// Copyright 2021 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package chunkenc import ( "math" "github.com/prometheus/prometheus/model/histogram" ) func writeHistogramChunkLayout( b *bstream, schema int32, zeroThreshold float64, positiveSpans, negativeSpans []histogram.Span, customValues []float64, ) { putZeroThreshold(b, zeroThreshold) putVarbitInt(b, int64(schema)) putHistogramChunkLayoutSpans(b, positiveSpans) putHistogramChunkLayoutSpans(b, negativeSpans) if histogram.IsCustomBucketsSchema(schema) { putHistogramChunkLayoutCustomBounds(b, customValues) } } func readHistogramChunkLayout(b *bstreamReader) ( schema int32, zeroThreshold float64, positiveSpans, negativeSpans []histogram.Span, customValues []float64, err error, ) { zeroThreshold, err = readZeroThreshold(b) if err != nil { return } v, err := readVarbitInt(b) if err != nil { return } schema = int32(v) positiveSpans, err = readHistogramChunkLayoutSpans(b) if err != nil { return } negativeSpans, err = readHistogramChunkLayoutSpans(b) if err != nil { return } if histogram.IsCustomBucketsSchema(schema) { customValues, err = readHistogramChunkLayoutCustomBounds(b) if err != nil { return } } return } func putHistogramChunkLayoutSpans(b *bstream, spans []histogram.Span) { putVarbitUint(b, uint64(len(spans))) for _, s := range spans { putVarbitUint(b, uint64(s.Length)) putVarbitInt(b, int64(s.Offset)) } } func readHistogramChunkLayoutSpans(b *bstreamReader) ([]histogram.Span, error) { var spans []histogram.Span num, err := readVarbitUint(b) if err != nil { return nil, err } for i := 0; i < int(num); i++ { length, err := readVarbitUint(b) if err != nil { return nil, err } offset, err := readVarbitInt(b) if err != nil { return nil, err } spans = append(spans, histogram.Span{ Length: uint32(length), Offset: int32(offset), }) } return spans, nil } func putHistogramChunkLayoutCustomBounds(b *bstream, customValues []float64) { putVarbitUint(b, uint64(len(customValues))) for _, bound := range customValues { putCustomBound(b, bound) } } func readHistogramChunkLayoutCustomBounds(b *bstreamReader) ([]float64, error) { var customValues []float64 num, err := readVarbitUint(b) if err != nil { return nil, err } for i := 0; i < int(num); i++ { bound, err := readCustomBound(b) if err != nil { return nil, err } customValues = append(customValues, bound) } return customValues, nil } // putZeroThreshold writes the zero threshold to the bstream. It stores typical // values in just one byte, but needs 9 bytes for other values. In detail: // - If the threshold is 0, store a single zero byte. // - If the threshold is a power of 2 between (and including) 2^-243 and 2^10, // take the exponent from the IEEE 754 representation of the threshold, which // covers a range between (and including) -242 and 11. (2^-243 is 0.5*2^-242 // in IEEE 754 representation, and 2^10 is 0.5*2^11.) Add 243 to the exponent // and store the result (which will be between 1 and 254) as a single // byte. Note that small powers of two are preferred values for the zero // threshold. The default value for the zero threshold is 2^-128 (or // 0.5*2^-127 in IEEE 754 representation) and will therefore be encoded as a // single byte (with value 116). // - In all other cases, store 255 as a single byte, followed by the 8 bytes of // the threshold as a float64, i.e. taking 9 bytes in total. func putZeroThreshold(b *bstream, threshold float64) { if threshold == 0 { b.writeByte(0) return } frac, exp := math.Frexp(threshold) if frac != 0.5 || exp < -242 || exp > 11 { b.writeByte(255) b.writeBits(math.Float64bits(threshold), 64) return } b.writeByte(byte(exp + 243)) } // readZeroThreshold reads the zero threshold written with putZeroThreshold. func readZeroThreshold(br *bstreamReader) (float64, error) { b, err := br.ReadByte() if err != nil { return 0, err } switch b { case 0: return 0, nil case 255: v, err := br.readBits(64) if err != nil { return 0, err } return math.Float64frombits(v), nil default: return math.Ldexp(0.5, int(b)-243), nil } } // isWholeWhenMultiplied checks to see if the number when multiplied by 1000 can // be converted into an integer without losing precision. func isWholeWhenMultiplied(in float64) bool { i := uint(math.Round(in * 1000)) out := float64(i) / 1000 return in == out } // putCustomBound writes a custom bound to the bstream. It stores values from // 0 to 33554.430 (inclusive) that are multiples of 0.001 in unsigned varbit // encoding of up to 4 bytes, but needs 1 bit + 8 bytes for other values like // negative numbers, numbers greater than 33554.430, or numbers that are not // a multiple of 0.001, on the assumption that they are less common. In detail: // - Multiply the bound by 1000, without rounding. // - If the multiplied bound is >= 0, <= 33554430 and a whole number, // add 1 and store it in unsigned varbit encoding. All these numbers are // greater than 0, so the leading bit of the varbit is always 1! // - Otherwise, store a 0 bit, followed by the 8 bytes of the original // bound as a float64. // // When reading the values, we can first decode a value as unsigned varbit, // if it's 0, then we read the next 8 bytes as a float64, otherwise // we can convert the value to a float64 by subtracting 1 and dividing by 1000. func putCustomBound(b *bstream, f float64) { tf := f * 1000 // 33554431-1 comes from the maximum that can be stored in a varbit in 4 // bytes, other values are stored in 8 bytes anyway. if tf < 0 || tf > 33554430 || !isWholeWhenMultiplied(f) { b.writeBit(zero) b.writeBits(math.Float64bits(f), 64) return } putVarbitUint(b, uint64(math.Round(tf))+1) } // readCustomBound reads the custom bound written with putCustomBound. func readCustomBound(br *bstreamReader) (float64, error) { b, err := readVarbitUint(br) if err != nil { return 0, err } switch b { case 0: v, err := br.readBits(64) if err != nil { return 0, err } return math.Float64frombits(v), nil default: return float64(b-1) / 1000, nil } } type bucketIterator struct { spans []histogram.Span span int // Span position of last yielded bucket. bucket int // Bucket position within span of last yielded bucket. idx int // Bucket index (globally across all spans) of last yielded bucket. } func newBucketIterator(spans []histogram.Span) *bucketIterator { b := bucketIterator{ spans: spans, span: 0, bucket: -1, idx: -1, } if len(spans) > 0 { b.idx += int(spans[0].Offset) } return &b } func (b *bucketIterator) Next() (int, bool) { // We're already out of bounds. if b.span >= len(b.spans) { return 0, false } if b.bucket < int(b.spans[b.span].Length)-1 { // Try to move within same span. b.bucket++ b.idx++ return b.idx, true } for b.span < len(b.spans)-1 { // Try to move from one span to the next. b.span++ b.idx += int(b.spans[b.span].Offset + 1) b.bucket = 0 if b.spans[b.span].Length == 0 { b.idx-- continue } return b.idx, true } // We're out of options. return 0, false } // An Insert describes how many new buckets have to be inserted before // processing the pos'th bucket from the original slice. type Insert struct { pos int num int } // Deprecated: expandSpansForward, use expandIntSpansAndBuckets or // expandFloatSpansAndBuckets instead. // expandSpansForward is left here for reference. // expandSpansForward returns the inserts to expand the bucket spans 'a' so that // they match the spans in 'b'. 