mirror of https://github.com/prometheus/prometheus
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
507 lines
12 KiB
507 lines
12 KiB
// Copyright 2017 The Prometheus Authors |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// The code in this file was largely written by Damian Gryski as part of |
|
// https://github.com/dgryski/go-tsz and published under the license below. |
|
// It was modified to accommodate reading from byte slices without modifying |
|
// the underlying bytes, which would panic when reading from mmap'd |
|
// read-only byte slices. |
|
|
|
// Copyright (c) 2015,2016 Damian Gryski <damian@gryski.com> |
|
// All rights reserved. |
|
|
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are met: |
|
|
|
// * Redistributions of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistributions in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
package chunkenc |
|
|
|
import ( |
|
"encoding/binary" |
|
"math" |
|
"math/bits" |
|
|
|
"github.com/prometheus/prometheus/model/histogram" |
|
) |
|
|
|
const ( |
|
chunkCompactCapacityThreshold = 32 |
|
) |
|
|
|
// XORChunk holds XOR encoded sample data. |
|
type XORChunk struct { |
|
b bstream |
|
} |
|
|
|
// NewXORChunk returns a new chunk with XOR encoding of the given size. |
|
func NewXORChunk() *XORChunk { |
|
b := make([]byte, 2, 128) |
|
return &XORChunk{b: bstream{stream: b, count: 0}} |
|
} |
|
|
|
// Encoding returns the encoding type. |
|
func (c *XORChunk) Encoding() Encoding { |
|
return EncXOR |
|
} |
|
|
|
// Bytes returns the underlying byte slice of the chunk. |
|
func (c *XORChunk) Bytes() []byte { |
|
return c.b.bytes() |
|
} |
|
|
|
// NumSamples returns the number of samples in the chunk. |
|
func (c *XORChunk) NumSamples() int { |
|
return int(binary.BigEndian.Uint16(c.Bytes())) |
|
} |
|
|
|
// Compact implements the Chunk interface. |
|
func (c *XORChunk) Compact() { |
|
if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold { |
|
buf := make([]byte, l) |
|
copy(buf, c.b.stream) |
|
c.b.stream = buf |
|
} |
|
} |
|
|
|
// Appender implements the Chunk interface. |
|
// It is not valid to call Appender() multiple times concurrently or to use multiple |
|
// Appenders on the same chunk. |
|
func (c *XORChunk) Appender() (Appender, error) { |
|
it := c.iterator(nil) |
|
|
|
// To get an appender we must know the state it would have if we had |
|
// appended all existing data from scratch. |
|
// We iterate through the end and populate via the iterator's state. |
|
for it.Next() != ValNone { // nolint:revive |
|
} |
|
if err := it.Err(); err != nil { |
|
return nil, err |
|
} |
|
|
|
a := &xorAppender{ |
|
b: &c.b, |
|
t: it.t, |
|
v: it.val, |
|
tDelta: it.tDelta, |
|
leading: it.leading, |
|
trailing: it.trailing, |
|
} |
|
if it.numTotal == 0 { |
|
a.leading = 0xff |
|
} |
|
return a, nil |
|
} |
|
|
|
func (c *XORChunk) iterator(it Iterator) *xorIterator { |
|
if xorIter, ok := it.(*xorIterator); ok { |
|
xorIter.Reset(c.b.bytes()) |
|
return xorIter |
|
} |
|
return &xorIterator{ |
|
// The first 2 bytes contain chunk headers. |
|
// We skip that for actual samples. |
|
br: newBReader(c.b.bytes()[2:]), |
|
numTotal: binary.BigEndian.Uint16(c.b.bytes()), |
|
t: math.MinInt64, |
|
} |
|
} |
|
|
|
// Iterator implements the Chunk interface. |
|
// Iterator() must not be called concurrently with any modifications to the chunk, |
|
// but after it returns you can use an Iterator concurrently with an Appender or |
|
// other Iterators. |
|
func (c *XORChunk) Iterator(it Iterator) Iterator { |
|
return c.iterator(it) |
|
} |
|
|
|
type xorAppender struct { |
|
b *bstream |
|
|
|
t int64 |
|
v float64 |
|
tDelta uint64 |
|
|
|
leading uint8 |
|
trailing uint8 |
|
} |
|
|
|
func (a *xorAppender) Append(t int64, v float64) { |
|
var tDelta uint64 |
|
num := binary.BigEndian.Uint16(a.b.bytes()) |
|
switch num { |
|
case 0: |
|
buf := make([]byte, binary.MaxVarintLen64) |
|
for _, b := range buf[:binary.PutVarint(buf, t)] { |
|
a.b.writeByte(b) |
|
} |
|
a.b.writeBits(math.Float64bits(v), 64) |
|
case 1: |
|
