// Copyright 2022 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package chunkenc import ( "encoding/binary" "math" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/value" ) // FloatHistogramChunk holds encoded sample data for a sparse, high-resolution // float histogram. // // Each sample has multiple "fields", stored in the following way (raw = store // number directly, delta = store delta to the previous number, dod = store // delta of the delta to the previous number, xor = what we do for regular // sample values): // // field → ts count zeroCount sum []posbuckets []negbuckets // sample 1 raw raw raw raw []raw []raw // sample 2 delta xor xor xor []xor []xor // sample >2 dod xor xor xor []xor []xor type FloatHistogramChunk struct { b bstream } // NewFloatHistogramChunk returns a new chunk with float histogram encoding. func NewFloatHistogramChunk() *FloatHistogramChunk { b := make([]byte, 3, 128) return &FloatHistogramChunk{b: bstream{stream: b, count: 0}} } // xorValue holds all the necessary information to encode // and decode XOR encoded float64 values. type xorValue struct { value float64 leading uint8 trailing uint8 } // Encoding returns the encoding type. func (c *FloatHistogramChunk) Encoding() Encoding { return EncFloatHistogram } // Bytes returns the underlying byte slice of the chunk. func (c *FloatHistogramChunk) Bytes() []byte { return c.b.bytes() } // NumSamples returns the number of samples in the chunk. func (c *FloatHistogramChunk) NumSamples() int { return int(binary.BigEndian.Uint16(c.Bytes())) } // Layout returns the histogram layout. Only call this on chunks that have at // least one sample. func (c *FloatHistogramChunk) Layout() ( schema int32, zeroThreshold float64, negativeSpans, positiveSpans []histogram.Span, err error, ) { if c.NumSamples() == 0 { panic("FloatHistogramChunk.Layout() called on an empty chunk") } b := newBReader(c.Bytes()[2:]) return readHistogramChunkLayout(&b) } // SetCounterResetHeader sets the counter reset header. func (c *FloatHistogramChunk) SetCounterResetHeader(h CounterResetHeader) { setCounterResetHeader(h, c.Bytes()) } // GetCounterResetHeader returns the info about the first 2 bits of the chunk // header. func (c *FloatHistogramChunk) GetCounterResetHeader() CounterResetHeader { return CounterResetHeader(c.Bytes()[2] & 0b11000000) } // Compact implements the Chunk interface. func (c *FloatHistogramChunk) Compact() { if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold { buf := make([]byte, l) copy(buf, c.b.stream) c.b.stream = buf } } // Appender implements the Chunk interface. func (c *FloatHistogramChunk) Appender() (Appender, error) { it := c.iterator(nil) // To get an appender, we must know the state it would have if we had // appended all existing data from scratch. We iterate through the end // and populate via the iterator's state. for it.Next() == ValFloatHistogram { } if err := it.Err(); err != nil { return nil, err } pBuckets := make([]xorValue, len(it.pBuckets)) for i := 0; i < len(it.pBuckets); i++ { pBuckets[i] = xorValue{ value: it.pBuckets[i], leading: it.pBucketsLeading[i], trailing: it.pBucketsTrailing[i], } } nBuckets := make([]xorValue, len(it.nBuckets)) for i := 0; i < len(it.nBuckets); i++ { nBuckets[i] = xorValue{ value: it.nBuckets[i], leading: it.nBucketsLeading[i], trailing: it.nBucketsTrailing[i], } } a := &FloatHistogramAppender{ b: &c.b, schema: it.schema, zThreshold: it.zThreshold, pSpans: it.pSpans, nSpans: it.nSpans, t: it.t, tDelta: it.tDelta, cnt: it.cnt, zCnt: it.zCnt, pBuckets: pBuckets, nBuckets: nBuckets, sum: it.sum, } if it.numTotal == 0 { a.sum.leading = 0xff a.cnt.leading = 0xff a.zCnt.leading = 0xff } return a, nil } func (c *FloatHistogramChunk) iterator(it Iterator) *floatHistogramIterator { // This comment is copied from XORChunk.iterator: // Should iterators guarantee to act on a copy of the data so it doesn't lock append? // When using striped locks to guard access to chunks, probably yes. // Could only copy data if the chunk is not completed yet. if histogramIter, ok := it.