// Copyright 2014 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package local import ( "sort" "sync" "time" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/storage/metric" ) const ( // chunkDescEvictionFactor is a factor used for chunkDesc eviction (as opposed // to evictions of chunks, see method evictOlderThan. A chunk takes about 20x // more memory than a chunkDesc. With a chunkDescEvictionFactor of 10, not more // than a third of the total memory taken by a series will be used for // chunkDescs. chunkDescEvictionFactor = 10 headChunkTimeout = time.Hour // Close head chunk if not touched for that long. ) // fingerprintSeriesPair pairs a fingerprint with a memorySeries pointer. type fingerprintSeriesPair struct { fp model.Fingerprint series *memorySeries } // seriesMap maps fingerprints to memory series. All its methods are // goroutine-safe. A SeriesMap is effectively is a goroutine-safe version of // map[model.Fingerprint]*memorySeries. type seriesMap struct { mtx sync.RWMutex m map[model.Fingerprint]*memorySeries } // newSeriesMap returns a newly allocated empty seriesMap. To create a seriesMap // based on a prefilled map, use an explicit initializer. func newSeriesMap() *seriesMap { return &seriesMap{m: make(map[model.Fingerprint]*memorySeries)} } // length returns the number of mappings in the seriesMap. func (sm *seriesMap) length() int { sm.mtx.RLock() defer sm.mtx.RUnlock() return len(sm.m) } // get returns a memorySeries for a fingerprint. Return values have the same // semantics as the native Go map. func (sm *seriesMap) get(fp model.Fingerprint) (s *memorySeries, ok bool) { sm.mtx.RLock() defer sm.mtx.RUnlock() s, ok = sm.m[fp] return } // put adds a mapping to the seriesMap. It panics if s == nil. func (sm *seriesMap) put(fp model.Fingerprint, s *memorySeries) { sm.mtx.Lock() defer sm.mtx.Unlock() if s == nil { panic("tried to add nil pointer to seriesMap") } sm.m[fp] = s } // del removes a mapping from the series Map. func (sm *seriesMap) del(fp model.Fingerprint) { sm.mtx.Lock() defer sm.mtx.Unlock() delete(sm.m, fp) } // iter returns a channel that produces all mappings in the seriesMap. The // channel will be closed once all fingerprints have been received. Not // consuming all fingerprints from the channel will leak a goroutine. The // semantics of concurrent modification of seriesMap is the similar as the one // for iterating over a map with a 'range' clause. However, if the next element // in iteration order is removed after the current element has been received // from the channel, it will still be produced by the channel. func (sm *seriesMap) iter() <-chan fingerprintSeriesPair { ch := make(chan fingerprintSeriesPair) go func() { sm.mtx.RLock() for fp, s := range sm.m { sm.mtx.RUnlock() ch <- fingerprintSeriesPair{fp, s} sm.mtx.RLock() } sm.mtx.RUnlock() close(ch) }() return ch } // fpIter returns a channel that produces all fingerprints in the seriesMap. The // channel will be closed once all fingerprints have been received. Not // consuming all fingerprints from the channel will leak a goroutine. The // semantics of concurrent modification of seriesMap is the similar as the one // for iterating over a map with a 'range' clause. However, if the next element // in iteration order is removed after the current element has been received // from the channel, it will still be produced by the channel. func (sm *seriesMap) fpIter() <-chan model.Fingerprint { ch := make(chan model.Fingerprint) go func() { sm.mtx.RLock() for fp := range sm.m { sm.mtx.RUnlock() ch <- fp sm.mtx.RLock() } sm.mtx.RUnlock() close(ch) }() return ch } type memorySeries struct { metric model.Metric // Sorted by start time, overlapping chunk ranges are forbidden. chunkDescs []*chunkDesc // The index (within chunkDescs above) of the first chunkDesc that // points to a non-persisted chunk. If all chunks are persisted, then // persistWatermark == len(chunkDescs). persistWatermark int // The modification time of the series file. The zero value of time.Time // is used to mark an unknown modification time. modTime time.Time // The chunkDescs in memory might not have all the chunkDescs for the // chunks that are persisted to disk. The missing chunkDescs are all // contiguous and at the tail end. chunkDescsOffset is the index of the // chunk on disk that corresponds to the first chunkDesc in memory. If // it is 0, the chunkDescs are all loaded. A value of -1 denotes a // special