h.MinTime() <= maxt && mint <= h.MaxTime()
}
// truncateMemory removes old data before mint from the head.
func (h *Head) truncateMemory(mint int64) (err error) {
h.chunkSnapshotMtx.Lock()
defer h.chunkSnapshotMtx.Unlock()
defer func() {
if err != nil {
h.metrics.headTruncateFail.Inc()
}
}()
initialize := h.MinTime() == math.MaxInt64
if h.MinTime() >= mint && !initialize {
return nil
}
// The order of these two Store() should not be changed,
// i.e. truncation time is set before in-process boolean.
h.lastMemoryTruncationTime.Store(mint)
h.memTruncationInProcess.Store(true)
defer h.memTruncationInProcess.Store(false)
// We wait for pending queries to end that overlap with this truncation.
if !initialize {
h.WaitForPendingReadersInTimeRange(h.MinTime(), mint)
}
h.minTime.Store(mint)
h.minValidTime.Store(mint)
// Ensure that max time is at least as high as min time.
for h.MaxTime() < mint {
h.maxTime.CompareAndSwap(h.MaxTime(), mint)
}
// This was an initial call to Truncate after loading blocks on startup.
// We haven't read back the WAL yet, so do not attempt to truncate it.
if initialize {
return nil
}
h.metrics.headTruncateTotal.Inc()
return h.truncateSeriesAndChunkDiskMapper("truncateMemory")
}
// WaitForPendingReadersInTimeRange waits for queries overlapping with given range to finish querying.
// The query timeout limits the max wait time of this function implicitly.
// The mint is inclusive and maxt is the truncation time hence exclusive.
func (h *Head) WaitForPendingReadersInTimeRange(mint, maxt int64) {
maxt-- // Making it inclusive before checking overlaps.
overlaps := func() bool {
o := false
h.iso.TraverseOpenReads(func(s *isolationState) bool {
if s.mint <= maxt && mint <= s.maxt {
// Overlaps with the truncation range.
o = true
return false
}
return true
})
return o
}
for overlaps() {
time.Sleep(500 * time.Millisecond)
}
}
// WaitForAppendersOverlapping waits for appends overlapping maxt to finish.
func (h *Head) WaitForAppendersOverlapping(maxt int64) {
for maxt >= h.iso.lowestAppendTime() {
time.Sleep(500 * time.Millisecond)
}
}
// IsQuerierCollidingWithTruncation returns if the current querier needs to be closed and if a new querier
// has to be created. In the latter case, the method also returns the new mint to be used for creating the
// new range head and the new querier. This methods helps preventing races with the truncation of in-memory data.
//
// NOTE: The querier should already be taken before calling this.
func (h *Head) IsQuerierCollidingWithTruncation(querierMint, querierMaxt int64) (shouldClose, getNew bool, newMint int64) {
if !h.memTruncationInProcess.Load() {
return false, false, 0
}
// Head truncation is in process. It also means that the block that was
// created for this truncation range is also available.
// Check if we took a querier that overlaps with this truncation.
memTruncTime := h.lastMemoryTruncationTime.Load()
if querierMaxt < memTruncTime {
// Head compaction has happened and this time range is being truncated.
// This query doesn't overlap with the Head any longer.
// We should close this querier to avoid races and the data would be
// available with the blocks below.
// Cases:
// 1. |------truncation------|
// |---query---|
// 2. |------truncation------|
// |---query---|
return true, false, 0
}
if querierMint < memTruncTime {
// The truncation time is not same as head mint that we saw above but the
// query still overlaps with the Head.
// The truncation started after we got the querier. So it is not safe
// to use this querier and/or might block truncation. We should get
// a new querier for the new Head range while remaining will be available
// in the blocks below.
// Case:
// |------truncation------|
// |----query----|
// Turns into
// |------truncation------|
// |---qu---|
return true, true, memTruncTime
}
// Other case is this, which is a no-op
// |------truncation------|
// |---query---|
return false, false, 0
}
// truncateWAL removes old data before mint from the WAL.
func (h *Head) truncateWAL(mint int64) error {
h.chunkSnapshotMtx.Lock()
defer h.chunkSnapshotMtx.Unlock()
if h.wal == nil || mint <= h.lastWALTruncationTime.Load() {
return nil
}
start := time.Now()
h.lastWALTruncationTime.Store(mint)
first, last, err := wlog.Segments(h.wal.Dir())
if err != nil {
return errors.Wrap(err, "get segment range")
}
// Start a new segment, so low ingestion volume TSDB don't have more WAL than
// needed.
if _, err := h.wal.NextSegment(); err != nil {
return errors.Wrap(err, "next segment")
}
last-- // Never consider last segment for checkpoint.
if last < 0 {
return nil // no segments yet.
}
// The lower two thirds of segments should contain mostly obsolete samples.
// If we have less than two segments, it's not worth checkpointing yet.