(*floatHistogramIterator); ok { histogramIter.Reset(c.b.bytes()) return histogramIter } return newFloatHistogramIterator(c.b.bytes()) } func newFloatHistogramIterator(b []byte) *floatHistogramIterator { it := &floatHistogramIterator{ br: newBReader(b), numTotal: binary.BigEndian.Uint16(b), t: math.MinInt64, } // The first 3 bytes contain chunk headers. // We skip that for actual samples. _, _ = it.br.readBits(24) it.counterResetHeader = CounterResetHeader(b[2] & 0b11000000) return it } // Iterator implements the Chunk interface. func (c *FloatHistogramChunk) Iterator(it Iterator) Iterator { return c.iterator(it) } // FloatHistogramAppender is an Appender implementation for float histograms. type FloatHistogramAppender struct { b *bstream // Layout: schema int32 zThreshold float64 pSpans, nSpans []histogram.Span t, tDelta int64 sum, cnt, zCnt xorValue pBuckets, nBuckets []xorValue } func (a *FloatHistogramAppender) GetCounterResetHeader() CounterResetHeader { return CounterResetHeader(a.b.bytes()[2] & 0b11000000) } func (a *FloatHistogramAppender) NumSamples() int { return int(binary.BigEndian.Uint16(a.b.bytes())) } // Append implements Appender. This implementation panics because normal float // samples must never be appended to a histogram chunk. func (a *FloatHistogramAppender) Append(int64, float64) { panic("appended a float sample to a histogram chunk") } // AppendHistogram implements Appender. This implementation panics because integer // histogram samples must never be appended to a float histogram chunk. func (a *FloatHistogramAppender) AppendHistogram(int64, *histogram.Histogram) { panic("appended an integer histogram to a float histogram chunk") } // Appendable returns whether the chunk can be appended to, and if so whether // any recoding needs to happen using the provided inserts (in case of any new // buckets, positive or negative range, respectively). If the sample is a gauge // histogram, AppendableGauge must be used instead. // // The chunk is not appendable in the following cases: // - The schema has changed. // - The threshold for the zero bucket has changed. // - Any buckets have disappeared. // - There was a counter reset in the count of observations or in any bucket, including the zero bucket. // - The last sample in the chunk was stale while the current sample is not stale. // // The method returns an additional boolean set to true if it is not appendable // because of a counter reset. If the given sample is stale, it is always ok to // append. If counterReset is true, okToAppend is always false. func (a *FloatHistogramAppender) Appendable(h *histogram.FloatHistogram) ( positiveInserts, negativeInserts []Insert, okToAppend, counterReset bool, ) { if a.NumSamples() > 0 && a.GetCounterResetHeader() == GaugeType { return } if value.IsStaleNaN(h.Sum) { // This is a stale sample whose buckets and spans don't matter. okToAppend = true return } if value.IsStaleNaN(a.sum.value) { // If the last sample was stale, then we can only accept stale // samples in this chunk. return } if h.Count < a.cnt.value { // There has been a counter reset. counterReset = true return } if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold { return } if h.ZeroCount < a.zCnt.value { // There has been a counter reset since ZeroThreshold didn't change. counterReset = true return } var ok bool positiveInserts, ok = expandSpansForward(a.pSpans, h.PositiveSpans) if !ok { counterReset = true return } negativeInserts, ok = expandSpansForward(a.nSpans, h.NegativeSpans) if !ok { counterReset = true return } if