'b' must cover the same or more buckets than // 'a', otherwise the function will return false. // // Example: // // Let's say the old buckets look like this: // // span syntax: [offset, length] // spans : [ 0 , 2 ] [2,1] [ 3 , 2 ] [3,1] [1,1] // bucket idx : [0] [1] 2 3 [4] 5 6 7 [8] [9] 10 11 12 [13] 14 [15] // raw values 6 3 3 2 4 5 1 // deltas 6 -3 0 -1 2 1 -4 // // But now we introduce a new bucket layout. (Carefully chosen example where we // have a span appended, one unchanged[*], one prepended, and two merge - in // that order.) // // [*] unchanged in terms of which bucket indices they represent. but to achieve // that, their offset needs to change if "disrupted" by spans changing ahead of // them // // \/ this one is "unchanged" // spans : [ 0 , 3 ] [1,1] [ 1 , 4 ] [ 3 , 3 ] // bucket idx : [0] [1] [2] 3 [4] 5 [6] [7] [8] [9] 10 11 12 [13] [14] [15] // raw values 6 3 0 3 0 0 2 4 5 0 1 // deltas 6 -3 -3 3 -3 0 2 2 1 -5 1 // delta mods: / \ / \ / \ // // Note for histograms with delta-encoded buckets: Whenever any new buckets are // introduced, the subsequent "old" bucket needs to readjust its delta to the // new base of 0. Thus, for the caller who wants to transform the set of // original deltas to a new set of deltas to match a new span layout that adds // buckets, we simply need to generate a list of inserts. // // Note: Within expandSpansForward we don't have to worry about the changes to the // spans themselves, thanks to the iterators we get to work with the more useful // bucket indices (which of course directly correspond to the buckets we have to // adjust). func expandSpansForward(a, b []histogram.Span) (forward []Insert, ok bool) { ai := newBucketIterator(a) bi := newBucketIterator(b) var inserts []Insert // When inter.num becomes > 0, this becomes a valid insert that should // be yielded when we finish a streak of new buckets. var inter Insert av, aOK := ai.Next() bv, bOK := bi.Next() loop: for { switch { case aOK && bOK: switch { case av == bv: // Both have an identical value. move on! // Finish WIP insert and reset. if inter.num > 0 { inserts = append(inserts, inter) } inter.num = 0 av, aOK = ai.Next() bv, bOK = bi.Next() inter.pos++ case av < bv: // b misses a value that is in a. return inserts, false case av > bv: // a misses a value that is in b. Forward b and recompare. inter.num++ bv, bOK = bi.Next() } case aOK && !bOK: // b misses a value that is in a. return inserts, false case !aOK && bOK: // a misses a value that is in b. Forward b and recompare. inter.num++ bv, bOK = bi.Next() default: // Both iterators ran out. We're done. if inter.num > 0 { inserts = append(inserts, inter) } break loop } } return inserts, true } // expandSpansBothWays is similar to expandSpansForward, but now b may also // cover an entirely different set of buckets. The function returns the // “forward” inserts to expand 'a' to also cover all the buckets exclusively // covered by 'b', and it returns the “backward” inserts to expand 'b' to also // cover all the buckets exclusively covered by 'a'. func expandSpansBothWays(a, b []histogram.Span) (forward, backward []Insert, mergedSpans []histogram.Span) { ai := newBucketIterator(a) bi := newBucketIterator(b) var fInserts, bInserts []Insert var lastBucket int addBucket := func(b int) { offset := b - lastBucket - 1 if offset == 0 && len(mergedSpans) > 0 { mergedSpans[len(mergedSpans)-1].Length++ } else { if len(mergedSpans) == 0 { offset++ } mergedSpans = append(mergedSpans, histogram.Span{ Offset: int32(offset), Length: 1, }) } lastBucket = b } // When fInter.num (or bInter.num, respectively) becomes > 0, this // becomes a valid insert that should be yielded when we finish a streak // of new buckets. var fInter, bInter Insert av, aOK := ai.Next() bv, bOK := bi.Next() loop: for { switch { case aOK && bOK: switch { case av == bv: // Both have an identical value. move on! // Finish WIP insert and reset. if fInter.num > 0 { fInserts = append(fInserts, fInter) fInter.num = 0 } if bInter.num > 0 { bInserts = append(bInserts, bInter) bInter.num = 0 } addBucket(av) av, aOK = ai.Next() bv, bOK = bi.Next() fInter.pos++ bInter.pos++ case av < bv: // b misses a value that is in a. bInter.num++ // Collect the forward inserts before advancing // the position of 'a'. if fInter.num > 0 { fInserts = append(fInserts, fInter) fInter.num = 0 } addBucket(av) fInter.pos++ av, aOK = ai.Next() case av > bv: // a misses a value that is in b. Forward b and recompare. fInter.num++ // Collect the backward inserts before advancing the // position of 'b'. if bInter.num > 0 { bInserts = append(bInserts, bInter) bInter.num = 0 } addBucket(bv) bInter.pos++ bv, bOK = bi.Next() } case aOK && !bOK: // b misses a value that is in a. bInter.num++ addBucket(av) av, aOK = ai.Next() case !aOK && bOK: // a misses a value that is in b. Forward b and recompare. fInter.num++ addBucket(bv) bv, bOK = bi.Next() default: // Both iterators ran out. We're done. if fInter.num > 0 { fInserts = append(fInserts, fInter) } if bInter.num > 0 { bInserts = append(bInserts, bInter) } break loop } } return fInserts, bInserts, mergedSpans } type bucketValue interface { int64 | float64 } // insert merges 'in' with the provided inserts and writes them into 'out', // which must already have the appropriate length. 'out' is also returned for // convenience. func insert[BV bucketValue](in, out []BV, inserts []Insert, deltas bool) []BV { var ( oi int // Position in out. v BV // The last value seen. ii int // The next insert to process. ) for i, d := range in { if ii < len(inserts) && i == inserts[ii].pos { // We have an insert! // Add insert.num new delta values such that their // bucket values equate 0. When deltas==false, it means // that it is an absolute value. So we set it to 0 // directly. if deltas { out[oi] = -v } else { out[oi] = 0 } oi++ for x := 1; x < inserts[ii].num; x++ { out[oi] = 0 oi++ } ii++ // Now save the value from the input. The delta value we // should save is the original delta value + the last // value of the point before the insert (to undo the // delta that was introduced by the insert). When // deltas==false, it means that it is an absolute value, // so we set it directly to the value in the 'in' slice. if deltas { out[oi] = d + v } else { out[oi] = d } oi++ v = d + v continue } // If there was no insert, the original delta is still valid. out[oi] = d oi++ v += d } switch ii { case len(inserts): // All inserts processed. Nothing more to do. case len(inserts) - 1: // One more insert to process at the end. if deltas { out[oi] = -v } else { out[oi] = 0 } oi++ for x := 1; x < inserts[ii].num; x++ { out[oi] = 0 oi++ } default: panic("unprocessed inserts left") } return out } // counterResetHint returns a CounterResetHint based on the CounterResetHeader // and on the position into the chunk. func counterResetHint(crh CounterResetHeader, numRead uint16) histogram.CounterResetHint { switch { case crh == GaugeType: // A gauge histogram chunk only contains gauge histograms. return histogram.GaugeType case numRead > 1: // In a counter histogram chunk, there will not be any counter // resets after the first histogram. return histogram.NotCounterReset case crh == CounterReset: // If the chunk was started because of a counter reset, we can // safely return that hint. This histogram always has to be // treated as a counter reset. return histogram.CounterReset default: // Sadly, we have to return "unknown" as the hint for all other // cases, even if we know that the chunk was started without a // counter reset. But we cannot be sure that the previous chunk // still exists in the TSDB, so we conservatively return // "unknown". On the bright side, this case should be relatively // rare. // // TODO(beorn7): Nevertheless, if the current chunk is in the // middle of a block (not the first chunk in the block for this // series), it's probably safe to assume that the previous chunk // will exist in the TSDB for as long as the current chunk // exist, and we could safely return // "histogram.NotCounterReset". This needs some more work and // might not be worth the effort and/or risk. To be vetted... return histogram.UnknownCounterReset } }