// With the default 2h blocks, this will keeping up to around 3h worth
// of WAL segments.
last = first + (last-first)*2/3
if last <= first {
return nil
}
keep := func(id chunks.HeadSeriesRef) bool {
if h.series.getByID(id) != nil {
return true
}
h.deletedMtx.Lock()
keepUntil, ok := h.deleted[id]
h.deletedMtx.Unlock()
return ok && keepUntil > last
}
h.metrics.checkpointCreationTotal.Inc()
if _, err = wlog.Checkpoint(h.logger, h.wal, first, last, keep, mint); err != nil {
h.metrics.checkpointCreationFail.Inc()
if _, ok := errors.Cause(err).(*wlog.CorruptionErr); ok {
h.metrics.walCorruptionsTotal.Inc()
}
return errors.Wrap(err, "create checkpoint")
}
if err := h.wal.Truncate(last + 1); err != nil {
// If truncating fails, we'll just try again at the next checkpoint.
// Leftover segments will just be ignored in the future if there's a checkpoint
// that supersedes them.
level.Error(h.logger).Log("msg", "truncating segments failed", "err", err)
}
// The checkpoint is written and segments before it is truncated, so we no
// longer need to track deleted series that are before it.
h.deletedMtx.Lock()
for ref, segment := range h.deleted {
if segment <= last {
delete(h.deleted, ref)
}
}
h.deletedMtx.Unlock()
h.metrics.checkpointDeleteTotal.Inc()
if err := wlog.DeleteCheckpoints(h.wal.Dir(), last); err != nil {
// Leftover old checkpoints do not cause problems down the line beyond
// occupying disk space.
// They will just be ignored since a higher checkpoint exists.
level.Error(h.logger).Log("msg", "delete old checkpoints", "err", err)
h.metrics.checkpointDeleteFail.Inc()
}
h.metrics.walTruncateDuration.Observe(time.Since(start).Seconds())
level.Info(h.logger).Log("msg", "WAL checkpoint complete",
"first", first, "last", last, "duration", time.Since(start))
return nil
}
// truncateOOO
// - truncates the OOO WBL files whose index is strictly less than lastWBLFile.
// - garbage collects all the m-map chunks from the memory that are less than or equal to minOOOMmapRef
// and then deletes the series that do not have any data anymore.
func (h *Head) truncateOOO(lastWBLFile int, minOOOMmapRef chunks.ChunkDiskMapperRef) error {
curMinOOOMmapRef := chunks.ChunkDiskMapperRef(h.minOOOMmapRef.Load())
if minOOOMmapRef.GreaterThan(curMinOOOMmapRef) {
h.minOOOMmapRef.Store(uint64(minOOOMmapRef))
if err := h.truncateSeriesAndChunkDiskMapper("truncateOOO"); err != nil {
return err
}
}
if h.wbl == nil {
return nil
}
return h.wbl.Truncate(lastWBLFile)
}
// truncateSeriesAndChunkDiskMapper is a helper function for truncateMemory and truncateOOO.
// It runs GC on the Head and truncates the ChunkDiskMapper accordingly.
func (h *Head) truncateSeriesAndChunkDiskMapper(caller string) error {
start := time.Now()
headMaxt := h.MaxTime()
actualMint, minOOOTime, minMmapFile := h.gc()
level.Info(h.logger).Log("msg", "Head GC completed", "caller", caller, "duration", time.Since(start))
h.metrics.gcDuration.Observe(time.Since(start).Seconds())
if actualMint > h.minTime.Load() {
// The actual mint of the head is higher than the one asked to truncate.
appendableMinValidTime := h.appendableMinValidTime()
if actualMint < appendableMinValidTime {
h.minTime.Store(actualMint)
h.minValidTime.Store(actualMint)
} else {
// The actual min time is in the appendable window.
// So we set the mint to the appendableMinValidTime.
h.minTime.Store(appendableMinValidTime)
h.minValidTime.Store(appendableMinValidTime)
}
}
if headMaxt-h.opts.OutOfOrderTimeWindow.Load() < minOOOTime {
// The allowed OOO window is lower than the min OOO time seen during GC.
// So it is possible that some OOO sample was inserted that was less that minOOOTime.
// So we play safe and set it to the min that was possible.
minOOOTime = headMaxt - h.opts.OutOfOrderTimeWindow.Load()
}
h.minOOOTime.Store(minOOOTime)
// Truncate the chunk m-mapper.
if err := h.chunkDiskMapper.Truncate(uint32(minMmapFile)); err != nil {
return errors.Wrap(err, "truncate chunks.HeadReadWriter by file number")
}
return nil
}
type Stats struct {
NumSeries uint64
MinTime, MaxTime int64
IndexPostingStats *index.PostingsStats
}
// Stats returns important current HEAD statistics. Note that it is expensive to
// calculate these.
func (h *Head) Stats(statsByLabelName string, limit int) *Stats {
return &Stats{
NumSeries: h.NumSeries(),
MaxTime: h.MaxTime(),
MinTime: h.MinTime(),
IndexPostingStats: h.PostingsCardinalityStats(statsByLabelName, limit),
}
}
// RangeHead allows querying Head via an IndexReader, ChunkReader and tombstones.Reader
// but only within a restricted range. Used for queries and compactions.
type RangeHead struct {
head *Head
mint, maxt int64
isolationOff bool
}
// NewRangeHead returns a *RangeHead.