counterResetInAnyFloatBucket(a.pBuckets, h.PositiveBuckets, a.pSpans, h.PositiveSpans) || counterResetInAnyFloatBucket(a.nBuckets, h.NegativeBuckets, a.nSpans, h.NegativeSpans) { counterReset, positiveInserts, negativeInserts = true, nil, nil return } okToAppend = true return } // AppendableGauge returns whether the chunk can be appended to, and if so // whether: // 1. Any recoding needs to happen to the chunk using the provided inserts // (in case of any new buckets, positive or negative range, respectively). // 2. Any recoding needs to happen for the histogram being appended, using the // backward inserts (in case of any missing buckets, positive or negative // range, respectively). // // This method must be only used for gauge histograms. // // The chunk is not appendable in the following cases: // - The schema has changed. // - The threshold for the zero bucket has changed. // - The last sample in the chunk was stale while the current sample is not stale. func (a *FloatHistogramAppender) AppendableGauge(h *histogram.FloatHistogram) ( positiveInserts, negativeInserts []Insert, backwardPositiveInserts, backwardNegativeInserts []Insert, positiveSpans, negativeSpans []histogram.Span, okToAppend bool, ) { if a.NumSamples() > 0 && a.GetCounterResetHeader() != GaugeType { return } if value.IsStaleNaN(h.Sum) { // This is a stale sample whose buckets and spans don't matter. okToAppend = true return } if value.IsStaleNaN(a.sum.value) { // If the last sample was stale, then we can only accept stale // samples in this chunk. return } if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold { return } positiveInserts, backwardPositiveInserts, positiveSpans = expandSpansBothWays(a.pSpans, h.PositiveSpans) negativeInserts, backwardNegativeInserts, negativeSpans = expandSpansBothWays(a.nSpans, h.NegativeSpans) okToAppend = true return } // counterResetInAnyFloatBucket returns true if there was a counter reset for any // bucket. This should be called only when the bucket layout is the same or new // buckets were added. It does not handle the case of buckets missing. func counterResetInAnyFloatBucket(oldBuckets []xorValue, newBuckets []float64, oldSpans, newSpans []histogram.Span) bool { if len(oldSpans) == 0 || len(oldBuckets) == 0 { return false } oldSpanSliceIdx, newSpanSliceIdx := 0, 0 // Index for the span slices. oldInsideSpanIdx, newInsideSpanIdx := uint32(0), uint32(0) // Index inside a span. oldIdx, newIdx := oldSpans[0].Offset, newSpans[0].Offset oldBucketSliceIdx, newBucketSliceIdx := 0, 0 // Index inside bucket slice. oldVal, newVal := oldBuckets[0].value, newBuckets[0] // Since we assume that new spans won't have missing buckets, there will never be a case // where the old index will not find a matching new index. for { if oldIdx == newIdx { if newVal < oldVal { return true } } if oldIdx <= newIdx { // Moving ahead old bucket and span by 1 index. if oldInsideSpanIdx == oldSpans[oldSpanSliceIdx].Length-1 { // Current span is over. oldSpanSliceIdx++ oldInsideSpanIdx = 0 if oldSpanSliceIdx >= len(oldSpans) { // All old spans are over. break } oldIdx += 1 + oldSpans[oldSpanSliceIdx].Offset } else { oldInsideSpanIdx++ oldIdx++ } oldBucketSliceIdx++ oldVal = oldBuckets[oldBucketSliceIdx].value } if oldIdx > newIdx { // Moving ahead new bucket and span by 1 index. if newInsideSpanIdx == newSpans[newSpanSliceIdx].Length-1 { // Current span is over. newSpanSliceIdx++ newInsideSpanIdx = 0 if newSpanSliceIdx >= len(newSpans) { // All new spans are over. // This should not happen, old spans above should catch this first. panic("new spans over before old spans in counterReset") } newIdx += 1 + newSpans[newSpanSliceIdx].Offset } else { newInsideSpanIdx++ newIdx++ } newBucketSliceIdx++ newVal = newBuckets[newBucketSliceIdx] } } return false } // AppendFloatHistogram appends a float histogram to the chunk. The caller must ensure that // the histogram is properly structured, e.g. the number of buckets used // corresponds to the number conveyed by the span structures. First call // Appendable() and act accordingly! func (a *FloatHistogramAppender) AppendFloatHistogram(t int64, h *histogram.FloatHistogram) { var tDelta int64 num := binary.BigEndian.Uint16(a.b.bytes()) if value.IsStaleNaN(h.Sum) { // Emptying out other fields to write no buckets, and an empty // layout in case of first histogram in the chunk. h = &histogram.FloatHistogram{Sum: h.Sum} } if num == 0 { // The first append gets the privilege to dictate the layout // but it's also responsible for encoding it into the chunk! writeHistogramChunkLayout(a.b, h.Schema, h.ZeroThreshold, h.PositiveSpans, h.NegativeSpans) a.schema = h.Schema a.zThreshold = h.ZeroThreshold if len(h.PositiveSpans) > 0 { a.pSpans = make([]histogram.Span, len(h.PositiveSpans)) copy(a.pSpans, h.PositiveSpans) } else { a.pSpans = nil } if len(h.NegativeSpans) > 0 { a.nSpans = make([]histogram.Span, len(h.NegativeSpans)) copy(a.nSpans, h.NegativeSpans) } else { a.nSpans = nil } numPBuckets, numNBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans) if numPBuckets > 0 { a.pBuckets = make([]xorValue, numPBuckets) for i := 0; i < numPBuckets; i++ { a.pBuckets[i] = xorValue{ value: h.PositiveBuckets[i], leading: 0xff, } } } else { a.pBuckets = nil } if numNBuckets > 0 { a.nBuckets = make([]xorValue, numNBuckets) for i := 0; i < numNBuckets; i++ { a.nBuckets[i] = xorValue{ value: h.NegativeBuckets[i], leading: 0xff, } } } else { a.nBuckets = nil } // Now store the actual data. putVarbitInt(a.b, t) a.b.writeBits(math.Float64bits(h.Count), 64) a.b.writeBits(math.Float64bits(h.ZeroCount), 64) a.b.writeBits(math.Float64bits(h.Sum), 64) a.cnt.value = h.Count a.zCnt.value = h.ZeroCount a.sum.value = h.Sum for _, b := range h.PositiveBuckets { a.b.writeBits(math.Float64bits(b), 64) } for _, b := range h.NegativeBuckets { a.b.writeBits(math.Float64bits(b), 64) } } else { // The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code, // so we don't need a separate single delta logic for the 2nd sample. tDelta = t - a.t tDod := tDelta - a.tDelta putVarbitInt(a.b, tDod) a.writeXorValue(&a.cnt, h.Count) a.writeXorValue(&a.zCnt, h.ZeroCount) a.writeXorValue(&a.sum, h.Sum) for i, b := range h.PositiveBuckets { a.writeXorValue(&a.pBuckets[i], b) } for i, b := range h.NegativeBuckets { a.writeXorValue(&a.nBuckets[i], b) } } binary.BigEndian.PutUint16(a.b.bytes(), num+1) a.t = t a.tDelta = tDelta } func (a *FloatHistogramAppender) writeXorValue(old *xorValue, v float64) { xorWrite(a.b, v, old.value, &old.leading, &old.trailing) old.value = v } // Recode converts the current chunk to accommodate an expansion of the set of // (positive and/or negative) buckets used, according to the provided inserts, // resulting in the honoring of the provided new positive and negative spans. To // continue appending, use the returned Appender rather than the receiver of // this method. func (a *FloatHistogramAppender) Recode( positiveInserts, negativeInserts []Insert, positiveSpans, negativeSpans []histogram.Span, ) (Chunk, Appender) { // TODO(beorn7): This currently just decodes everything and then encodes // it again with the new span layout. This can probably be done in-place // by editing the chunk. But let's first see how expensive it is in the // big picture. Also, in-place editing might create concurrency issues. byts := a.b.bytes() it := newFloatHistogramIterator(byts) hc := NewFloatHistogramChunk() app, err := hc.Appender() if err != nil { panic(err) } numPositiveBuckets, numNegativeBuckets := countSpans(positiveSpans), countSpans(negativeSpans) for it.Next() == ValFloatHistogram { tOld, hOld := it.AtFloatHistogram() // We have to newly allocate slices for the modified buckets // here because they are kept by the appender until the next // append. // TODO(beorn7): We might be able to optimize