// Copyright 2021 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package histogram import ( "fmt" "strings" ) // FloatHistogram is similar to Histogram but uses float64 for all // counts. Additionally, bucket counts are absolute and not deltas. // // A FloatHistogram is needed by PromQL to handle operations that might result // in fractional counts. Since the counts in a histogram are unlikely to be too // large to be represented precisely by a float64, a FloatHistogram can also be // used to represent a histogram with integer counts and thus serves as a more // generalized representation. type FloatHistogram struct { // Counter reset information. CounterResetHint CounterResetHint // Currently valid schema numbers are -4 <= n <= 8. They are all for // base-2 bucket schemas, where 1 is a bucket boundary in each case, and // then each power of two is divided into 2^n logarithmic buckets. Or // in other words, each bucket boundary is the previous boundary times // 2^(2^-n). Schema int32 // Width of the zero bucket. ZeroThreshold float64 // Observations falling into the zero bucket. Must be zero or positive. ZeroCount float64 // Total number of observations. Must be zero or positive. Count float64 // Sum of observations. This is also used as the stale marker. Sum float64 // Spans for positive and negative buckets (see Span below). PositiveSpans, NegativeSpans []Span // Observation counts in buckets. Each represents an absolute count and // must be zero or positive. PositiveBuckets, NegativeBuckets []float64 } // Copy returns a deep copy of the Histogram. func (h *FloatHistogram) Copy() *FloatHistogram { c := *h if h.PositiveSpans != nil { c.PositiveSpans = make([]Span, len(h.PositiveSpans)) copy(c.PositiveSpans, h.PositiveSpans) } if h.NegativeSpans != nil { c.NegativeSpans = make([]Span, len(h.NegativeSpans)) copy(c.NegativeSpans, h.NegativeSpans) } if h.PositiveBuckets != nil { c.PositiveBuckets = make([]float64, len(h.PositiveBuckets)) copy(c.PositiveBuckets, h.PositiveBuckets) } if h.NegativeBuckets != nil { c.NegativeBuckets = make([]float64, len(h.NegativeBuckets)) copy(c.NegativeBuckets, h.NegativeBuckets) } return &c } // CopyToSchema works like Copy, but the returned deep copy has the provided // target schema, which must be ≤ the original schema (i.e. it must have a lower // resolution). func (h *FloatHistogram) CopyToSchema(targetSchema int32) *FloatHistogram { if targetSchema == h.Schema { // Fast path. return h.Copy() } if targetSchema > h.Schema { panic(fmt.Errorf("cannot copy from schema %d to %d", h.Schema, targetSchema)) } c := FloatHistogram{ Schema: targetSchema, ZeroThreshold: h.ZeroThreshold, ZeroCount: h.ZeroCount, Count: h.Count, Sum: h.Sum, } // TODO(beorn7): This is a straight-forward implementation using merging // iterators for the original buckets and then adding one merged bucket // after another to the newly created FloatHistogram. It's well possible // that a more involved implementation performs much better, which we // could do if this code path turns out to be performance-critical. var iInSpan, index int32 for iSpan, iBucket, it := -1, -1, h.floatBucketIterator(true, 0, targetSchema); it.Next(); { b := it.At() c.PositiveSpans, c.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket( b, c.PositiveSpans, c.PositiveBuckets, iSpan, iBucket, iInSpan, index, ) index = b.Index } for iSpan, iBucket, it := -1, -1, h.floatBucketIterator(false, 0, targetSchema); it.Next(); { b := it.At() c.NegativeSpans, c.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket( b, c.NegativeSpans, c.NegativeBuckets, iSpan, iBucket, iInSpan, index, ) index = b.Index } return &c } // String returns a string representation of the Histogram. func (h *FloatHistogram) String() string { var sb strings.Builder fmt.Fprintf(&sb, "{count:%g, sum:%g", h.Count, h.Sum) var nBuckets []Bucket[float64] for it := h.NegativeBucketIterator(); it.Next(); { bucket := it.At() if bucket.Count != 0 { nBuckets = append(nBuckets, it.At()) } } for i := len(nBuckets) - 1; i >= 0; i-- { fmt.Fprintf(&sb, ", %s", nBuckets[i].String()) } if h.ZeroCount != 0 { fmt.Fprintf(&sb, ", %s", h.ZeroBucket().String()) } for it := h.PositiveBucketIterator(); it.Next(); { bucket := it.At() if bucket.Count != 0 { fmt.Fprintf(&sb, ", %s", bucket.String()) } } sb.WriteRune('}') return sb.String() } // ZeroBucket returns the zero bucket. func (h *FloatHistogram) ZeroBucket() Bucket[float64] { return Bucket[float64]{ Lower: -h.ZeroThreshold, Upper: h.ZeroThreshold, LowerInclusive: true, UpperInclusive: true, Count: h.ZeroCount, } } // Scale scales the FloatHistogram by the provided factor, i.e. it scales all // bucket counts including the zero bucket and the count and the sum of // observations. The bucket layout stays the same. This method changes the // receiving histogram directly (rather than acting on a copy). It returns a // pointer to the receiving histogram for convenience. func (h *FloatHistogram) Scale(factor float64) *FloatHistogram { h.ZeroCount *= factor h.Count *= factor h.Sum *= factor for i := range h.PositiveBuckets { h.PositiveBuckets[i] *= factor } for i := range h.NegativeBuckets { h.NegativeBuckets[i] *= factor } return h } // Add adds the provided other histogram to the receiving histogram. Count, Sum, // and buckets from the other histogram are added to the corresponding // components of the receiving histogram. Buckets in the other histogram that do // not exist in the receiving histogram are inserted into the latter. The // resulting histogram might have buckets with a population of zero or directly // adjacent spans (offset=0). To normalize those, call the Compact method. // // The method reconciles differences in the zero threshold and in the schema, // but the schema of the other histogram must be ≥ the schema of the receiving // histogram (i.e. must have an equal or higher resolution). This means that the // schema of the receiving histogram won't change. Its zero threshold, however, // will change if needed. The other histogram will not be modified in any case. // // This method returns a pointer to the receiving histogram for convenience. func (h *FloatHistogram) Add(other *FloatHistogram) *FloatHistogram { switch { case other.CounterResetHint == h.CounterResetHint: // Adding apples to apples, all good. No need to change anything. case h.CounterResetHint == GaugeType: // Adding something else to a gauge. That's probably OK. Outcome is a gauge. // Nothing to do since the receiver is already marked as gauge. case other.CounterResetHint == GaugeType: // Similar to before, but this time the receiver is "something else" and we have to change it to gauge. h.CounterResetHint = GaugeType case h.CounterResetHint == UnknownCounterReset: // With the receiver's CounterResetHint being "unknown", this could still be legitimate // if the caller knows what they are doing. Outcome is then again "unknown". // No need to do anything since the receiver's CounterResetHint is already "unknown". case other.CounterResetHint == UnknownCounterReset: // Similar to before, but now we have to set the receiver's CounterResetHint to "unknown". h.CounterResetHint = UnknownCounterReset default: // All other cases shouldn't actually happen. // They are a direct collision of CounterReset and NotCounterReset. // Conservatively set the CounterResetHint to "unknown" and isse a warning. h.CounterResetHint = UnknownCounterReset // TODO(trevorwhitney): Actually issue the warning as soon as the plumbing for it is in place } otherZeroCount := h.reconcileZeroBuckets(other) h.ZeroCount += otherZeroCount h.Count += other.Count h.Sum += other.Sum // TODO(beorn7): If needed, this can be optimized by inspecting the // spans in other and create missing buckets in h in batches. var iInSpan, index int32 for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(true, h.ZeroThreshold, h.Schema); it.Next(); { b := it.At() h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket( b, h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan, index, ) index = b.Index } for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(false, h.ZeroThreshold, h.Schema); it.Next(); { b := it.At() h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket( b, h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan, index, ) index = b.Index } return h } // Sub works like Add but subtracts the other histogram. func (h *FloatHistogram) Sub(other *FloatHistogram) *FloatHistogram { otherZeroCount := h.reconcileZeroBuckets(other) h.ZeroCount -= otherZeroCount h.Count -= other.Count h.Sum -= other.Sum // TODO(beorn7): If needed, this can be optimized by inspecting the // spans in other and create missing buckets in h in batches. var iInSpan, index int32 for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(true, h.ZeroThreshold, h.Schema); it.Next(); { b := it.At() b.Count *= -1 h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket( b, h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan, index, ) index = b.Index } for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(false, h.ZeroThreshold, h.Schema); it.Next(); { b := it.At() b.Count *= -1 h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket( b, h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan, index, ) index = b.Index } return h } // Equals returns true if the given float histogram matches exactly. // Exact match is when there are no new buckets (even empty) and no missing buckets, // and all the bucket values match. Spans can have different empty length spans in between, // but they must represent the same bucket layout to match. func (h *FloatHistogram) Equals(h2 *FloatHistogram) bool { if h2 == nil { return false } if h.Schema != h2.Schema || h.ZeroThreshold != h2.ZeroThreshold || h.ZeroCount != h2.ZeroCount || h.Count != h2.Count || h.Sum != h2.Sum { return false } if !spansMatch(h.PositiveSpans, h2.PositiveSpans) { return false } if !spansMatch(h.NegativeSpans, h2.NegativeSpans) { return false } if !bucketsMatch(h.PositiveBuckets, h2.PositiveBuckets) { return false } if !bucketsMatch(h.NegativeBuckets, h2.NegativeBuckets) { return false } return true } // addBucket takes the "coordinates" of the last bucket that was handled and // adds the provided bucket after it. If a corresponding bucket exists, the // count is added. If not, the bucket is inserted. The updated slices and the // coordinates of the inserted or added-to bucket are returned. func addBucket( b Bucket[float64], spans []Span, buckets []float64, iSpan, iBucket int, iInSpan, index int32, ) ( newSpans []Span, newBuckets []float64, newISpan, newIBucket int, newIInSpan int32, ) { if iSpan == -1 { // First add, check if it is before all spans. if len(spans) == 0 || spans[0].Offset > b.Index { // Add bucket before all others. buckets = append(buckets, 0) copy(buckets[1:], buckets) buckets[0] = b.Count if len(spans) > 0 && spans[0].Offset == b.Index+1 { spans[0].Length++ spans[0].Offset-- return spans, buckets, 0, 0, 0 } spans = append(spans, Span{}) copy(spans[1:], spans) spans[0] = Span{Offset: b.Index, Length: 1} if len(spans) > 1 { // Convert the absolute offset in the formerly // first span to a relative offset. spans[1].Offset -= b.Index + 1 } return spans, buckets, 0, 0, 0 } if spans[0].Offset == b.Index { // Just add to first bucket. buckets[0] += b.Count return spans, buckets, 0, 0, 0 } // We are behind the first bucket, so set everything to the // first bucket and continue normally. iSpan, iBucket, iInSpan = 0, 0, 0 index = spans[0].Offset } deltaIndex := b.Index - index for { remainingInSpan := int32(spans[iSpan].Length) - iInSpan if deltaIndex < remainingInSpan { // Bucket is in current span. iBucket += int(deltaIndex) iInSpan += deltaIndex buckets[iBucket] += b.Count return spans, buckets, iSpan, iBucket, iInSpan } deltaIndex -= remainingInSpan iBucket += int(remainingInSpan) iSpan++ if iSpan == len(spans) || deltaIndex < spans[iSpan].Offset { // Bucket is in gap behind previous span (or there are no further spans). buckets = append(buckets, 0) copy(buckets[iBucket+1:], buckets[iBucket:]) buckets[iBucket] = b.Count if deltaIndex == 0 { // Directly after previous span, extend previous span. if iSpan < len(spans) { spans[iSpan].Offset-- } iSpan-- iInSpan = int32(spans[iSpan].Length) spans[iSpan].Length++ return spans, buckets, iSpan, iBucket, iInSpan } if iSpan < len(spans) && deltaIndex == spans[iSpan].Offset-1 { // Directly before next span, extend next span. iInSpan = 0 spans[iSpan].Offset-- spans[iSpan].Length++ return spans, buckets, iSpan, iBucket, iInSpan } // No next span, or next span is not directly adjacent to new bucket. // Add new span. iInSpan = 0 if iSpan < len(spans) { spans[iSpan].Offset -= deltaIndex + 1 } spans = append(spans, Span{}) copy(spans[iSpan+1:], spans[iSpan:]) spans[iSpan] = Span{Length: 1, Offset: deltaIndex} return