// There are no restrictions on mint/maxt.
func NewRangeHead(head *Head, mint, maxt int64) *RangeHead {
return &RangeHead{
head: head,
mint: mint,
maxt: maxt,
}
}
// NewRangeHeadWithIsolationDisabled returns a *RangeHead that does not create an isolationState.
func NewRangeHeadWithIsolationDisabled(head *Head, mint, maxt int64) *RangeHead {
rh := NewRangeHead(head, mint, maxt)
rh.isolationOff = true
return rh
}
func (h *RangeHead) Index() (IndexReader, error) {
return h.head.indexRange(h.mint, h.maxt), nil
}
func (h *RangeHead) Chunks() (ChunkReader, error) {
var isoState *isolationState
if !h.isolationOff {
isoState = h.head.iso.State(h.mint, h.maxt)
}
return h.head.chunksRange(h.mint, h.maxt, isoState)
}
func (h *RangeHead) Tombstones() (tombstones.Reader, error) {
return h.head.tombstones, nil
}
func (h *RangeHead) MinTime() int64 {
return h.mint
}
// MaxTime returns the max time of actual data fetch-able from the head.
// This controls the chunks time range which is closed [b.MinTime, b.MaxTime].
func (h *RangeHead) MaxTime() int64 {
return h.maxt
}
// BlockMaxTime returns the max time of the potential block created from this head.
// It's different to MaxTime as we need to add +1 millisecond to block maxt because block
// intervals are half-open: [b.MinTime, b.MaxTime). Block intervals are always +1 than the total samples it includes.
func (h *RangeHead) BlockMaxTime() int64 {
return h.MaxTime() + 1
}
func (h *RangeHead) NumSeries() uint64 {
return h.head.NumSeries()
}
func (h *RangeHead) Meta() BlockMeta {
return BlockMeta{
MinTime: h.MinTime(),
MaxTime: h.MaxTime(),
ULID: h.head.Meta().ULID,
Stats: BlockStats{
NumSeries: h.NumSeries(),
},
}
}
// String returns an human readable representation of the range head. It's important to
// keep this function in order to avoid the struct dump when the head is stringified in
// errors or logs.
func (h *RangeHead) String() string {
return fmt.Sprintf("range head (mint: %d, maxt: %d)", h.MinTime(), h.MaxTime())
}
// Delete all samples in the range of [mint, maxt] for series that satisfy the given
// label matchers.
func (h *Head) Delete(mint, maxt int64, ms ...*labels.Matcher) error {
// Do not delete anything beyond the currently valid range.
mint, maxt = clampInterval(mint, maxt, h.MinTime(), h.MaxTime())
ir := h.indexRange(mint, maxt)
p, err := PostingsForMatchers(ir, ms...)
if err != nil {
return errors.Wrap(err, "select series")
}
var stones []tombstones.Stone
for p.Next() {
series := h.series.getByID(chunks.HeadSeriesRef(p.At()))
if series == nil {
level.Debug(h.logger).Log("msg", "Series not found in Head.Delete")
continue
}
series.RLock()
t0, t1 := series.minTime(), series.maxTime()
series.RUnlock()
if t0 == math.MinInt64 || t1 == math.MinInt64 {
continue
}
// Delete only until the current values and not beyond.
t0, t1 = clampInterval(mint, maxt, t0, t1)
stones = append(stones, tombstones.Stone{Ref: p.At(), Intervals: tombstones.Intervals{{Mint: t0, Maxt: t1}}})
}
if p.Err() != nil {
return p.Err()
}
if h.wal != nil {
var enc record.Encoder
if err := h.wal.Log(enc.Tombstones(stones, nil)); err != nil {
return err
}
}
for _, s := range stones {
h.tombstones.AddInterval(s.Ref, s.Intervals[0])
}
return nil
}
// gc removes data before the minimum timestamp from the head.
// It returns
// * The actual min times of the chunks present in the Head.
// * The min OOO time seen during the GC.
