// Copyright 2021 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tsdb import ( "context" "math" "sort" "sync" "github.com/go-kit/log/level" "github.com/pkg/errors" "golang.org/x/exp/slices" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/chunks" "github.com/prometheus/prometheus/tsdb/index" ) func (h *Head) ExemplarQuerier(ctx context.Context) (storage.ExemplarQuerier, error) { return h.exemplars.ExemplarQuerier(ctx) } // Index returns an IndexReader against the block. func (h *Head) Index() (IndexReader, error) { return h.indexRange(math.MinInt64, math.MaxInt64), nil } func (h *Head) indexRange(mint, maxt int64) *headIndexReader { if hmin := h.MinTime(); hmin > mint { mint = hmin } return &headIndexReader{head: h, mint: mint, maxt: maxt} } type headIndexReader struct { head *Head mint, maxt int64 } func (h *headIndexReader) Close() error { return nil } func (h *headIndexReader) Symbols() index.StringIter { return h.head.postings.Symbols() } // SortedLabelValues returns label values present in the head for the // specific label name that are within the time range mint to maxt. // If matchers are specified the returned result set is reduced // to label values of metrics matching the matchers. func (h *headIndexReader) SortedLabelValues(name string, matchers ...*labels.Matcher) ([]string, error) { values, err := h.LabelValues(name, matchers...) if err == nil { slices.Sort(values) } return values, err } // LabelValues returns label values present in the head for the // specific label name that are within the time range mint to maxt. // If matchers are specified the returned result set is reduced // to label values of metrics matching the matchers. func (h *headIndexReader) LabelValues(name string, matchers ...*labels.Matcher) ([]string, error) { if h.maxt < h.head.MinTime() || h.mint > h.head.MaxTime() { return []string{}, nil } if len(matchers) == 0 { return h.head.postings.LabelValues(name), nil } return labelValuesWithMatchers(h, name, matchers...) } // LabelNames returns all the unique label names present in the head // that are within the time range mint to maxt. func (h *headIndexReader) LabelNames(matchers ...*labels.Matcher) ([]string, error) { if h.maxt < h.head.MinTime() || h.mint > h.head.MaxTime() { return []string{}, nil } if len(matchers) == 0 { labelNames := h.head.postings.LabelNames() slices.Sort(labelNames) return labelNames, nil } return labelNamesWithMatchers(h, matchers...) } // Postings returns the postings list iterator for the label pairs. func (h *headIndexReader) Postings(name string, values ...string) (index.Postings, error) { switch len(values) { case 0: return index.EmptyPostings(), nil case 1: return h.head.postings.Get(name, values[0]), nil default: res := make([]index.Postings, 0, len(values)) for _, value := range values { res = append(res, h.head.postings.Get(name, value)) } return index.Merge(res...), nil } } func (h *headIndexReader) SortedPostings(p index.Postings) index.Postings { series := make([]*memSeries, 0, 128) // Fetch all the series only once. for p.Next() { s := h.head.series.getByID(chunks.HeadSeriesRef(p.At())) if s == nil { level.Debug(h.head.logger).Log("msg", "Looked up series not found") } else { series = append(series, s) } } if err := p.Err(); err != nil { return index.ErrPostings(errors.Wrap(err, "expand postings")) } sort.Slice(series, func(i, j int) bool { return labels.Compare(series[i].lset, series[j].lset) < 0 }) // Convert back to list. ep := make([]storage.SeriesRef, 0, len(series)) for _, p := range series { ep = append(ep, storage.SeriesRef(p.ref)) } return index.NewListPostings(ep) } // Series returns the series for