case: There are chunks on disk, but the offset to the // chunkDescs in memory is unknown. Also, in this special case, there is // no overlap between chunks on disk and chunks in memory (implying that // upon first persisting of a chunk in memory, the offset has to be // set). chunkDescsOffset int // The savedFirstTime field is used as a fallback when the // chunkDescsOffset is not 0. It can be used to save the firstTime of the // first chunk before its chunk desc is evicted. In doubt, this field is // just set to the oldest possible timestamp. savedFirstTime model.Time // The timestamp of the last sample in this series. Needed for fast // access for federation and to ensure timestamp monotonicity during // ingestion. lastTime model.Time // The last ingested sample value. Needed for fast access for // federation. lastSampleValue model.SampleValue // Whether lastSampleValue has been set already. lastSampleValueSet bool // Whether the current head chunk has already been finished. If true, // the current head chunk must not be modified anymore. headChunkClosed bool // Whether the current head chunk is used by an iterator. In that case, // a non-closed head chunk has to be cloned before more samples are // appended. headChunkUsedByIterator bool // Whether the series is inconsistent with the last checkpoint in a way // that would require a disk seek during crash recovery. dirty bool } // newMemorySeries returns a pointer to a newly allocated memorySeries for the // given metric. chunkDescs and modTime in the new series are set according to // the provided parameters. chunkDescs can be nil or empty if this is a // genuinely new time series (i.e. not one that is being unarchived). In that // case, headChunkClosed is set to false, and firstTime and lastTime are both // set to model.Earliest. The zero value for modTime can be used if the // modification time of the series file is unknown (e.g. if this is a genuinely // new series). func newMemorySeries(m model.Metric, chunkDescs []*chunkDesc, modTime time.Time) *memorySeries { firstTime := model.Earliest lastTime := model.Earliest if len(chunkDescs) > 0 { firstTime = chunkDescs[0].firstTime() lastTime = chunkDescs[len(chunkDescs)-1].lastTime() } return &memorySeries{ metric: m, chunkDescs: chunkDescs, headChunkClosed: len(chunkDescs) > 0, savedFirstTime: firstTime, lastTime: lastTime, persistWatermark: len(chunkDescs), modTime: modTime, } } // add adds a sample pair to the series. It returns the number of newly // completed chunks (which are now eligible for persistence). // // The caller must have locked the fingerprint of the series. func (s *memorySeries) add(v *model.SamplePair) int { if len(s.chunkDescs) == 0 || s.headChunkClosed { newHead := newChunkDesc(newChunk(), v.Timestamp) s.chunkDescs = append(s.chunkDescs, newHead) s.headChunkClosed = false } else if s.headChunkUsedByIterator && s.head().refCount() > 1 { // We only need to clone the head chunk if the current head // chunk was used in an iterator at all and if the refCount is // still greater than the 1 we always have because the head // chunk is not yet persisted. The latter is just an // approximation. We will still clone unnecessarily if an older // iterator using a previous version of the head chunk is still // around and keep the head chunk pinned. We needed to track // pins by version of the head chunk, which is probably not // worth the effort. chunkOps.WithLabelValues(clone).Inc() // No locking needed here because a non-persisted head chunk can // not get evicted concurrently. s.head().c = s.head().c.clone() s.headChunkUsedByIterator = false } chunks := s.head().add(v) s.head().c = chunks[0] for _, c := range chunks[1:] { s.chunkDescs = append(s.chunkDescs, newChunkDesc(c, c.firstTime())) } // Populate lastTime of now-closed chunks. for _, cd := range s.chunkDescs[len(s.chunkDescs)-len(chunks) : len(s.chunkDescs)-1] { cd.maybePopulateLastTime() } s.lastTime = v.Timestamp s.lastSampleValue = v.Value s.lastSampleValueSet = true return len(chunks) - 1 } // maybeCloseHeadChunk closes the head chunk if it has not been touched for the // duration of headChunkTimeout. It returns whether the head chunk was closed. // If the head chunk is already closed, the method is a no-op and returns false. // // The caller must have locked the fingerprint of the series. func (s *memorySeries) maybeCloseHeadChunk() bool { if s.headChunkClosed { return false } if