// * Min mmap file number seen in the series (in-order and out-of-order) after gc'ing the series.
func (h *Head) gc() (actualInOrderMint, minOOOTime int64, minMmapFile int) {
// Only data strictly lower than this timestamp must be deleted.
mint := h.MinTime()
// Only ooo m-map chunks strictly lower than or equal to this ref
// must be deleted.
minOOOMmapRef := chunks.ChunkDiskMapperRef(h.minOOOMmapRef.Load())
// Drop old chunks and remember series IDs and hashes if they can be
// deleted entirely.
deleted, chunksRemoved, actualInOrderMint, minOOOTime, minMmapFile := h.series.gc(mint, minOOOMmapRef)
seriesRemoved := len(deleted)
h.metrics.seriesRemoved.Add(float64(seriesRemoved))
h.metrics.chunksRemoved.Add(float64(chunksRemoved))
h.metrics.chunks.Sub(float64(chunksRemoved))
h.numSeries.Sub(uint64(seriesRemoved))
// Remove deleted series IDs from the postings lists.
h.postings.Delete(deleted)
// Remove tombstones referring to the deleted series.
h.tombstones.DeleteTombstones(deleted)
h.tombstones.TruncateBefore(mint)
if h.wal != nil {
_, last, _ := wlog.Segments(h.wal.Dir())
h.deletedMtx.Lock()
// Keep series records until we're past segment 'last'
// because the WAL will still have samples records with
// this ref ID. If we didn't keep these series records then
// on start up when we replay the WAL, or any other code
// that reads the WAL, wouldn't be able to use those
// samples since we would have no labels for that ref ID.
for ref := range deleted {
h.deleted[chunks.HeadSeriesRef(ref)] = last
}
h.deletedMtx.Unlock()
}
return actualInOrderMint, minOOOTime, minMmapFile
}
// Tombstones returns a new reader over the head's tombstones
func (h *Head) Tombstones() (tombstones.Reader, error) {
return h.tombstones, nil
}
// NumSeries returns the number of active series in the head.
func (h *Head) NumSeries() uint64 {
return h.numSeries.Load()
}
// Meta returns meta information about the head.
// The head is dynamic so will return dynamic results.
func (h *Head) Meta() BlockMeta {
var id [16]byte
copy(id[:], "______head______")
return BlockMeta{
MinTime: h.MinTime(),
MaxTime: h.MaxTime(),
ULID: ulid.ULID(id),
Stats: BlockStats{
NumSeries: h.NumSeries(),
},
}
}
// MinTime returns the lowest time bound on visible data in the head.
func (h *Head) MinTime() int64 {
return h.minTime.Load()
}
// MaxTime returns the highest timestamp seen in data of the head.
func (h *Head) MaxTime() int64 {
return h.maxTime.Load()
}
// MinOOOTime returns the lowest time bound on visible data in the out of order
// head.
func (h *Head) MinOOOTime() int64 {
return h.minOOOTime.Load()
}
// MaxOOOTime returns the highest timestamp on visible data in the out of order
// head.
func (h *Head) MaxOOOTime() int64 {
return h.maxOOOTime.Load()
}
// compactable returns whether the head has a compactable range.
// The head has a compactable range when the head time range is 1.5 times the chunk range.
// The 0.5 acts as a buffer of the appendable window.
func (h *Head) compactable() bool {
return h.MaxTime()-h.MinTime() > h.chunkRange.Load()/2*3
}
// Close flushes the WAL and closes the head.
// It also takes a snapshot of in-memory chunks if enabled.
func (h *Head) Close() error {
h.closedMtx.Lock()
defer h.closedMtx.Unlock()
h.closed = true
// mmap all but last chunk in case we're performing snapshot since that only
// takes samples from most recent head chunk.
h.mmapHeadChunks()
errs := tsdb_errors.NewMulti(h.chunkDiskMapper.Close())
if errs.Err() == nil && h.opts.EnableMemorySnapshotOnShutdown {
errs.Add(h.performChunkSnapshot())
}
if h.wal != nil {
errs.Add(h.wal.Close())
}
if h.wbl != nil {
errs.Add(h.wbl.Close())
}
if errs.Err() == nil && h.opts.EnableMemorySnapshotOnShutdown {
errs.Add(h.performChunkSnapshot())
}
return errs.Err()
}
// String returns an human readable representation of the TSDB head. It's important to
// keep this function in order to avoid the struct dump when the head is stringified in
// errors or logs.
func (h *Head) String() string {
return "head"
}
func (h *Head) getOrCreate(hash uint64, lset labels.Labels) (*memSeries, bool, error) {
// Just using `getOrCreateWithID` below would be semantically sufficient, but we'd create
// a new series on every sample inserted via Add(), which causes allocations
// and makes our series IDs rather random and harder to compress in postings.
s := h.series.getByHash(hash, lset)
if s != nil {
return s, false, nil
}
// Optimistically assume that we are the first one to create the series.
id := chunks.HeadSeriesRef(h.lastSeriesID.Inc())
return h.getOrCreateWithID(id, hash, lset)
}
func (h *Head) getOrCreateWithID(id chunks.HeadSeriesRef, hash uint64, lset labels.Labels) (*memSeries, bool, error) {
s, created, err := h.series.getOrSet(hash, lset, func() *memSeries {
return newMemSeries(lset, id, h.opts.IsolationDisabled)
})
if err != nil {
return nil, false, err
}
if !created {
return s, false, nil
}
h.metrics.seriesCreated.Inc()
h.numSeries.Inc()
h.postings.Add(storage.SeriesRef(id), lset)
return s, true, nil
}
// mmapHeadChunks will iterate all memSeries stored on Head and call mmapHeadChunks() on each of them.