spans, buckets, iSpan, iBucket, iInSpan } // Try start of next span. deltaIndex -= spans[iSpan].Offset iInSpan = 0 } } // Compact eliminates empty buckets at the beginning and end of each span, then // merges spans that are consecutive or at most maxEmptyBuckets apart, and // finally splits spans that contain more consecutive empty buckets than // maxEmptyBuckets. (The actual implementation might do something more efficient // but with the same result.) The compaction happens "in place" in the // receiving histogram, but a pointer to it is returned for convenience. // // The ideal value for maxEmptyBuckets depends on circumstances. The motivation // to set maxEmptyBuckets > 0 is the assumption that is is less overhead to // represent very few empty buckets explicitly within one span than cutting the // one span into two to treat the empty buckets as a gap between the two spans, // both in terms of storage requirement as well as in terms of encoding and // decoding effort. However, the tradeoffs are subtle. For one, they are // different in the exposition format vs. in a TSDB chunk vs. for the in-memory // representation as Go types. In the TSDB, as an additional aspects, the span // layout is only stored once per chunk, while many histograms with that same // chunk layout are then only stored with their buckets (so that even a single // empty bucket will be stored many times). // // For the Go types, an additional Span takes 8 bytes. Similarly, an additional // bucket takes 8 bytes. Therefore, with a single separating empty bucket, both // options have the same storage requirement, but the single-span solution is // easier to iterate through. Still, the safest bet is to use maxEmptyBuckets==0 // and only use a larger number if you know what you are doing. func (h *FloatHistogram) Compact(maxEmptyBuckets int) *FloatHistogram { h.PositiveBuckets, h.PositiveSpans = compactBuckets( h.PositiveBuckets, h.PositiveSpans, maxEmptyBuckets, false, ) h.NegativeBuckets, h.NegativeSpans = compactBuckets( h.NegativeBuckets, h.NegativeSpans, maxEmptyBuckets, false, ) return h } // DetectReset returns true if the receiving histogram is missing any buckets // that have a non-zero population in the provided previous histogram. It also // returns true if any count (in any bucket, in the zero count, or in the count // of observations, but NOT the sum of observations) is smaller in the receiving // histogram compared to the previous histogram. Otherwise, it returns false. // // This method will shortcut to true if a CounterReset is detected, and shortcut // to false if NotCounterReset is detected. Otherwise it will do the work to detect // a reset. // // Special behavior in case the Schema or the ZeroThreshold are not the same in // both histograms: // // - A decrease of the ZeroThreshold or an increase of the Schema (i.e. an // increase of resolution) can only happen together with a reset. Thus, the // method returns true in either case. // // - Upon an increase of the ZeroThreshold, the buckets in the previous // histogram that fall within the new ZeroThreshold are added to the ZeroCount // of the previous histogram (without mutating the provided previous // histogram). The scenario that a populated bucket of the previous histogram // is partially within, partially outside of the new ZeroThreshold, can only // happen together with a counter reset and therefore shortcuts to returning // true. // // - Upon a decrease of the Schema, the buckets of the previous histogram are // merged so that they match the new, lower-resolution schema (again without // mutating the provided previous histogram). func (h *FloatHistogram) DetectReset(previous *FloatHistogram) bool { if h.CounterResetHint == CounterReset { return true } if h.CounterResetHint == NotCounterReset { return false } // In all other cases of CounterResetHint (UnknownCounterReset and GaugeType), // we go on as we would otherwise, for reasons explained below. // // If the CounterResetHint is UnknownCounterReset, we do not know yet if this histogram comes // with a counter reset. Therefore, we have to do all the detailed work to find out if there // is a counter reset or not. // We do the same if the CounterResetHint is GaugeType, which should not happen, but PromQL still // allows the user to apply