// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package tsdb implements a time series storage for float64 sample data. package tsdb import ( "bytes" "fmt" "io" "io/ioutil" "os" "path/filepath" "runtime" "sort" "strconv" "sync" "time" "unsafe" "golang.org/x/sync/errgroup" "github.com/coreos/etcd/pkg/fileutil" "github.com/go-kit/kit/log" "github.com/nightlyone/lockfile" "github.com/oklog/ulid" "github.com/pkg/errors" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/tsdb/chunks" "github.com/prometheus/tsdb/labels" ) // DefaultOptions used for the DB. They are sane for setups using // millisecond precision timestampdb. var DefaultOptions = &Options{ WALFlushInterval: 5 * time.Second, RetentionDuration: 15 * 24 * 60 * 60 * 1000, // 15 days in milliseconds BlockRanges: ExponentialBlockRanges(int64(2*time.Hour)/1e6, 3, 5), NoLockfile: false, } // Options of the DB storage. type Options struct { // The interval at which the write ahead log is flushed to disc. WALFlushInterval time.Duration // Duration of persisted data to keep. RetentionDuration uint64 // The sizes of the Blocks. BlockRanges []int64 // NoLockfile disables creation and consideration of a lock file. NoLockfile bool } // Appender allows appending a batch of data. It must be completed with a // call to Commit or Rollback and must not be reused afterwards. // // Operations on the Appender interface are not goroutine-safe. type Appender interface { // Add adds a sample pair for the given series. A reference number is // returned which can be used to add further samples in the same or later // transactions. // Returned reference numbers are ephemeral and may be rejected in calls // to AddFast() at any point. Adding the sample via Add() returns a new // reference number. // If the reference is the empty string it must not be used for caching. Add(l labels.Labels, t int64, v float64) (uint64, error) // Add adds a sample pair for the referenced series. It is generally faster // than adding a sample by providing its full label set. AddFast(ref uint64, t int64, v float64) error // Commit submits the collected samples and purges the batch. Commit() error // Rollback rolls back all modifications made in the appender so far. Rollback() error } // DB handles reads and writes of time series falling into // a hashed partition of a seriedb. type DB struct { dir string lockf *lockfile.Lockfile logger log.Logger metrics *dbMetrics opts *Options chunkPool chunks.Pool compactor Compactor wal WAL // Mutex for that must be held when modifying the general block layout. mtx sync.RWMutex blocks []DiskBlock head *Head compactc chan struct{} donec chan struct{} stopc chan struct{} // cmtx is used to control compactions and deletions. cmtx sync.Mutex compactionsEnabled bool } type dbMetrics struct { loadedBlocks prometheus.GaugeFunc reloads prometheus.Counter reloadsFailed prometheus.Counter compactionsTriggered prometheus.Counter } func newDBMetrics(db *DB, r prometheus.Registerer) *dbMetrics { m := &dbMetrics{} m.loadedBlocks = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "tsdb_blocks_loaded", Help: "Number of currently loaded data blocks", }, func() float64 { db.mtx.RLock() defer db.mtx.RUnlock() return float64(len(db.blocks)) }) m.reloads = prometheus.NewCounter(prometheus.CounterOpts{ Name: "tsdb_reloads_total", Help: "Number of times the database reloaded block data from disk.", }) m.reloadsFailed = prometheus.NewCounter(prometheus.CounterOpts{ Name: "tsdb_reloads_failures_total", Help: "Number of times the database failed to reload black data from disk.", }) m.compactionsTriggered = prometheus.NewCounter(prometheus.CounterOpts{ Name: "tsdb_compactions_triggered_total", Help: "Total number of triggered compactions for the partition.", }) if r != nil { r.MustRegister( m.loadedBlocks, m.reloads, m.reloadsFailed, m.compactionsTriggered, ) } return m } // Open returns a new DB in the given directory. func Open(dir string, l log.Logger, r prometheus.Registerer, opts *Options) (db *DB, err error) { if err := os.MkdirAll(dir, 0777); err != nil { return nil, err } if l == nil { l = log.NewNopLogger() } if opts == nil { opts = DefaultOptions } db = &DB{ dir: dir, logger: l, opts: opts, compactc: make(chan struct{}, 1), donec: make(chan struct{}), stopc: make(chan struct{}), compactionsEnabled: true, chunkPool: chunks.NewPool(), } db.metrics = newDBMetrics(db, r) if !opts.NoLockfile { absdir, err := filepath.Abs(dir) if err != nil { return nil, err } lockf, err := lockfile.New(filepath.Join(absdir, "lock")) if err != nil { return nil, err } if err := lockf.TryLock(); err != nil { return nil, errors.Wrapf(err, "open DB in %s", dir) } db.lockf = &lockf } db.compactor, err = NewLeveledCompactor(r, l, opts.BlockRanges, db.chunkPool) if err != nil { return nil, errors.Wrap(err, "create leveled compactor") } wal, err := OpenSegmentWAL(filepath.Join(dir, "wal"), l, 10*time.Second) if err != nil { return nil, err } db.head, err = NewHead(r, l, wal, opts.BlockRanges[0]) if err != nil { return nil, err } if err := db.reload(); err != nil { return nil, err } if err := db.head.ReadWAL(); err != nil { return nil, errors.Wrap(err, "read WAL") } go db.run() return db, nil } // Dir returns the directory of the database. func (db *DB) Dir() string { return db.dir } func (db *DB) run() { defer close(db.donec) backoff := time.Duration(0) for { select { case <-db.stopc: return case <-time.After(backoff): } select { case <-time.After(1 * time.Minute): select { case db.compactc <- struct{}{}: default: } case <-db.compactc: db.metrics.compactionsTriggered.Inc() _, err1 := db.retentionCutoff() if err1 != nil { db.logger.Log("msg", "retention cutoff failed", "err", err1) } _, err2 := db.compact() if err2 != nil { db.logger.Log("msg", "compaction failed", "err", err2) } if err1 != nil || err2 != nil { backoff = exponential(backoff, 1*time.Second, 1*time.Minute) } else { backoff = 0 } case <-db.stopc: return } } } func (db *DB) retentionCutoff() (bool, error) { if db.opts.RetentionDuration == 0 { return false, nil } db.mtx.RLock() defer db.mtx.RUnlock() if len(db.blocks) == 0 { return false, nil } last := db.blocks[len(db.blocks)-1] mint := last.Meta().MaxTime - int64(db.opts.RetentionDuration) return retentionCutoff(db.dir, mint) } // Appender opens a new appender against the database. func (db *DB) Appender() Appender { return dbAppender{db: db, Appender: db.head.Appender()} } // dbAppender wraps the DB's head appender and triggers compactions on commit // if necessary. type dbAppender struct { Appender db *DB } func (a dbAppender) Commit() error { err := a.Appender.Commit() // We could just run this check every few minutes practically. But for benchmarks // and high frequency use cases this is the safer way. if a.db.head.MaxTime()-a.db.head.MinTime() > a.db.head.chunkRange/2*3 { select { case a.db.compactc <- struct{}{}: default: } } return err } func (db *DB) compact() (changes bool, err error) { db.cmtx.Lock() defer db.cmtx.Unlock() if !db.compactionsEnabled { return false, nil } // Check whether we have pending head blocks that are ready to be persisted. // They have the highest priority. for { select { case <-db.stopc: return changes, nil default: } // The head has a compactable range if 1.5 level 0 ranges are between the oldest // and newest timestamp. The 0.5 acts as a buffer of the appendable window. if db.head.MaxTime()-db.head.MinTime() <= db.opts.BlockRanges[0]/2*3 { break } mint, maxt := rangeForTimestamp(db.head.MinTime(), db.opts.BlockRanges[0]) // Wrap head into a range that bounds all reads to it. head := &rangeHead{ head: db.head, mint: mint, maxt: maxt, } if err = db.compactor.Write(db.dir, head, mint, maxt); err != nil { return changes, errors.Wrap(err, "persist head block") } changes = true runtime.GC() if err := db.reload(); err != nil { return changes, errors.Wrap(err, "reload blocks") } runtime.GC() } // Check for compactions of multiple blocks. for { plan, err := db.compactor.Plan(db.dir) if err != nil { return changes, errors.Wrap(err, "plan compaction") } if len(plan) == 0 { break } select { case <-db.stopc: return changes, nil default: } if err := db.compactor.Compact(db.dir, plan...); err != nil { return changes, errors.Wrapf(err, "compact %s", plan) } changes = true for _, pd := range plan { if err := os.RemoveAll(pd); err != nil { return changes, errors.Wrap(err, "delete