//
// There are two types of chunks that store samples for each memSeries:
// A) Head chunk - stored on Go heap, when new samples are appended they go there.
// B) M-mapped chunks - memory mapped chunks, kernel manages the memory for us on-demand, these chunks
//
// are read-only.
//
// Calling mmapHeadChunks() will iterate all memSeries and m-mmap all chunks that should be m-mapped.
// The m-mapping operation is needs to be serialised and so it goes via central lock.
// If there are multiple concurrent memSeries that need to m-map some chunk then they can block each-other.
//
// To minimise the effect of locking on TSDB operations m-mapping is serialised and done away from
// sample append path, since waiting on a lock inside an append would lock the entire memSeries for
// (potentially) a long time, since that could eventually delay next scrape and/or cause query timeouts.
func (h *Head) mmapHeadChunks() {
var count int
for i := 0; i < h.series.size; i++ {
h.series.locks[i].RLock()
for _, all := range h.series.hashes[i] {
for _, series := range all {
series.Lock()
count += series.mmapChunks(h.chunkDiskMapper)
series.Unlock()
}
}
h.series.locks[i].RUnlock()
}
h.metrics.mmapChunksTotal.Add(float64(count))
}
// seriesHashmap is a simple hashmap for memSeries by their label set. It is built
// on top of a regular hashmap and holds a slice of series to resolve hash collisions.
// Its methods require the hash to be submitted with it to avoid re-computations throughout
// the code.
type seriesHashmap map[uint64][]*memSeries
func (m seriesHashmap) get(hash uint64, lset labels.Labels) *memSeries {
for _, s := range m[hash] {
if labels.Equal(s.lset, lset) {
return s
}
}
return nil
}
func (m seriesHashmap) set(hash uint64, s *memSeries) {
l := m[hash]
for i, prev := range l {
if labels.Equal(prev.lset, s.lset) {
l[i] = s
return
}
}
m[hash] = append(l, s)
}
func (m seriesHashmap) del(hash uint64, lset labels.Labels) {
var rem []*memSeries
for _, s := range m[hash] {
if !labels.Equal(s.lset, lset) {
rem = append(rem, s)
}
}
if len(rem) == 0 {
delete(m, hash)
} else {
m[hash] = rem
}
}
const (
// DefaultStripeSize is the default number of entries to allocate in the stripeSeries hash map.
DefaultStripeSize = 1 << 14
)
// stripeSeries holds series by HeadSeriesRef ("ID") and also by hash of their labels.
// ID-based lookups via getByID() are preferred over getByHash() for performance reasons.
// It locks modulo ranges of IDs and hashes to reduce lock contention.
// The locks are padded to not be on the same cache line. Filling the padded space
// with the maps was profiled to be slower – likely due to the additional pointer
// dereferences.
type stripeSeries struct {
size int
series []map[chunks.HeadSeriesRef]*memSeries // Sharded by ref. A series ref is the value of `size` when the series was being newly added.
hashes []seriesHashmap // Sharded by label hash.
locks []stripeLock // Sharded by ref for series access, by label hash for hashes access.
seriesLifecycleCallback SeriesLifecycleCallback
}
type stripeLock struct {
sync.RWMutex
// Padding to avoid multiple locks being on the same cache line.
_ [40]byte
}
func newStripeSeries(stripeSize int, seriesCallback SeriesLifecycleCallback) *stripeSeries {
s := &stripeSeries{
size: stripeSize,
series: make([]map[chunks.HeadSeriesRef]*memSeries, stripeSize),
hashes: make([]seriesHashmap, stripeSize),
locks: make([]stripeLock, stripeSize),
seriesLifecycleCallback: seriesCallback,
}
for i := range s.series {
s.series[i] = map[chunks.HeadSeriesRef]*memSeries{}
}
for i := range s.hashes {
s.hashes[i] = seriesHashmap{}
}
return s
}
// gc garbage collects old chunks that are strictly before mint and removes
// series entirely that have no chunks left.
// note: returning map[chunks.HeadSeriesRef]struct{} would be more accurate,
// but the returned map goes into postings.Delete() which expects a map[storage.SeriesRef]struct
// and there's no easy way to cast maps.