the given reference. func (h *headIndexReader) Series(ref storage.SeriesRef, lbls *labels.Labels, chks *[]chunks.Meta) error { s := h.head.series.getByID(chunks.HeadSeriesRef(ref)) if s == nil { h.head.metrics.seriesNotFound.Inc() return storage.ErrNotFound } *lbls = append((*lbls)[:0], s.lset...) s.Lock() defer s.Unlock() *chks = (*chks)[:0] for i, c := range s.mmappedChunks { // Do not expose chunks that are outside of the specified range. if !c.OverlapsClosedInterval(h.mint, h.maxt) { continue } *chks = append(*chks, chunks.Meta{ MinTime: c.minTime, MaxTime: c.maxTime, Ref: chunks.ChunkRef(chunks.NewHeadChunkRef(s.ref, s.headChunkID(i))), }) } if s.headChunk != nil && s.headChunk.OverlapsClosedInterval(h.mint, h.maxt) { *chks = append(*chks, chunks.Meta{ MinTime: s.headChunk.minTime, MaxTime: math.MaxInt64, // Set the head chunks as open (being appended to). Ref: chunks.ChunkRef(chunks.NewHeadChunkRef(s.ref, s.headChunkID(len(s.mmappedChunks)))), }) } return nil } // headChunkID returns the HeadChunkID referred to by the given position. // * 0 <= pos < len(s.mmappedChunks) refer to s.mmappedChunks[pos] // * pos == len(s.mmappedChunks) refers to s.headChunk func (s *memSeries) headChunkID(pos int) chunks.HeadChunkID { return chunks.HeadChunkID(pos) + s.firstChunkID } // oooHeadChunkID returns the HeadChunkID referred to by the given position. // * 0 <= pos < len(s.oooMmappedChunks) refer to s.oooMmappedChunks[pos] // * pos == len(s.oooMmappedChunks) refers to s.oooHeadChunk func (s *memSeries) oooHeadChunkID(pos int) chunks.HeadChunkID { return chunks.HeadChunkID(pos) + s.firstOOOChunkID } // LabelValueFor returns label value for the given label name in the series referred to by ID. func (h *headIndexReader) LabelValueFor(id storage.SeriesRef, label string) (string, error) { memSeries := h.head.series.getByID(chunks.HeadSeriesRef(id)) if memSeries == nil { return "", storage.ErrNotFound } value := memSeries.lset.Get(label) if value == "" { return "", storage.ErrNotFound } return value, nil } // LabelNamesFor returns all the label names for the series referred to by IDs. // The names returned are sorted. func (h *headIndexReader) LabelNamesFor(ids ...storage.SeriesRef) ([]string, error) { namesMap := make(map[string]struct{}) for _, id := range ids { memSeries := h.head.series.getByID(chunks.HeadSeriesRef(id)) if memSeries == nil { return nil, storage.ErrNotFound } for _, lbl := range memSeries.lset { namesMap[lbl.Name] = struct{}{} } } names := make([]string, 0, len(namesMap)) for name := range namesMap { names = append(names, name) } slices.Sort(names) return names, nil } // Chunks returns a ChunkReader against the block. func (h *Head) Chunks() (ChunkReader, error) { return h.chunksRange(math.MinInt64, math.MaxInt64, h.iso.State(math.MinInt64, math.MaxInt64)) } func (h *Head) chunksRange(mint, maxt int64, is *isolationState) (*headChunkReader, error) { h.closedMtx.Lock() defer h.closedMtx.Unlock() if h.closed { return nil, errors.New("can't read from a closed head") } if hmin := h.MinTime(); hmin > mint { mint = hmin } return &headChunkReader{ head: h, mint: mint, maxt: maxt, isoState: is, }, nil } type headChunkReader struct { head *Head mint, maxt int64 isoState *isolationState } func (h *headChunkReader) Close() error { if h.isoState != nil { h.isoState.Close() } return nil } // Chunk returns the chunk for the reference number. func (h *headChunkReader) Chunk(meta chunks.Meta) (chunkenc.Chunk, error) { sid, cid := chunks.HeadChunkRef(meta.Ref).Unpack() s := h.head.series.getByID(sid) // This means that the series has been garbage collected. if s == nil { return nil, storage.ErrNotFound } s.Lock() c, garbageCollect, err := s.chunk(cid, h.head.chunkDiskMapper, &h.head.memChunkPool) if err != nil { s.Unlock() return nil, err } defer func() { if garbageCollect { // Set this to nil so that Go GC can collect it after it has been used. c.chunk = nil h.head.memChunkPool.Put(c) } }() // This means that the chunk is outside the specified range. if !c.OverlapsClosedInterval(h.mint, h.maxt) { s.Unlock() return nil, storage.ErrNotFound } s.Unlock() return &safeChunk{ Chunk: c.chunk, s: s, cid: cid, isoState: h.isoState, chunkDiskMapper: h.head.chunkDiskMapper, memChunkPool: &h.head.memChunkPool, }, nil } // chunk returns the chunk for the HeadChunkID from memory or by m-mapping it from the disk. // If garbageCollect is true, it means that the returned *memChunk // (and not the chunkenc.Chunk inside it) can be garbage collected after its usage. func (s *memSeries) chunk(id chunks.HeadChunkID, chunkDiskMapper *chunks.ChunkDiskMapper, memChunkPool *sync.Pool) (chunk *memChunk, garbageCollect bool, err error) { // ix represents the index of chunk in the s.mmappedChunks slice. The chunk id's are // incremented by 1 when new chunk is created, hence (id - firstChunkID) gives the slice index. // The max index for the s.mmappedChunks slice can be len(s.mmappedChunks)-1, hence if the ix // is len(s.mmappedChunks), it represents the next chunk, which is the head chunk. ix := int(id) - int(s.firstChunkID) if ix < 0 || ix > len(s.mmappedChunks) { return nil, false, storage.ErrNotFound } if ix == len(s.mmappedChunks) { if s.headChunk == nil { return nil, false, errors.New("invalid head chunk") } return s.headChunk, false, nil } chk, err := chunkDiskMapper.Chunk(s.mmappedChunks[ix].ref) if err != nil { if _, ok := err.(*chunks.CorruptionErr); ok { panic(err) } return nil, false, err } mc := memChunkPool.Get().(*memChunk) mc.chunk = chk mc.minTime = s.mmappedChunks[ix].minTime mc.maxTime = s.mmappedChunks[ix].maxTime return mc, true, nil } // oooMergedChunk returns the requested chunk based on the given chunks.Meta // reference from memory or by m-mapping it from the disk. The returned chunk // might be a merge of all the overlapping chunks, if any, amongst all the // chunks in the OOOHead. // This function is not thread safe unless the caller holds a lock. func (s *memSeries) oooMergedChunk(meta chunks.Meta, cdm *chunks.ChunkDiskMapper, mint, maxt int64) (chunk *mergedOOOChunks, err error) { _, cid := chunks.HeadChunkRef(meta.Ref).Unpack() // ix represents the index of chunk in the s.mmappedChunks slice. The chunk meta's are // incremented by 1 when new chunk is created, hence (meta - firstChunkID) gives the slice index. // The max index for the s.mmappedChunks slice can be len(s.mmappedChunks)-1, hence if the ix // is len(s.mmappedChunks), it represents the next chunk, which is the head chunk. ix := int(cid) - int(s.firstOOOChunkID) if ix < 0 || ix > len(s.oooMmappedChunks) { return nil, storage.ErrNotFound } if ix == len(s.oooMmappedChunks) { if s.oooHeadChunk == nil { return nil, errors.New("invalid ooo head chunk") } } // We create a temporary slice of chunk metas to hold the information of all // possible chunks that may overlap with the requested chunk. tmpChks := make([]chunkMetaAndChunkDiskMapperRef, 0, len(s.oooMmappedChunks)) oooHeadRef := chunks.ChunkRef(chunks.NewHeadChunkRef(s.ref, s.oooHeadChunkID(len(s.oooMmappedChunks)))) if s.oooHeadChunk != nil && s.oooHeadChunk.OverlapsClosedInterval(mint, maxt) { // We only want to append the head chunk if this chunk existed when // Series() was called. This brings consistency in case new data // is added in between Series() and