compacted block") } } runtime.GC() if err := db.reload(); err != nil { return changes, errors.Wrap(err, "reload blocks") } runtime.GC() } return changes, nil } // retentionCutoff deletes all directories of blocks in dir that are strictly // before mint. func retentionCutoff(dir string, mint int64) (bool, error) { df, err := fileutil.OpenDir(dir) if err != nil { return false, errors.Wrapf(err, "open directory") } defer df.Close() dirs, err := blockDirs(dir) if err != nil { return false, errors.Wrapf(err, "list block dirs %s", dir) } changes := false for _, dir := range dirs { meta, err := readMetaFile(dir) if err != nil { return changes, errors.Wrapf(err, "read block meta %s", dir) } // The first block we encounter marks that we crossed the boundary // of deletable blocks. if meta.MaxTime >= mint { break } changes = true if err := os.RemoveAll(dir); err != nil { return changes, err } } return changes, fileutil.Fsync(df) } func (db *DB) getBlock(id ulid.ULID) (DiskBlock, bool) { for _, b := range db.blocks { if b.Meta().ULID == id { return b, true } } return nil, false } func (db *DB) reload() (err error) { defer func() { if err != nil { db.metrics.reloadsFailed.Inc() } db.metrics.reloads.Inc() }() var cs []io.Closer defer func() { closeAll(cs...) }() dirs, err := blockDirs(db.dir) if err != nil { return errors.Wrap(err, "find blocks") } var ( blocks []DiskBlock exist = map[ulid.ULID]struct{}{} ) for _, dir := range dirs { meta, err := readMetaFile(dir) if err != nil { return errors.Wrapf(err, "read meta information %s", dir) } b, ok := db.getBlock(meta.ULID) if !ok { b, err = newPersistedBlock(dir, db.chunkPool) if err != nil { return errors.Wrapf(err, "open block %s", dir) } } blocks = append(blocks, b) exist[meta.ULID] = struct{}{} } if err := validateBlockSequence(blocks); err != nil { return errors.Wrap(err, "invalid block sequence") } // Close all opened blocks that no longer exist after we returned all locks. // TODO(fabxc: probably races with querier still reading from them. Can // we just abandon them and have the open FDs be GC'd automatically eventually? for _, b := range db.blocks { if _, ok := exist[b.Meta().ULID]; !ok { cs = append(cs, b) } } db.mtx.Lock() db.blocks = blocks db.mtx.Unlock() // Garbage collect data in the head if the most recent persisted block // covers data of its current time range. if len(blocks) == 0 { return nil } maxt := blocks[len(db.blocks)-1].Meta().MaxTime return errors.Wrap(db.head.Truncate(maxt), "head truncate failed") } func validateBlockSequence(bs []DiskBlock) error { if len(bs) == 0 { return nil } sort.Slice(bs, func(i, j int) bool { return bs[i].Meta().MinTime < bs[j].Meta().MinTime }) prev := bs[0] for _, b := range bs[1:] { if b.Meta().MinTime < prev.Meta().MaxTime { return errors.Errorf("block time ranges overlap (%d, %d)", b.Meta().MinTime, prev.Meta().MaxTime) } } return nil } func (db *DB) Blocks() []DiskBlock { db.mtx.RLock() defer db.mtx.RUnlock() return db.blocks } func (db *DB) Head() *Head { return db.head } // Close the partition. func (db *DB) Close() error { close(db.stopc) <-db.donec db.mtx.Lock() defer db.mtx.Unlock() var g errgroup.Group // blocks also contains all head blocks. for _, pb := range db.blocks { g.Go(pb.Close) } var merr MultiError merr.Add(g.Wait()) if db.lockf != nil { merr.Add(db.lockf.Unlock()) } return merr.Err() } // DisableCompactions disables compactions. func (db *DB) DisableCompactions() { db.cmtx.Lock() defer db.cmtx.Unlock() db.compactionsEnabled = false db.logger.Log("msg", "compactions disabled") } // EnableCompactions enables compactions. func (db *DB) EnableCompactions() { db.cmtx.Lock() defer db.cmtx.Unlock() db.compactionsEnabled = true db.logger.Log("msg", "compactions enabled") } // Snapshot writes the current data to the directory. func (db *DB) Snapshot(dir string) error { if dir == db.dir { return errors.Errorf("cannot snapshot into base directory") } if _, err := ulid.Parse(dir); err == nil { return errors.Errorf("dir must not be a valid ULID") } db.cmtx.Lock() defer db.cmtx.Unlock() db.mtx.RLock() defer db.mtx.RUnlock() for _, b := range db.blocks { db.logger.Log("msg", "snapshotting block", "block", b) if err := b.Snapshot(dir); err != nil { return errors.Wrap(err, "error snapshotting headblock") } } return db.compactor.Write(dir, db.head, db.head.MinTime(), db.head.MaxTime()) } // Querier returns a new querier over the data partition for the given time range. // A goroutine must not handle more than one open Querier. func (db *DB) Querier(mint, maxt int64) Querier { db.mtx.RLock() blocks := db.blocksForInterval(mint, maxt) sq := &querier{ blocks: make([]Querier, 0, len(blocks)), db: db, } for _, b := range blocks { sq.blocks = append(sq.blocks, &blockQuerier{ mint: mint, maxt: maxt, index: b.Index(), chunks: b.Chunks(), tombstones: b.Tombstones(), }) } return sq } func rangeForTimestamp(t int64, width int64) (mint, maxt int64) { mint = (t / width) * width return mint, mint + width } // Delete implements deletion of metrics. It only has atomicity guarantees on a per-block basis. func (db *DB) Delete(mint, maxt int64, ms ...labels.Matcher) error { db.cmtx.Lock() defer db.cmtx.Unlock() db.mtx.Lock() defer db.mtx.Unlock() var g errgroup.Group for _, b := range db.blocks { m := b.Meta() if intervalOverlap(mint, maxt, m.MinTime, m.MaxTime) { g.Go(func(b DiskBlock) func() error { return func() error { return b.Delete(mint, maxt, ms...) } }(b)) } } g.Go(func() error { return db.head.Delete(mint, maxt, ms...) }) if err := g.Wait(); err != nil { return err } return nil } func intervalOverlap(amin, amax, bmin, bmax int64) bool { // Checks Overlap: http://stackoverflow.com/questions/3269434/ return amin <= bmax && bmin <= amax } func intervalContains(min, max, t int64) bool { return t >= min && t <= max } // blocksForInterval returns all blocks within the partition that may contain // data for the given time range. func (db *DB) blocksForInterval(mint, maxt int64) []BlockReader { var bs []BlockReader for _, b := range db.blocks { m := b.Meta() if intervalOverlap(mint, maxt, m.MinTime, m.MaxTime) { bs = append(bs, b) } } if maxt >= db.head.MinTime() { bs = append(bs, db.head) } return bs } func isBlockDir(fi os.FileInfo) bool { if !fi.IsDir() { return false } _, err := ulid.Parse(fi.Name()) return err == nil } func blockDirs(dir string) ([]string, error) { files, err := ioutil.ReadDir(dir) if err != nil { return nil, err } var dirs []string for _, fi := range files { if isBlockDir(fi) { dirs = append(dirs, filepath.Join(dir, fi.Name())) } } return dirs, nil } func sequenceFiles(dir string) ([]string, error) { files, err := ioutil.ReadDir(dir) if err != nil { return nil, err } var res []string for _, fi := range files { if _, err := strconv.ParseUint(fi.Name(), 10, 64); err != nil { continue } res = append(res, filepath.Join(dir, fi.Name())) } return res, nil } func nextSequenceFile(dir string) (string, int, error) { names, err := fileutil.ReadDir(dir) if err != nil { return "", 0, err } i := uint64(0) for _, n := range names { j, err := strconv.ParseUint(n, 10, 64) if err != nil { continue } i = j } return filepath.Join(dir, fmt.Sprintf("%0.6d", i+1)), int(i + 1), nil } // The MultiError type implements the error interface, and contains the // Errors used to construct it. type MultiError []error // Returns a concatenated string of the contained errors func (es MultiError) Error() string { var buf bytes.Buffer if len(es) > 1 { fmt.Fprintf(&buf, "%d errors: ", len(es)) } for i, err := range es { if i != 0 { buf.WriteString("; ") } buf.WriteString(err.Error()) } return buf.String() } // Add adds the error to the error list if it is not nil. func (es *MultiError) Add(err error) { if err == nil { return } if merr, ok := err.(MultiError); ok { *es = append(*es, merr...) } else { *es = append(*es, err) } } // Err returns the error list as an error or nil if it is empty. func (es MultiError) Err() error { if len(es) == 0 { return nil } return es } func yoloString(b []byte) string { return *((*string)(unsafe.Pointer(&b))) } func yoloBytes(s string) []byte { return *((*[]byte)(unsafe.Pointer(&s))) } func closeAll(cs ...io.Closer) error { var merr MultiError for _, c := range cs { merr.Add(c.Close()) } return merr.Err() } func exponential(d, min, max time.Duration) time.Duration { d *= 2 if d < min { d = min } if d > max { d = max } return d }