// minMmapFile is the min mmap file number seen in the series (in-order and out-of-order) after gc'ing the series.
func (s *stripeSeries) gc(mint int64, minOOOMmapRef chunks.ChunkDiskMapperRef) (_ map[storage.SeriesRef]struct{}, _ int, _, _ int64, minMmapFile int) {
var (
deleted = map[storage.SeriesRef]struct{}{}
rmChunks = 0
actualMint int64 = math.MaxInt64
minOOOTime int64 = math.MaxInt64
deletedFromPrevStripe = 0
)
minMmapFile = math.MaxInt32
// Run through all series and truncate old chunks. Mark those with no
// chunks left as deleted and store their ID.
for i := 0; i < s.size; i++ {
deletedForCallback := make(map[chunks.HeadSeriesRef]labels.Labels, deletedFromPrevStripe)
s.locks[i].Lock()
for hash, all := range s.hashes[i] {
for _, series := range all {
series.Lock()
rmChunks += series.truncateChunksBefore(mint, minOOOMmapRef)
if len(series.mmappedChunks) > 0 {
seq, _ := series.mmappedChunks[0].ref.Unpack()
if seq < minMmapFile {
minMmapFile = seq
}
}
if series.ooo != nil && len(series.ooo.oooMmappedChunks) > 0 {
seq, _ := series.ooo.oooMmappedChunks[0].ref.Unpack()
if seq < minMmapFile {
minMmapFile = seq
}
for _, ch := range series.ooo.oooMmappedChunks {
if ch.minTime < minOOOTime {
minOOOTime = ch.minTime
}
}
}
if series.ooo != nil && series.ooo.oooHeadChunk != nil {
if series.ooo.oooHeadChunk.minTime < minOOOTime {
minOOOTime = series.ooo.oooHeadChunk.minTime
}
}
if len(series.mmappedChunks) > 0 || series.headChunks != nil || series.pendingCommit ||
(series.ooo != nil && (len(series.ooo.oooMmappedChunks) > 0 || series.ooo.oooHeadChunk != nil)) {
seriesMint := series.minTime()
if seriesMint < actualMint {
actualMint = seriesMint
}
series.Unlock()
continue
}
// The series is gone entirely. We need to keep the series lock
// and make sure we have acquired the stripe locks for hash and ID of the
// series alike.
// If we don't hold them all, there's a very small chance that a series receives
// samples again while we are half-way into deleting it.
j := int(series.ref) & (s.size - 1)
if i != j {
s.locks[j].Lock()
}
deleted[storage.SeriesRef(series.ref)] = struct{}{}
s.hashes[i].del(hash, series.lset)
delete(s.series[j], series.ref)
deletedForCallback[series.ref] = series.lset
if i != j {
s.locks[j].Unlock()
}
series.Unlock()
}
}
s.locks[i].Unlock()
s.seriesLifecycleCallback.PostDeletion(deletedForCallback)
deletedFromPrevStripe = len(deletedForCallback)
}
if actualMint == math.MaxInt64 {
actualMint = mint
}
return deleted, rmChunks, actualMint, minOOOTime, minMmapFile
}
func (s *stripeSeries) getByID(id chunks.HeadSeriesRef) *memSeries {
i := uint64(id) & uint64(s.size-1)
s.locks[i].RLock()
series := s.series[i][id]
s.locks[i].RUnlock()
return series
}
func (s *stripeSeries) getByHash(hash uint64, lset labels.Labels) *memSeries {
i := hash & uint64(s.size-1)
s.locks[i].RLock()
series := s.hashes[i].get(hash, lset)
s.locks[i].RUnlock()
return series
}
func (s *stripeSeries) getOrSet(hash uint64, lset labels.Labels, createSeries func() *memSeries) (*memSeries, bool, error) {
// PreCreation is called here to avoid calling it inside the lock.
// It is not necessary to call it just before creating a series,
// rather it gives a 'hint' whether to create a series or not.
preCreationErr := s.seriesLifecycleCallback.PreCreation(lset)
// Create the series, unless the PreCreation() callback as failed.
// If failed, we'll not allow to create a new series anyway.
var series *memSeries
if preCreationErr == nil {
series = createSeries()
}
i := hash & uint64(s.size-1)
s.locks[i].Lock()
if prev := s.hashes[i].get(hash, lset); prev != nil {
s.locks[i].Unlock()
return prev, false, nil
}
if preCreationErr == nil {
s.hashes[i].set(hash, series)
}
s.locks[i].Unlock()
if preCreationErr != nil {
// The callback prevented creation of series.
return nil, false, preCreationErr
}
// Setting the series in the s.hashes marks the creation of series
// as any further calls to this methods would return that series.