functions to gauge histograms that are only meant for counter histograms. // In this case, we treat the gauge histograms as a counter histograms // (and we plan to return a warning about it to the user). if h.Count < previous.Count { return true } if h.Schema > previous.Schema { return true } if h.ZeroThreshold < previous.ZeroThreshold { // ZeroThreshold decreased. return true } previousZeroCount, newThreshold := previous.zeroCountForLargerThreshold(h.ZeroThreshold) if newThreshold != h.ZeroThreshold { // ZeroThreshold is within a populated bucket in previous // histogram. return true } if h.ZeroCount < previousZeroCount { return true } currIt := h.floatBucketIterator(true, h.ZeroThreshold, h.Schema) prevIt := previous.floatBucketIterator(true, h.ZeroThreshold, h.Schema) if detectReset(currIt, prevIt) { return true } currIt = h.floatBucketIterator(false, h.ZeroThreshold, h.Schema) prevIt = previous.floatBucketIterator(false, h.ZeroThreshold, h.Schema) return detectReset(currIt, prevIt) } func detectReset(currIt, prevIt BucketIterator[float64]) bool { if !prevIt.Next() { return false // If no buckets in previous histogram, nothing can be reset. } prevBucket := prevIt.At() if !currIt.Next() { // No bucket in current, but at least one in previous // histogram. Check if any of those are non-zero, in which case // this is a reset. for { if prevBucket.Count != 0 { return true } if !prevIt.Next() { return false } } } currBucket := currIt.At() for { // Forward currIt until we find the bucket corresponding to prevBucket. for currBucket.Index < prevBucket.Index { if !currIt.Next() { // Reached end of currIt early, therefore // previous histogram has a bucket that the // current one does not have. Unlass all // remaining buckets in the previous histogram // are unpopulated, this is a reset. for { if prevBucket.Count != 0 { return true } if !prevIt.Next() { return false } } } currBucket = currIt.At() } if currBucket.Index > prevBucket.Index { // Previous histogram has a bucket the current one does // not have. If it's populated, it's a reset. if prevBucket.Count != 0 { return true } } else { // We have reached corresponding buckets in both iterators. // We can finally compare the counts. if currBucket.Count < prevBucket.Count { return true } } if !prevIt.Next() { // Reached end of prevIt without finding offending buckets. return false } prevBucket = prevIt.At() } } // PositiveBucketIterator returns a BucketIterator to iterate over all positive // buckets in ascending order (starting next to the zero bucket and going up). func (h *FloatHistogram) PositiveBucketIterator() BucketIterator[float64] { return h.floatBucketIterator(true, 0, h.Schema) } // NegativeBucketIterator returns a BucketIterator to iterate over all negative // buckets in descending order (starting next to the zero bucket and going // down). func (h *FloatHistogram) NegativeBucketIterator() BucketIterator[float64] { return h.floatBucketIterator(false, 0, h.Schema) } // PositiveReverseBucketIterator returns a BucketIterator to iterate over all // positive buckets in descending order (starting at the highest bucket and // going down towards the zero bucket). func (h *FloatHistogram) PositiveReverseBucketIterator() BucketIterator[float64] { return newReverseFloatBucketIterator(h.PositiveSpans, h.PositiveBuckets, h.Schema, true) } // NegativeReverseBucketIterator returns a BucketIterator to iterate over all // negative buckets in ascending order (starting at the lowest bucket and going // up towards the zero bucket). func (h *FloatHistogram) NegativeReverseBucketIterator() BucketIterator[float64] { return newReverseFloatBucketIterator(h.NegativeSpans, h.NegativeBuckets, h.Schema, false) } // AllBucketIterator returns a BucketIterator to iterate over all negative, // zero, and positive buckets in ascending order (starting at the lowest bucket // and going up). If the highest negative bucket or the lowest positive bucket // overlap with the zero bucket, their upper or lower boundary, respectively, is // set to the zero threshold. func (h *FloatHistogram) AllBucketIterator() BucketIterator[float64] { return &allFloatBucketIterator{ h: h, negIter: h.NegativeReverseBucketIterator(), posIter: h.PositiveBucketIterator(), state: -1, } } // zeroCountForLargerThreshold returns