time.Now().Sub(s.lastTime.Time()) > headChunkTimeout { s.headChunkClosed = true // Since we cannot modify the head chunk from now on, we // don't need to bother with cloning anymore. s.headChunkUsedByIterator = false s.head().maybePopulateLastTime() return true } return false } // evictChunkDescs evicts chunkDescs if there are chunkDescEvictionFactor times // more than non-evicted chunks. iOldestNotEvicted is the index within the // current chunkDescs of the oldest chunk that is not evicted. func (s *memorySeries) evictChunkDescs(iOldestNotEvicted int) { lenToKeep := chunkDescEvictionFactor * (len(s.chunkDescs) - iOldestNotEvicted) if lenToKeep < len(s.chunkDescs) { s.savedFirstTime = s.firstTime() lenEvicted := len(s.chunkDescs) - lenToKeep s.chunkDescsOffset += lenEvicted s.persistWatermark -= lenEvicted chunkDescOps.WithLabelValues(evict).Add(float64(lenEvicted)) numMemChunkDescs.Sub(float64(lenEvicted)) s.chunkDescs = append( make([]*chunkDesc, 0, lenToKeep), s.chunkDescs[lenEvicted:]..., ) s.dirty = true } } // dropChunks removes chunkDescs older than t. The caller must have locked the // fingerprint of the series. func (s *memorySeries) dropChunks(t model.Time) { keepIdx := len(s.chunkDescs) for i, cd := range s.chunkDescs { if !cd.lastTime().Before(t) { keepIdx = i break } } if keepIdx > 0 { s.chunkDescs = append( make([]*chunkDesc, 0, len(s.chunkDescs)-keepIdx), s.chunkDescs[keepIdx:]..., ) s.persistWatermark -= keepIdx if s.persistWatermark < 0 { panic("dropped unpersisted chunks from memory") } if s.chunkDescsOffset != -1 { s.chunkDescsOffset += keepIdx } numMemChunkDescs.Sub(float64(keepIdx)) s.dirty = true } } // preloadChunks is an internal helper method. func (s *memorySeries) preloadChunks( indexes []int, fp model.Fingerprint, mss *memorySeriesStorage, ) ([]*chunkDesc, SeriesIterator, error) { loadIndexes := []int{} pinnedChunkDescs := make([]*chunkDesc, 0, len(indexes)) for _, idx := range indexes { cd := s.chunkDescs[idx] pinnedChunkDescs = append(pinnedChunkDescs, cd) cd.pin(mss.evictRequests) // Have to pin everything first to prevent immediate eviction on chunk loading. if cd.isEvicted() { loadIndexes = append(loadIndexes, idx) } } chunkOps.WithLabelValues(pin).Add(float64(len(pinnedChunkDescs))) if len(loadIndexes) > 0 { if s.chunkDescsOffset == -1 { panic("requested loading chunks from persistence in a situation where we must not have persisted data for chunk descriptors in memory") } chunks, err := mss.loadChunks(fp, loadIndexes, s.chunkDescsOffset) if err != nil { // Unpin the chunks since we won't return them as pinned chunks now. for _, cd := range pinnedChunkDescs { cd.unpin(mss.evictRequests) } chunkOps.WithLabelValues(unpin).Add(float64(len(pinnedChunkDescs))) return nil, nopIter, err } for i, c := range chunks { s.chunkDescs[loadIndexes[i]].setChunk(c) } } if !s.headChunkClosed && indexes[len(indexes)-1] == len(s.chunkDescs)-1 { s.headChunkUsedByIterator = true } iter := &boundedIterator{ it: s.newIterator(pinnedChunkDescs), start: model.Now().Add(-mss.dropAfter), } return pinnedChunkDescs, iter, nil } // newIterator returns a new SeriesIterator for the provided chunkDescs (which // must be pinned). // // The caller must have locked the fingerprint of the memorySeries. func (s *memorySeries) newIterator(pinnedChunkDescs []*chunkDesc) SeriesIterator { chunks := make([]chunk, 0, len(pinnedChunkDescs)) for _, cd := range pinnedChunkDescs { // It's OK to directly access cd.c here (without locking) as the // series FP is locked and the chunk is pinned. chunks = append(chunks, cd.c) } return &memorySeriesIterator{ chunks: chunks, chunkIts: make([]chunkIterator, len(chunks)), } } // preloadChunksForRange loads chunks for the given range from the persistence. // The caller must have locked the fingerprint of the series. func (s *memorySeries) preloadChunksForRange( fp model.Fingerprint, from model.Time, through model.Time, lastSampleOnly bool, mss *memorySeriesStorage, ) ([]*chunkDesc, SeriesIterator, error) { // If we have to preload for only one sample, and we have a // lastSamplePair in the series, and thas last samplePair is in the // interval, just take it in a singleSampleSeriesIterator. No need to // pin or load anything. if lastSampleOnly { lastSample := s.lastSamplePair() if !through.Before(lastSample.Timestamp) && !from.After(lastSample.Timestamp) && lastSample != ZeroSamplePair { iter := &boundedIterator{ it: &singleSampleSeriesIterator{samplePair: lastSample}, start: model.Now().Add(-mss.dropAfter), } return nil, iter, nil } } firstChunkDescTime := model.Latest if len(s.chunkDescs) > 0 { firstChunkDescTime = s.chunkDescs[0].firstTime() } if s.chunkDescsOffset != 0 && from.Before(firstChunkDescTime) { cds, err := mss.loadChunkDescs(fp, s.persistWatermark) if err != nil { return nil, nopIter, err } s.chunkDescs = append(cds, s.chunkDescs...) s.chunkDescsOffset = 0 s.persistWatermark += len(cds) firstChunkDescTime = s.chunkDescs[0].firstTime() } if len(s.chunkDescs) == 0 || through.Before(firstChunkDescTime) { return nil, nopIter, nil } // Find first chunk with start time after "from". fromIdx := sort.Search(len(s.chunkDescs), func(i int) bool { return s.chunkDescs[i].firstTime().After(from) }) // Find first chunk with start time after "through". throughIdx := sort.Search(len(s.chunkDescs), func(i int) bool { return s.chunkDescs[i].firstTime().After(through) }) if fromIdx == len(s.chunkDescs) { // Even the last chunk starts before "from". Find out if the // series ends before "from" and we don't need to do anything. if s.chunkDescs[len(s.chunkDescs)-1].lastTime().Before(from) { return nil, nopIter, nil } } if fromIdx > 0 { fromIdx-- } if throughIdx == len(s.chunkDescs) { throughIdx-- } pinIndexes := make([]int, 0, throughIdx-fromIdx+1) for i := fromIdx; i <= throughIdx; i++ { pinIndexes = append(pinIndexes, i) } return s.preloadChunks(pinIndexes, fp, mss) } // head returns a pointer to the head chunk descriptor. The caller must have // locked the fingerprint of the memorySeries. This method will panic if this // series has no chunk descriptors. func (s *memorySeries) head() *chunkDesc { return s.chunkDescs[len(s.chunkDescs)-1] } // firstTime returns the timestamp of the first sample in the series. // // The caller must have locked the fingerprint of the memorySeries. func (s *memorySeries) firstTime() model.Time { if s.chunkDescsOffset == 0 && len(s.chunkDescs) > 0 { return s.chunkDescs[0].firstTime() } return s.savedFirstTime } // lastSamplePair returns the last ingested SamplePair. It returns // ZeroSamplePair if this memorySeries has never received a sample (via the add // method), which is the case for freshly unarchived series or newly created // ones and also for all series after a server restart. However, in that case, // series will most likely be considered stale anyway. // // The caller must have locked the fingerprint of the memorySeries. func (s *memorySeries) lastSamplePair() model.SamplePair { if !s.lastSampleValueSet { return ZeroSamplePair } return model.SamplePair{ Timestamp: s.lastTime, Value: s.lastSampleValue, } } // chunksToPersist returns a slice of chunkDescs eligible for persistence. It's // the caller's responsibility to actually persist the returned chunks // afterwards. The method sets the persistWatermark and the dirty flag // accordingly. // // The caller must have locked the fingerprint of the series. func (s *memorySeries) chunksToPersist() []*chunkDesc { newWatermark := len(s.chunkDescs) if !s.headChunkClosed { newWatermark-- } if newWatermark == s.persistWatermark { return nil } cds := s.chunkDescs[s.persistWatermark:newWatermark] s.dirty = true s.persistWatermark = newWatermark return cds } // memorySeriesIterator implements SeriesIterator. type memorySeriesIterator struct { chunkIt chunkIterator // Last chunkIterator used by ValueAtOrBeforeTime. chunkIts []chunkIterator // Caches chunkIterators. chunks []chunk } // ValueAtOrBeforeTime implements SeriesIterator. func (it *memorySeriesIterator) ValueAtOrBeforeTime(t model.Time) model.SamplePair { // The most common case. We are iterating through a chunk. if it.chunkIt != nil && it.chunkIt.contains(t) { return it.chunkIt.valueAtOrBeforeTime(t) } if len(it.chunks) == 0 { return ZeroSamplePair } // Find the last chunk where firstTime() is before or equal to t. l := len(it.chunks) - 1 i := sort.Search(len(it.chunks), func(i int) bool { return !it.chunks[l-i].firstTime().After(t) }) if i == len(it.chunks) { // Even the first chunk starts after t. return ZeroSamplePair } it.chunkIt = it.chunkIterator(l - i) return it.chunkIt.valueAtOrBeforeTime(t) } // BoundaryValues implements SeriesIterator. func (it *memorySeriesIterator) BoundaryValues(in metric.Interval) []model.SamplePair { // Find the first chunk for which the first sample is within the interval. i := sort.Search(len(it.chunks), func(i int) bool { return !it.chunks[i].firstTime().Before(in.OldestInclusive) }) // Only now check the last timestamp of the previous chunk (which is // fairly expensive). if i > 0 && !it.chunkIterator(i-1).lastTimestamp().Before(in.OldestInclusive) { i-- } values := make([]model.SamplePair, 0, 2) for j, c := range it.chunks[i:] { if c.firstTime().After(in.NewestInclusive) { if len(values) == 1 { // We found the first value before but are now // already past the last value. The value we // want must be the last value of the previous // chunk. So backtrack... chunkIt := it.chunkIterator(i + j - 1) values = append(values, model.SamplePair{ Timestamp: chunkIt.lastTimestamp(), Value: chunkIt.lastSampleValue(), }) } break } chunkIt := it.chunkIterator(i + j) if len(values) == 0 { for s := range chunkIt.values() { if len(values) == 0 && !s.Timestamp.Before(in.OldestInclusive) { values = append(values, *s) // We cannot just break out here as we have to consume all // the values to not leak a goroutine. This could obviously // be made much neater with more suitable methods in the chunk // interface. But currently, BoundaryValues is only used by // `predict_linear` so we would pollute the chunk interface // unduly just for one single corner case. Plus, even that use // of BoundaryValues is suboptimal and should be replaced. } } } if chunkIt.lastTimestamp().After(in.NewestInclusive) { s := chunkIt.valueAtOrBeforeTime(in.NewestInclusive) if s.Timestamp != model.Earliest { values = append(values, s) } break } } if len(values) == 1 { // We found exactly one value. In that case, add the most recent we know. chunkIt := it.chunkIterator(len(it.chunks) - 1) values = append(values, model.SamplePair{ Timestamp: chunkIt.lastTimestamp(), Value: chunkIt.lastSampleValue(), }) } if len(values) == 2 && values[0].Equal(&values[1]) { return values[:1] } return values } // RangeValues implements SeriesIterator. func (it *memorySeriesIterator) RangeValues(in metric.Interval) []model.SamplePair { // Find the first chunk for which the first sample is within the interval. i := sort.Search(len(it.chunks), func(i int) bool { return !it.chunks[i].firstTime().Before(in.OldestInclusive) }) // Only now check the last timestamp of the previous chunk (which is // fairly expensive). if i > 0 && !it.chunkIterator(i-1).lastTimestamp().Before(in.OldestInclusive) { i-- } values := []model.SamplePair{} for j, c := range it.chunks[i:] { if c.firstTime().After(in.NewestInclusive) { break } values = append(values, it.chunkIterator(i+j).rangeValues(in)...) } return values } // chunkIterator returns the chunkIterator for the chunk at position i (and // creates it if needed). func (it *memorySeriesIterator) chunkIterator(i int) chunkIterator { chunkIt := it.chunkIts[i] if chunkIt == nil { chunkIt = it.chunks[i].newIterator() it.chunkIts[i] = chunkIt } return chunkIt } // singleSampleSeriesIterator implements Series Iterator. It is a "shortcut // iterator" that returns a single samplee only. The sample is saved in the // iterator itself, so no chunks need to be pinned. type singleSampleSeriesIterator struct { samplePair model.SamplePair } // ValueAtTime implements SeriesIterator. func (it *singleSampleSeriesIterator) ValueAtOrBeforeTime(t model.Time) model.SamplePair { if it.samplePair.Timestamp.After(t) { return ZeroSamplePair } return it.samplePair } // BoundaryValues implements SeriesIterator. func (it *singleSampleSeriesIterator) BoundaryValues(in metric.Interval) []model.SamplePair { return it.RangeValues(in) } // RangeValues implements SeriesIterator. func (it *singleSampleSeriesIterator) RangeValues(in metric.Interval) []model.SamplePair { if it.samplePair.Timestamp.After(in.NewestInclusive) || it.samplePair.Timestamp.Before(in.OldestInclusive) { return []model.SamplePair{} } return []model.SamplePair{it.samplePair} } // nopSeriesIterator implements Series Iterator. It never returns any values. type nopSeriesIterator struct{} // ValueAtTime implements SeriesIterator. func (i nopSeriesIterator) ValueAtOrBeforeTime(t model.Time) model.SamplePair { return ZeroSamplePair } // BoundaryValues implements SeriesIterator. func (i nopSeriesIterator) BoundaryValues(in metric.Interval) []model.SamplePair { return []model.SamplePair{} } // RangeValues implements SeriesIterator. func (i nopSeriesIterator) RangeValues(in metric.Interval) []model.SamplePair { return []model.SamplePair{} } var nopIter nopSeriesIterator // A nopSeriesIterator for convenience. Can be shared.