s.seriesLifecycleCallback.PostCreation(series.lset)
i = uint64(series.ref) & uint64(s.size-1)
s.locks[i].Lock()
s.series[i][series.ref] = series
s.locks[i].Unlock()
return series, true, nil
}
type sample struct {
t int64
f float64
h *histogram.Histogram
fh *histogram.FloatHistogram
}
func newSample(t int64, v float64, h *histogram.Histogram, fh *histogram.FloatHistogram) chunks.Sample {
return sample{t, v, h, fh}
}
func (s sample) T() int64 { return s.t }
func (s sample) F() float64 { return s.f }
func (s sample) H() *histogram.Histogram { return s.h }
func (s sample) FH() *histogram.FloatHistogram { return s.fh }
func (s sample) Type() chunkenc.ValueType {
switch {
case s.h != nil:
return chunkenc.ValHistogram
case s.fh != nil:
return chunkenc.ValFloatHistogram
default:
return chunkenc.ValFloat
}
}
// memSeries is the in-memory representation of a series. None of its methods
// are goroutine safe and it is the caller's responsibility to lock it.
type memSeries struct {
sync.RWMutex
ref chunks.HeadSeriesRef
lset labels.Labels
meta *metadata.Metadata
// Immutable chunks on disk that have not yet gone into a block, in order of ascending time stamps.
// When compaction runs, chunks get moved into a block and all pointers are shifted like so:
//
// /------- let's say these 2 chunks get stored into a block
// | |
// before compaction: mmappedChunks=[p5,p6,p7,p8,p9] firstChunkID=5
// after compaction: mmappedChunks=[p7,p8,p9] firstChunkID=7
//
// pN is the pointer to the mmappedChunk referered to by HeadChunkID=N
mmappedChunks []*mmappedChunk
// Most recent chunks in memory that are still being built or waiting to be mmapped.
// This is a linked list, headChunks points to the most recent chunk, headChunks.next points
// to older chunk and so on.
headChunks *memChunk
firstChunkID chunks.HeadChunkID // HeadChunkID for mmappedChunks[0]
ooo *memSeriesOOOFields
mmMaxTime int64 // Max time of any mmapped chunk, only used during WAL replay.
nextAt int64 // Timestamp at which to cut the next chunk.
histogramChunkHasComputedEndTime bool // True if nextAt has been predicted for the current histograms chunk; false otherwise.
// We keep the last value here (in addition to appending it to the chunk) so we can check for duplicates.
lastValue float64
// We keep the last histogram value here (in addition to appending it to the chunk) so we can check for duplicates.
lastHistogramValue *histogram.Histogram
lastFloatHistogramValue *histogram.FloatHistogram
// Current appender for the head chunk. Set when a new head chunk is cut.
// It is nil only if headChunks is nil. E.g. if there was an appender that created a new series, but rolled back the commit
// (the first sample would create a headChunk, hence appender, but rollback skipped it while the Append() call would create a series).
app chunkenc.Appender
// txs is nil if isolation is disabled.
txs *txRing
pendingCommit bool // Whether there are samples waiting to be committed to this series.
}
// memSeriesOOOFields contains the fields required by memSeries
// to handle out-of-order data.
type memSeriesOOOFields struct {
oooMmappedChunks []*mmappedChunk // Immutable chunks on disk containing OOO samples.
oooHeadChunk *oooHeadChunk // Most recent chunk for ooo samples in memory that's still being built.
firstOOOChunkID chunks.HeadChunkID // HeadOOOChunkID for oooMmappedChunks[0].
}
func newMemSeries(lset labels.Labels, id chunks.HeadSeriesRef, isolationDisabled bool) *memSeries {
s := &memSeries{
lset: lset,
ref: id,
nextAt: math.MinInt64,
}
if !isolationDisabled {
s.txs = newTxRing(4)
}
return s
}
func (s *memSeries) minTime() int64 {
if len(s.mmappedChunks) > 0 {
return s.mmappedChunks[0].minTime
}
if s.headChunks != nil {
return s.headChunks.oldest().minTime
}
return math.MinInt64
}
func (s *memSeries) maxTime() int64 {
// The highest timestamps will always be in the regular (non-OOO) chunks, even if OOO is enabled.
if s.headChunks != nil {
return s.headChunks.maxTime
}
if len(s.mmappedChunks) > 0 {
return s.mmappedChunks[len(s.mmappedChunks)-1].maxTime
}
return math.MinInt64
}
// truncateChunksBefore removes all chunks from the series that
// have no timestamp at or after mint.
// Chunk IDs remain unchanged.
func (s *memSeries) truncateChunksBefore(mint int64, minOOOMmapRef chunks.ChunkDiskMapperRef) int {
var removedInOrder int
if s.headChunks != nil {
var i int
var nextChk *memChunk
chk := s.headChunks
for chk != nil {
if chk.maxTime < mint {
// If any head chunk is truncated, we can truncate all mmapped chunks.
removedInOrder = chk.len() + len(s.mmappedChunks)
s.firstChunkID += chunks.HeadChunkID(removedInOrder)
if i == 0 {
// This is the first chunk on the list so we need to remove the entire list.
s.headChunks = nil
} else {
// This is NOT the first chunk, unlink it from parent.