Chunk() calls. if oooHeadRef == meta.OOOLastRef { tmpChks = append(tmpChks, chunkMetaAndChunkDiskMapperRef{ meta: chunks.Meta{ // Ignoring samples added before and after the last known min and max time for this chunk. MinTime: meta.OOOLastMinTime, MaxTime: meta.OOOLastMaxTime, Ref: oooHeadRef, }, }) } } for i, c := range s.oooMmappedChunks { chunkRef := chunks.ChunkRef(chunks.NewHeadChunkRef(s.ref, s.oooHeadChunkID(i))) // We can skip chunks that came in later than the last known OOOLastRef. if chunkRef > meta.OOOLastRef { break } if chunkRef == meta.OOOLastRef { tmpChks = append(tmpChks, chunkMetaAndChunkDiskMapperRef{ meta: chunks.Meta{ MinTime: meta.OOOLastMinTime, MaxTime: meta.OOOLastMaxTime, Ref: chunkRef, }, ref: c.ref, origMinT: c.minTime, origMaxT: c.maxTime, }) } else if c.OverlapsClosedInterval(mint, maxt) { tmpChks = append(tmpChks, chunkMetaAndChunkDiskMapperRef{ meta: chunks.Meta{ MinTime: c.minTime, MaxTime: c.maxTime, Ref: chunkRef, }, ref: c.ref, }) } } // Next we want to sort all the collected chunks by min time so we can find // those that overlap and stop when we know the rest don't. sort.Sort(byMinTimeAndMinRef(tmpChks)) mc := &mergedOOOChunks{} absoluteMax := int64(math.MinInt64) for _, c := range tmpChks { if c.meta.Ref != meta.Ref && (len(mc.chunks) == 0 || c.meta.MinTime > absoluteMax) { continue } if c.meta.Ref == oooHeadRef { var xor *chunkenc.XORChunk // If head chunk min and max time match the meta OOO markers // that means that the chunk has not expanded so we can append // it as it is. if s.oooHeadChunk.minTime == meta.OOOLastMinTime && s.oooHeadChunk.maxTime == meta.OOOLastMaxTime { xor, err = s.oooHeadChunk.chunk.ToXOR() // TODO(jesus.vazquez) (This is an optimization idea that has no priority and might not be that useful) See if we could use a copy of the underlying slice. That would leave the more expensive ToXOR() function only for the usecase where Bytes() is called. } else { // We need to remove samples that are outside of the markers xor, err = s.oooHeadChunk.chunk.ToXORBetweenTimestamps(meta.OOOLastMinTime, meta.OOOLastMaxTime) } if err != nil { return nil, errors.Wrap(err, "failed to convert ooo head chunk to xor chunk") } c.meta.Chunk = xor } else { chk, err := cdm.Chunk(c.ref) if err != nil { if _, ok := err.(*chunks.CorruptionErr); ok { return nil, errors.Wrap(err, "invalid ooo mmapped chunk") } return nil, err } if c.meta.Ref == meta.OOOLastRef && (c.origMinT != meta.OOOLastMinTime || c.origMaxT != meta.OOOLastMaxTime) { // The head expanded and was memory mapped so now we need to // wrap the chunk within a chunk that doesnt allows us to iterate // through samples out of the OOOLastMinT and OOOLastMaxT // markers. c.meta.Chunk = boundedChunk{chk, meta.OOOLastMinTime, meta.OOOLastMaxTime} } else { c.meta.Chunk = chk } } mc.chunks = append(mc.chunks, c.meta) if c.meta.MaxTime > absoluteMax { absoluteMax = c.meta.MaxTime } } return mc, nil } var _ chunkenc.Chunk = &mergedOOOChunks{} // mergedOOOChunks holds the list of overlapping chunks. This struct satisfies // chunkenc.Chunk. type mergedOOOChunks struct { chunks []chunks.Meta } // Bytes is a very expensive method because its calling the iterator of all the // chunks in the mergedOOOChunk and building a new chunk with the samples. func (o mergedOOOChunks) Bytes() []byte { xc := chunkenc.NewXORChunk() app, err := xc.Appender() if err != nil { panic(err) } it := o.Iterator(nil) for it.Next() { t, v := it.At() app.Append(t, v) } return xc.Bytes() } func (o mergedOOOChunks) Encoding() chunkenc.Encoding { return chunkenc.EncXOR } func (o mergedOOOChunks) Appender() (chunkenc.Appender, error) { return