this. var positiveBuckets, negativeBuckets []float64 if numPositiveBuckets > 0 { positiveBuckets = make([]float64, numPositiveBuckets) } if numNegativeBuckets > 0 { negativeBuckets = make([]float64, numNegativeBuckets) } // Save the modified histogram to the new chunk. hOld.PositiveSpans, hOld.NegativeSpans = positiveSpans, negativeSpans if len(positiveInserts) > 0 { hOld.PositiveBuckets = insert(hOld.PositiveBuckets, positiveBuckets, positiveInserts, false) } if len(negativeInserts) > 0 { hOld.NegativeBuckets = insert(hOld.NegativeBuckets, negativeBuckets, negativeInserts, false) } app.AppendFloatHistogram(tOld, hOld) } hc.SetCounterResetHeader(CounterResetHeader(byts[2] & 0b11000000)) return hc, app } // RecodeHistogramm converts the current histogram (in-place) to accommodate an expansion of the set of // (positive and/or negative) buckets used. func (a *FloatHistogramAppender) RecodeHistogramm( fh *histogram.FloatHistogram, pBackwardInter, nBackwardInter []Insert, ) { if len(pBackwardInter) > 0 { numPositiveBuckets := countSpans(fh.PositiveSpans) fh.PositiveBuckets = insert(fh.PositiveBuckets, make([]float64, numPositiveBuckets), pBackwardInter, false) } if len(nBackwardInter) > 0 { numNegativeBuckets := countSpans(fh.NegativeSpans) fh.NegativeBuckets = insert(fh.NegativeBuckets, make([]float64, numNegativeBuckets), nBackwardInter, false) } } type floatHistogramIterator struct { br bstreamReader numTotal uint16 numRead uint16 counterResetHeader CounterResetHeader // Layout: schema int32 zThreshold float64 pSpans, nSpans []histogram.Span // For the fields that are tracked as deltas and ultimately dod's. t int64 tDelta int64 // All Gorilla xor encoded. sum, cnt, zCnt xorValue // Buckets are not of type xorValue to avoid creating // new slices for every AtFloatHistogram call. pBuckets, nBuckets []float64 pBucketsLeading, nBucketsLeading []uint8 pBucketsTrailing, nBucketsTrailing []uint8 err error // Track calls to retrieve methods. Once they have been called, we // cannot recycle the bucket slices anymore because we have returned // them in the histogram. atFloatHistogramCalled bool } func (it *floatHistogramIterator) Seek(t int64) ValueType { if it.err != nil { return ValNone } for t > it.t || it.numRead == 0 { if it.Next() == ValNone { return ValNone } } return ValFloatHistogram } func (it *floatHistogramIterator) At() (int64, float64) { panic("cannot call floatHistogramIterator.At") } func (it *floatHistogramIterator) AtHistogram() (int64, *histogram.Histogram) { panic("cannot call floatHistogramIterator.AtHistogram") } func (it *floatHistogramIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { if value.IsStaleNaN(it.sum.value) { return it.t, &histogram.FloatHistogram{Sum: it.sum.value} } it.atFloatHistogramCalled = true return it.t, &histogram.FloatHistogram{ CounterResetHint: counterResetHint(it.counterResetHeader, it.numRead), Count: it.cnt.value, ZeroCount: it.zCnt.value, Sum: it.sum.value, ZeroThreshold: it.zThreshold, Schema: it.schema, PositiveSpans: it.pSpans, NegativeSpans: it.nSpans, PositiveBuckets: it.pBuckets, NegativeBuckets: it.nBuckets, } } func (it *floatHistogramIterator) AtT() int64 { return it.t } func (it *floatHistogramIterator) Err() error { return it.err } func (it *floatHistogramIterator) Reset(b []byte) { // The first 3 bytes contain chunk headers. // We skip that for actual samples. it.br = newBReader(b[3:]) it.numTotal = binary.BigEndian.Uint16(b) it.numRead = 0 it.counterResetHeader = CounterResetHeader(b[2] & 0b11000000) it.t, it.tDelta = 0, 0 it.cnt, it.zCnt, it.sum = xorValue{}, xorValue{}, xorValue{} if it.atFloatHistogramCalled { it.atFloatHistogramCalled = false it.pBuckets, it.nBuckets = nil, nil } else { it.pBuckets, it.nBuckets = it.pBuckets[:0], it.nBuckets[:0] } it.pBucketsLeading, it.pBucketsTrailing = it.pBucketsLeading[:0], it.pBucketsTrailing[:0] it.nBucketsLeading, it.nBucketsTrailing = it.nBucketsLeading[:0], it.nBucketsTrailing[:0] it.err = nil } func (it *floatHistogramIterator) Next() ValueType { if it.err != nil || it.numRead == it.numTotal { return ValNone } if it.numRead == 0 { // The first read is responsible for reading the chunk layout // and for initializing fields that depend on it. We give // counter reset info at chunk level, hence we discard it here. schema, zeroThreshold, posSpans, negSpans, err := readHistogramChunkLayout(&it.br) if err != nil { it.err = err return ValNone } it.schema = schema it.zThreshold = zeroThreshold it.pSpans, it.nSpans = posSpans, negSpans numPBuckets, numNBuckets := countSpans(posSpans), countSpans(negSpans) // Allocate bucket slices as needed, recycling existing slices // in case this iterator was reset and already has slices of a // sufficient capacity. if numPBuckets > 0 { it.pBuckets = append(it.pBuckets, make([]float64, numPBuckets)...) it.pBucketsLeading = append(it.pBucketsLeading, make([]uint8, numPBuckets)...) it.pBucketsTrailing = append(it.pBucketsTrailing, make([]uint8, numPBuckets)...) } if numNBuckets > 0 { it.nBuckets = append(it.nBuckets, make([]float64, numNBuckets)...) it.nBucketsLeading = append(it.nBucketsLeading, make([]uint8, numNBuckets)...) it.nBucketsTrailing = append(it.nBucketsTrailing, make([]uint8, numNBuckets)...) } // Now read the actual data. t, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.t = t cnt, err := it.br.readBits(64) if err != nil { it.err = err return ValNone } it.cnt.value = math.Float64frombits(cnt) zcnt, err := it.br.readBits(64) if err != nil { it.err = err return ValNone } it.zCnt.value = math.Float64frombits(zcnt) sum, err := it.br.readBits(64) if err != nil { it.err = err return ValNone } it.sum.value = math.Float64frombits(sum) for i := range it.pBuckets { v, err := it.br.readBits(64) if err != nil { it.err = err return ValNone } it.pBuckets[i] = math.Float64frombits(v) } for i := range it.nBuckets { v, err := it.br.readBits(64) if err != nil { it.err = err return ValNone } it.nBuckets[i] = math.Float64frombits(v) } it.numRead++ return ValFloatHistogram } // The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code, // so we don't need a separate single delta logic for the 2nd sample. // Recycle bucket slices that have not been returned yet. Otherwise, copy them. // We can always recycle the slices for leading and trailing bits as they are // never returned to the caller. if it.atFloatHistogramCalled { it.atFloatHistogramCalled = false if len(it.pBuckets) > 0 { newBuckets := make([]float64, len(it.pBuckets)) copy(newBuckets, it.pBuckets) it.pBuckets = newBuckets } else { it.pBuckets = nil } if len(it.nBuckets) > 0 { newBuckets := make([]float64, len(it.nBuckets)) copy(newBuckets, it.nBuckets) it.nBuckets = newBuckets } else { it.nBuckets = nil } } tDod, err := readVarbitInt(&it.br) if err != nil { it.err = err return ValNone } it.tDelta = it.tDelta + tDod it.t += it.tDelta if ok := it.readXor(&it.cnt.value, &it.cnt.leading, &it.cnt.trailing); !ok { return ValNone } if ok := it.readXor(&it.zCnt.value, &it.zCnt.leading, &it.zCnt.trailing); !ok { return ValNone } if ok := it.readXor(&it.sum.value, &it.sum.leading, &it.sum.trailing); !ok { return ValNone } if value.IsStaleNaN(it.sum.value) { it.numRead++ return ValFloatHistogram } for i := range it.pBuckets { if ok := it.readXor(&it.pBuckets[i], &it.pBucketsLeading[i], &it.pBucketsTrailing[i]); !ok { return ValNone } } for i := range it.nBuckets { if ok := it.readXor(&it.nBuckets[i], &it.nBucketsLeading[i], &it.nBucketsTrailing[i]); !ok { return ValNone } } it.numRead++ return ValFloatHistogram } func (it *floatHistogramIterator) readXor(v *float64, leading, trailing *uint8) bool { err := xorRead(&it.br, v, leading, trailing) if err != nil { it.err = err return false } return true }