nextChk.prev = nil
}
s.mmappedChunks = nil
break
}
nextChk = chk
chk = chk.prev
i++
}
}
if len(s.mmappedChunks) > 0 {
for i, c := range s.mmappedChunks {
if c.maxTime >= mint {
break
}
removedInOrder = i + 1
}
s.mmappedChunks = append(s.mmappedChunks[:0], s.mmappedChunks[removedInOrder:]...)
s.firstChunkID += chunks.HeadChunkID(removedInOrder)
}
var removedOOO int
if s.ooo != nil && len(s.ooo.oooMmappedChunks) > 0 {
for i, c := range s.ooo.oooMmappedChunks {
if c.ref.GreaterThan(minOOOMmapRef) {
break
}
removedOOO = i + 1
}
s.ooo.oooMmappedChunks = append(s.ooo.oooMmappedChunks[:0], s.ooo.oooMmappedChunks[removedOOO:]...)
s.ooo.firstOOOChunkID += chunks.HeadChunkID(removedOOO)
if len(s.ooo.oooMmappedChunks) == 0 && s.ooo.oooHeadChunk == nil {
s.ooo = nil
}
}
return removedInOrder + removedOOO
}
// cleanupAppendIDsBelow cleans up older appendIDs. Has to be called after
// acquiring lock.
func (s *memSeries) cleanupAppendIDsBelow(bound uint64) {
if s.txs != nil {
s.txs.cleanupAppendIDsBelow(bound)
}
}
type memChunk struct {
chunk chunkenc.Chunk
minTime, maxTime int64
prev *memChunk // Link to the previous element on the list.
}
// len returns the length of memChunk list, including the element it was called on.
func (mc *memChunk) len() (count int) {
elem := mc
for elem != nil {
count++
elem = elem.prev
}
return count
}
// oldest returns the oldest element on the list.
// For single element list this will be the same memChunk oldest() was called on.
func (mc *memChunk) oldest() (elem *memChunk) {
elem = mc
for elem.prev != nil {
elem = elem.prev
}
return elem
}
// atOffset returns a memChunk that's Nth element on the linked list.
func (mc *memChunk) atOffset(offset int) (elem *memChunk) {
if offset == 0 {
return mc
}
if offset < 0 {
return nil
}
var i int
elem = mc
for i < offset {
i++
elem = elem.prev
if elem == nil {
break
}
}
return elem
}
type oooHeadChunk struct {
chunk *OOOChunk
minTime, maxTime int64 // can probably be removed and pulled out of the chunk instead
}
// OverlapsClosedInterval returns true if the chunk overlaps [mint, maxt].
func (mc *oooHeadChunk) OverlapsClosedInterval(mint, maxt int64) bool {
return overlapsClosedInterval(mc.minTime, mc.maxTime, mint, maxt)
}
// OverlapsClosedInterval returns true if the chunk overlaps [mint, maxt].
func (mc *memChunk) OverlapsClosedInterval(mint, maxt int64) bool {
return overlapsClosedInterval(mc.minTime, mc.maxTime, mint, maxt)
}
func overlapsClosedInterval(mint1, maxt1, mint2, maxt2 int64) bool {
return mint1 <= maxt2 && mint2 <= maxt1
}
// mmappedChunk describes a head chunk on disk that has been mmapped
type mmappedChunk struct {
ref chunks.ChunkDiskMapperRef
numSamples uint16
minTime, maxTime int64
}
// Returns true if the chunk overlaps [mint, maxt].
func (mc *mmappedChunk) OverlapsClosedInterval(mint, maxt int64) bool {
return overlapsClosedInterval(mc.minTime, mc.maxTime, mint, maxt)
}
type noopSeriesLifecycleCallback struct{}
func (noopSeriesLifecycleCallback) PreCreation(labels.Labels) error { return nil }
func (noopSeriesLifecycleCallback) PostCreation(labels.Labels) {}
func (noopSeriesLifecycleCallback) PostDeletion(map[chunks.HeadSeriesRef]labels.Labels) {}
func (h *Head) Size() int64 {
var walSize, wblSize int64
if h.wal != nil {
walSize, _ = h.wal.Size()
}
if h.wbl != nil {
wblSize, _ = h.wbl.Size()
}
cdmSize, _ := h.chunkDiskMapper.Size()
return walSize + wblSize + cdmSize
}
func (h *RangeHead) Size() int64 {
return h.head.Size()
}
func (h *Head) startWALReplayStatus(startFrom, last int) {
h.stats.WALReplayStatus.Lock()
defer h.stats.WALReplayStatus.Unlock()
h.stats.WALReplayStatus.Min = startFrom
h.stats.WALReplayStatus.Max = last
h.stats.WALReplayStatus.Current = startFrom
}
func (h *Head) updateWALReplayStatusRead(current int) {
h.stats.WALReplayStatus.Lock()
defer h.stats.WALReplayStatus.Unlock()
h.stats.WALReplayStatus.Current = current
}