nil, errors.New("can't append to mergedOOOChunks") } func (o mergedOOOChunks) Iterator(iterator chunkenc.Iterator) chunkenc.Iterator { iterators := make([]chunkenc.Iterator, 0, len(o.chunks)) for _, c := range o.chunks { iterators = append(iterators, c.Chunk.Iterator(nil)) } return storage.NewChainSampleIterator(iterators) } func (o mergedOOOChunks) NumSamples() int { samples := 0 for _, c := range o.chunks { samples += c.Chunk.NumSamples() } return samples } func (o mergedOOOChunks) Compact() {} var _ chunkenc.Chunk = &boundedChunk{} // boundedChunk is an implementation of chunkenc.Chunk that uses a // boundedIterator that only iterates through samples which timestamps are // >= minT and <= maxT type boundedChunk struct { chunkenc.Chunk minT int64 maxT int64 } func (b boundedChunk) Bytes() []byte { xor := chunkenc.NewXORChunk() a, _ := xor.Appender() it := b.Iterator(nil) for it.Next() { t, v := it.At() a.Append(t, v) } return xor.Bytes() } func (b boundedChunk) Iterator(iterator chunkenc.Iterator) chunkenc.Iterator { it := b.Chunk.Iterator(iterator) if it == nil { panic("iterator shouldn't be nil") } return boundedIterator{it, b.minT, b.maxT} } var _ chunkenc.Iterator = &boundedIterator{} // boundedIterator is an implementation of Iterator that only iterates through // samples which timestamps are >= minT and <= maxT type boundedIterator struct { chunkenc.Iterator minT int64 maxT int64 } // Next the first time its called it will advance as many positions as necessary // until its able to find a sample within the bounds minT and maxT. // If there are samples within bounds it will advance one by one amongst them. // If there are no samples within bounds it will return false. func (b boundedIterator) Next() bool { for b.Iterator.Next() { t, _ := b.Iterator.At() if t < b.minT { continue } else if t > b.maxT { return false } return true } return false } func (b boundedIterator) Seek(t int64) bool { if t < b.minT { // We must seek at least up to b.minT if it is asked for something before that. ok := b.Iterator.Seek(b.minT) if !ok { return false } t, _ := b.Iterator.At() return t <= b.maxT } if t > b.maxT { // We seek anyway so that the subsequent Next() calls will also return false. b.Iterator.Seek(t) return false } return b.Iterator.Seek(t) } // safeChunk makes sure that the chunk can be accessed without a race condition type safeChunk struct { chunkenc.Chunk s *memSeries cid chunks.HeadChunkID isoState *isolationState chunkDiskMapper *chunks.ChunkDiskMapper memChunkPool *sync.Pool } func (c *safeChunk) Iterator(reuseIter chunkenc.Iterator) chunkenc.Iterator { c.s.Lock() it := c.s.iterator(c.cid, c.isoState, c.chunkDiskMapper, c.memChunkPool, reuseIter) c.s.Unlock() return it } // iterator returns a chunk iterator for the requested chunkID, or a NopIterator if the requested ID is out of range. // It is unsafe to call this concurrently with s.append(...) without holding the series lock. func (s *memSeries) iterator(id chunks.HeadChunkID, isoState *isolationState, chunkDiskMapper *chunks.ChunkDiskMapper, memChunkPool *sync.Pool, it chunkenc.Iterator) chunkenc.Iterator { c, garbageCollect, err := s.chunk(id, chunkDiskMapper, memChunkPool) // TODO(fabxc): Work around! An error will be returns when a querier have retrieved a pointer to a // series's chunk, which got then garbage collected before it got // accessed. We must ensure to not garbage collect as long as any // readers still hold a reference. if err != nil { return chunkenc.NewNopIterator() } defer func() { if garbageCollect { // Set this to nil so that Go GC can collect it after it has been used. // This should be done always at the end. c.chunk = nil memChunkPool.Put(c) } }() ix := int(id) - int(s.firstChunkID) numSamples := c.chunk.NumSamples() stopAfter := numSamples if isoState != nil && !isoState.IsolationDisabled() { totalSamples := 0 // Total samples in this series. previousSamples := 0 // Samples before this chunk. for j, d := range s.mmappedChunks { totalSamples += int(d.numSamples) if j < ix { previousSamples += int(d.numSamples) } } if s.headChunk != nil { totalSamples += s.headChunk.chunk.NumSamples() } // Removing the extra transactionIDs that are relevant for samples that // come after this chunk, from the total transactionIDs. appendIDsToConsider := s.txs.txIDCount - (totalSamples - (previousSamples + numSamples)) // Iterate over the appendIDs, find the first one that the isolation state says not // to return. it := s.txs.iterator() for index := 0; index < appendIDsToConsider; index++ { appendID := it.At() if appendID <= isoState.maxAppendID { // Easy check first. if _, ok := isoState.incompleteAppends[appendID]; !ok { it.Next() continue } } stopAfter = numSamples - (appendIDsToConsider - index) if stopAfter < 0 { stopAfter = 0 // Stopped in a previous chunk. } break } } if stopAfter == 0 { return chunkenc.NewNopIterator() } if stopAfter == numSamples { return c.chunk.Iterator(it) } return makeStopIterator(c.chunk, it, stopAfter) } // memSafeIterator returns values from the wrapped stopIterator // except the last 4, which come from buf. type memSafeIterator struct { stopIterator total int buf [4]sample } func (it *memSafeIterator) Seek(t int64) chunkenc.ValueType { if it.Err() != nil { return chunkenc.ValNone } var valueType chunkenc.ValueType var ts int64 = math.MinInt64 if it.i > -1 { ts = it.AtT() } if t <= ts { // We are already at the right sample, but we have to find out // its ValueType. if it.total-it.i > 4 { return it.Iterator.Seek(ts) } return it.buf[4-(it.total-it.i)].Type() } for t > ts || it.i == -1 { if valueType = it.Next(); valueType == chunkenc.ValNone { return chunkenc.ValNone } ts = it.AtT() } return valueType } func (it *memSafeIterator) Next() chunkenc.ValueType { if it.i+1 >= it.stopAfter { return chunkenc.ValNone } it.i++ if it.total-it.i > 4 { return it.Iterator.Next() } return it.buf[4-(it.total-it.i)].Type() } func (it *memSafeIterator) At() (int64, float64) { if it.total-it.i > 4 { return it.Iterator.At() } s := it.buf[4-(it.total-it.i)] return s.t, s.v } func (it *memSafeIterator) AtHistogram() (int64, *histogram.Histogram) { if it.total-it.i > 4 { return it.Iterator.AtHistogram() } s := it.buf[4-(it.total-it.i)] return s.t, s.h } func (it *memSafeIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { if it.total-it.i > 4 { return it.Iterator.AtFloatHistogram() } s := it.buf[4-(it.total-it.i)] if s.fh != nil { return s.t, s.fh } return s.t, s.h.ToFloat() } func (it *memSafeIterator) AtT() int64 { if it.total-it.i > 4 { return it.Iterator.AtT() } s := it.buf[4-(it.total-it.i)] return s.t } // stopIterator wraps an Iterator, but only returns the first // stopAfter values, if initialized with i=-1. type stopIterator struct { chunkenc.Iterator i, stopAfter int } func (it *stopIterator) Next() chunkenc.ValueType { if it.i+1 >= it.stopAfter { return chunkenc.ValNone } it.i++ return it.Iterator.Next() } func makeStopIterator(c chunkenc.Chunk, it chunkenc.Iterator, stopAfter int) chunkenc.Iterator { // Re-use the Iterator object if it is a stopIterator. if stopIter, ok := it.(*stopIterator); ok { stopIter.Iterator = c.Iterator(stopIter.Iterator) stopIter.i = -1 stopIter.stopAfter = stopAfter return stopIter } return &stopIterator{ Iterator: c.Iterator(it), i: -1, stopAfter: stopAfter, } }