tDelta = uint64(t - a.t) |
|
|
|
buf := make([]byte, binary.MaxVarintLen64) |
|
for _, b := range buf[:binary.PutUvarint(buf, tDelta)] { |
|
a.b.writeByte(b) |
|
} |
|
|
|
a.writeVDelta(v) |
|
|
|
default: |
|
tDelta = uint64(t - a.t) |
|
dod := int64(tDelta - a.tDelta) |
|
|
|
// Gorilla has a max resolution of seconds, Prometheus milliseconds. |
|
// Thus we use higher value range steps with larger bit size. |
|
// |
|
// TODO(beorn7): This seems to needlessly jump to large bit |
|
// sizes even for very small deviations from zero. Timestamp |
|
// compression can probably benefit from some smaller bit |
|
// buckets. See also what was done for histogram encoding in |
|
// varbit.go. |
|
switch { |
|
case dod == 0: |
|
a.b.writeBit(zero) |
|
case bitRange(dod, 14): |
|
a.b.writeBits(0b10, 2) |
|
a.b.writeBits(uint64(dod), 14) |
|
case bitRange(dod, 17): |
|
a.b.writeBits(0b110, 3) |
|
a.b.writeBits(uint64(dod), 17) |
|
case bitRange(dod, 20): |
|
a.b.writeBits(0b1110, 4) |
|
a.b.writeBits(uint64(dod), 20) |
|
default: |
|
a.b.writeBits(0b1111, 4) |
|
a.b.writeBits(uint64(dod), 64) |
|
} |
|
|
|
a.writeVDelta(v) |
|
} |
|
|
|
a.t = t |
|
a.v = v |
|
binary.BigEndian.PutUint16(a.b.bytes(), num+1) |
|
a.tDelta = tDelta |
|
} |
|
|
|
// bitRange returns whether the given integer can be represented by nbits. |
|
// See docs/bstream.md. |
|
func bitRange(x int64, nbits uint8) bool { |
|
return -((1<<(nbits-1))-1) <= x && x <= 1<<(nbits-1) |
|
} |
|
|
|
func (a *xorAppender) writeVDelta(v float64) { |
|
xorWrite(a.b, v, a.v, &a.leading, &a.trailing) |
|
} |
|
|
|
func (a *xorAppender) AppendHistogram(*HistogramAppender, int64, *histogram.Histogram, bool) (Chunk, bool, Appender, error) { |
|
panic("appended a histogram sample to a float chunk") |
|
} |
|
|
|
func (a *xorAppender) AppendFloatHistogram(*FloatHistogramAppender, int64, *histogram.FloatHistogram, bool) (Chunk, bool, Appender, error) { |
|
panic("appended a float histogram sample to a float chunk") |
|
} |
|
|
|
type xorIterator struct { |
|
br bstreamReader |
|
numTotal uint16 |
|
numRead uint16 |
|
|
|
t int64 |
|
val float64 |
|
|
|
leading uint8 |
|
trailing uint8 |
|
|
|
tDelta uint64 |
|
err error |
|
} |
|
|
|
func (it *xorIterator) Seek(t int64) ValueType { |
|
if it.err != nil { |
|
return ValNone |
|
} |
|
|
|
for t > it.t || it.numRead == 0 { |
|
if it.Next() == ValNone { |
|
return ValNone |
|
} |
|
} |
|
return ValFloat |
|
} |
|
|
|
func (it *xorIterator) At() (int64, float64) { |
|
return it.t, it.val |
|
} |
|
|
|
func (it *xorIterator) AtHistogram() (int64, *histogram.Histogram) { |
|
panic("cannot call xorIterator.AtHistogram") |
|
} |
|
|
|
func (it *xorIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { |
|
panic("cannot call xorIterator.AtFloatHistogram") |
|
} |
|
|
|
func (it *xorIterator) AtT() int64 { |
|
return it.t |
|
} |
|
|
|
func (it *xorIterator) Err() error { |
|
return it.err |
|
} |
|
|
|
func (it *xorIterator) Reset(b []byte) { |
|
// The first 2 bytes contain chunk headers. |
|
// We skip that for actual samples. |
|
it.br = newBReader(b[2:]) |
|
it.numTotal = binary.BigEndian.Uint16(b) |
|
|
|
it.numRead = 0 |
|
it.t = 0 |
|
it.val = 0 |
|
it.leading = 0 |
|
it.trailing = 0 |
|
it.tDelta = 0 |
|
it.err = nil |
|
} |
|
|
|
func (it *xorIterator) Next() ValueType { |
|
if it.err != nil || it.numRead == it.numTotal { |
|
return ValNone |
|
} |
|
|
|
if it.numRead == 0 { |
|
t, err := binary.ReadVarint(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
v, err := it.br.readBits(64) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.t = t |
|
it.val = math.Float64frombits(v) |
|
|
|
it.numRead++ |
|
return ValFloat |
|
} |
|
if it.numRead == 1 { |
|
tDelta, err := binary.ReadUvarint(&it.br) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.tDelta = tDelta |
|
it.t += int64(it.tDelta) |
|
|
|
return it.readValue() |
|
} |
|
|
|
var d byte |
|
// read delta-of-delta |
|
for i := 0; i < 4; i++ { |
|
d <<= 1 |
|
bit, err := it.br.readBitFast() |
|
if err != nil { |
|
bit, err = it.br.readBit() |
|
} |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
if bit == zero { |
|
break |
|
} |
|
d |= 1 |
|
} |
|
var sz uint8 |
|
var dod int64 |
|
switch d { |
|
case 0b0: |
|
// dod == 0 |
|
case 0b10: |
|
sz = 14 |
|
case 0b110: |
|
sz = 17 |
|
case 0b1110: |
|
sz = 20 |
|
case 0b1111: |
|
// Do not use fast because it's very unlikely it will succeed. |
|
bits, err := it.br.readBits(64) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
|
|
dod = int64(bits) |
|
} |
|
|
|
if sz != 0 { |
|
bits, err := it.br.readBitsFast(sz) |
|
if err != nil { |
|
bits, err = it.br.readBits(sz) |
|
} |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
|
|
// Account for negative numbers, which come back as high unsigned numbers. |
|
// See docs/bstream.md. |
|
if bits > (1 << (sz - 1)) { |
|
bits -= 1 << sz |
|
} |
|
dod = int64(bits) |
|
} |
|
|
|
it.tDelta = uint64(int64(it.tDelta) + dod) |
|
it.t += int64(it.tDelta) |
|
|
|
return it.readValue() |
|
} |
|
|
|
func (it *xorIterator) readValue() ValueType { |
|
err := xorRead(&it.br, &it.val, &it.leading, &it.trailing) |
|
if err != nil { |
|
it.err = err |
|
return ValNone |
|
} |
|
it.numRead++ |
|
return ValFloat |
|
} |
|
|
|
func xorWrite(b *bstream, newValue, currentValue float64, leading, trailing *uint8) { |
|
delta := math.Float64bits(newValue) ^ math.Float64bits(currentValue) |
|
|
|
if delta == 0 { |
|
b.writeBit(zero) |
|
return |
|
} |
|
b.writeBit(one) |
|
|
|
newLeading := uint8(bits.LeadingZeros64(delta)) |
|
newTrailing := uint8(bits.TrailingZeros64(delta)) |
|
|
|
// Clamp number of leading zeros to avoid overflow when encoding. |
|
if newLeading >= 32 { |
|
newLeading = 31 |
|
} |
|
|
|
if *leading != 0xff && newLeading >= *leading && newTrailing >= *trailing { |
|
// In this case, we stick with the current leading/trailing. |
|
b.writeBit(zero) |
|
b.writeBits(delta>>*trailing, 64-int(*leading)-int(*trailing)) |
|
return |
|
} |
|
|
|
// Update leading/trailing for the caller. |
|
*leading, *trailing = newLeading, newTrailing |
|
|
|
b.writeBit(one) |
|
b.writeBits(uint64(newLeading), 5) |
|
|
|
// Note that if newLeading == newTrailing == 0, then sigbits == 64. But |
|
// that value doesn't actually fit into the 6 bits we have. Luckily, we |
|
// never need to encode 0 significant bits, since that would put us in |
|
// the other case (vdelta == 0). So instead we write out a 0 and adjust |
|
// it back to 64 on unpacking. |
|
sigbits := 64 - newLeading - newTrailing |
|
b.writeBits(uint64(sigbits), 6) |
|
b.writeBits(delta>>newTrailing, int(sigbits)) |
|
} |
|
|
|
func xorRead(br *bstreamReader, value *float64, leading, trailing *uint8) error { |
|
bit, err := br.readBitFast() |
|
if err != nil { |
|
bit, err = br.readBit() |
|
} |
|
if err != nil { |
|
return err |
|
} |
|
if bit == zero { |
|
return nil |
|
} |
|
bit, err = br.readBitFast() |
|
if err != nil { |
|
bit, err = br.readBit() |
|
} |
|
if err != nil { |
|
return err |
|
} |
|
|
|
var ( |
|
bits uint64 |
|
newLeading, newTrailing, mbits uint8 |
|
) |
|
|
|
if bit == zero { |
|
// Reuse leading/trailing zero bits. |
|
newLeading, newTrailing = *leading, *trailing |
|
mbits = 64 - newLeading - newTrailing |
|
} else { |
|
bits, err = br.readBitsFast(5) |
|
if err != nil { |
|
bits, err = br.readBits(5) |
|
} |
|
if err != nil { |
|
return err |
|
} |
|
newLeading = uint8(bits) |
|
|
|
bits, err = br.readBitsFast(6) |
|
if err != nil { |
|
bits, err = br.readBits(6) |
|
} |
|
if err != nil { |
|
return err |
|
} |
|
mbits = uint8(bits) |
|
// 0 significant bits here means we overflowed and we actually |
|
// need 64; see comment in xrWrite. |
|
if mbits == 0 { |
|
mbits = 64 |
|
} |
|
newTrailing = 64 - newLeading - mbits |
|
// Update leading/trailing zero bits for the caller. |
|
*leading, *trailing = newLeading, newTrailing |
|
} |
|
bits, err = br.readBitsFast(mbits) |
|
if err != nil { |
|
bits, err = br.readBits(mbits) |
|
} |
|
if err != nil { |
|
return err |
|
} |
|
vbits := math.Float64bits(*value) |
|
vbits ^= bits << newTrailing |
|
*value = math.Float64frombits(vbits) |
|
return nil |
|
}
|
|
|