what the histogram's zero count would be // if the ZeroThreshold had the provided larger (or equal) value. If the // provided value is less than the histogram's ZeroThreshold, the method panics. // If the largerThreshold ends up within a populated bucket of the histogram, it // is adjusted upwards to the lower limit of that bucket (all in terms of // absolute values) and that bucket's count is included in the returned // count. The adjusted threshold is returned, too. func (h *FloatHistogram) zeroCountForLargerThreshold(largerThreshold float64) (count, threshold float64) { // Fast path. if largerThreshold == h.ZeroThreshold { return h.ZeroCount, largerThreshold } if largerThreshold < h.ZeroThreshold { panic(fmt.Errorf("new threshold %f is less than old threshold %f", largerThreshold, h.ZeroThreshold)) } outer: for { count = h.ZeroCount i := h.PositiveBucketIterator() for i.Next() { b := i.At() if b.Lower >= largerThreshold { break } count += b.Count // Bucket to be merged into zero bucket. if b.Upper > largerThreshold { // New threshold ended up within a bucket. if it's // populated, we need to adjust largerThreshold before // we are done here. if b.Count != 0 { largerThreshold = b.Upper } break } } i = h.NegativeBucketIterator() for i.Next() { b := i.At() if b.Upper <= -largerThreshold { break } count += b.Count // Bucket to be merged into zero bucket. if b.Lower < -largerThreshold { // New threshold ended up within a bucket. If // it's populated, we need to adjust // largerThreshold and have to redo the whole // thing because the treatment of the positive // buckets is invalid now. if b.Count != 0 { largerThreshold = -b.Lower continue outer } break } } return count, largerThreshold } } // trimBucketsInZeroBucket removes all buckets that are within the zero // bucket. It assumes that the zero threshold is at a bucket boundary and that // the counts in the buckets to remove are already part of the zero count. func (h *FloatHistogram) trimBucketsInZeroBucket() { i := h.PositiveBucketIterator() bucketsIdx := 0 for i.Next() { b := i.At() if b.Lower >= h.ZeroThreshold { break } h.PositiveBuckets[bucketsIdx] = 0 bucketsIdx++ } i = h.NegativeBucketIterator() bucketsIdx = 0 for i.Next() { b := i.At() if b.Upper <= -h.ZeroThreshold { break } h.NegativeBuckets[bucketsIdx] = 0 bucketsIdx++ } // We are abusing Compact to trim the buckets set to zero // above. Premature compacting could cause additional cost, but this // code path is probably rarely used anyway. h.Compact(0) } // reconcileZeroBuckets finds a zero bucket large enough to include the zero // buckets of both histograms (the receiving histogram and the other histogram) // with a zero threshold that is not within a populated bucket in either // histogram. This method modifies the receiving histogram accourdingly, but // leaves the other histogram as is. Instead, it returns the zero count the // other histogram would have if it were modified. func (h *FloatHistogram) reconcileZeroBuckets(other *FloatHistogram) float64 { otherZeroCount := other.ZeroCount otherZeroThreshold := other.ZeroThreshold for otherZeroThreshold != h.ZeroThreshold { if h.ZeroThreshold > otherZeroThreshold { otherZeroCount, otherZeroThreshold = other.zeroCountForLargerThreshold(h.ZeroThreshold) } if otherZeroThreshold > h.ZeroThreshold { h.ZeroCount, h.ZeroThreshold = h.zeroCountForLargerThreshold(otherZeroThreshold) h.trimBucketsInZeroBucket() } } return otherZeroCount } // floatBucketIterator is a low-level constructor for bucket iterators. // // If positive is true, the returned iterator iterates through the positive // buckets, otherwise through the negative buckets. // // If absoluteStartValue is < the lowest absolute value of any upper bucket // boundary, the iterator starts with the first bucket. Otherwise, it will skip // all buckets with an absolute value of their upper boundary ≤ // absoluteStartValue. // // targetSchema must be ≤ the schema of FloatHistogram (and of course within the // legal values for schemas in general). The buckets are merged to match the // targetSchema prior to iterating (without mutating FloatHistogram). func (h *FloatHistogram) floatBucketIterator( positive bool, absoluteStartValue float64, targetSchema int32, ) *floatBucketIterator { if targetSchema > h.Schema { panic(fmt.Errorf("cannot merge from schema %d to %d", h.Schema, targetSchema)) } i := &floatBucketIterator{ baseBucketIterator: baseBucketIterator[float64, float64]{ schema: h.Schema, positive: positive, }, targetSchema: targetSchema, absoluteStartValue: absoluteStartValue, } if positive { i.spans = h.PositiveSpans i.buckets = h.PositiveBuckets } else { i.spans = h.NegativeSpans i.buckets = h.NegativeBuckets } return i } // reverseFloatbucketiterator is a low-level constructor for reverse bucket iterators. func newReverseFloatBucketIterator( spans []Span, buckets []float64, schema int32, positive bool, ) *reverseFloatBucketIterator { r := &reverseFloatBucketIterator{ baseBucketIterator: baseBucketIterator[float64, float64]{ schema: schema, spans: spans, buckets: buckets, positive: positive, }, } r.spansIdx = len(r.spans) - 1 r.bucketsIdx = len(r.buckets) - 1 if r.spansIdx >= 0 { r.idxInSpan = int32(r.spans[r.spansIdx].Length) - 1 } r.currIdx = 0 for _, s := range r.spans { r.currIdx += s.Offset + int32(s.Length) } return r } type floatBucketIterator struct { baseBucketIterator[float64, float64] targetSchema int32 // targetSchema is the schema to merge to and must be ≤ schema. origIdx int32 // The bucket index within the original schema. absoluteStartValue float64 // Never return buckets with an upper bound ≤ this value. } func (i *floatBucketIterator) Next() bool { if i.spansIdx >= len(i.spans) { return false } // Copy all of these into local variables so that we can forward to the // next bucket and then roll back if needed. origIdx, spansIdx, idxInSpan := i.origIdx, i.spansIdx, i.idxInSpan span := i.spans[spansIdx] firstPass := true i.currCount = 0 mergeLoop: // Merge together all buckets from the original schema that fall into one bucket in the targetSchema. for { if i.bucketsIdx == 0 { // Seed origIdx for the first bucket. origIdx = span.Offset } else { origIdx++ } for idxInSpan >= span.Length { // We have exhausted the current span and have to find a new // one. We even handle pathologic spans of length 0 here. idxInSpan = 0 spansIdx++ if spansIdx >= len(i.spans) { if firstPass { return false } break mergeLoop } span = i.spans[spansIdx] origIdx += span.Offset } currIdx := i.targetIdx(origIdx) switch { case firstPass: i.currIdx = currIdx firstPass = false case currIdx != i.currIdx: // Reached next bucket in targetSchema. // Do not actually forward to the next bucket, but break out. break mergeLoop } i.currCount += i.buckets[i.bucketsIdx] idxInSpan++ i.bucketsIdx++ i.origIdx, i.spansIdx, i.idxInSpan = origIdx, spansIdx, idxInSpan if i.schema == i.targetSchema { // Don't need to test the next bucket for mergeability // if we have no schema change anyway. break mergeLoop } } // Skip buckets before absoluteStartValue. // TODO(beorn7): Maybe do something more efficient than this recursive call. if getBound(i.currIdx, i.targetSchema) <= i.absoluteStartValue { return i.Next() } return true } // targetIdx returns the bucket index within i.targetSchema for the given bucket // index within i.schema. func (i *floatBucketIterator) targetIdx(idx int32) int32 { if i.schema == i.targetSchema { // Fast path for the common case. The below would yield the same // result, just with more effort. return idx } return ((idx - 1) >> (i.schema - i.targetSchema)) + 1 } type reverseFloatBucketIterator struct { baseBucketIterator[float64, float64] idxInSpan int32 // Changed from uint32 to allow negative values for exhaustion detection. } func (i *reverseFloatBucketIterator) Next() bool { i.currIdx-- if i.bucketsIdx < 0 { return false } for i.idxInSpan < 0 { // We have exhausted the current span and have to find a new // one. We'll even handle pathologic spans of length 0. i.spansIdx-- i.idxInSpan = int32(i.spans[i.spansIdx].Length) - 1 i.currIdx -= i.spans[i.spansIdx+1].Offset } i.currCount = i.buckets[i.bucketsIdx] i.bucketsIdx-- i.idxInSpan-- return true } type allFloatBucketIterator struct { h *FloatHistogram negIter, posIter BucketIterator[float64] // -1 means we are iterating negative buckets. // 0 means it is time for the zero bucket. // 1 means we are iterating positive buckets. // Anything else means iteration is over. state int8 currBucket Bucket[float64] } func (i *allFloatBucketIterator) Next() bool { switch i.state { case -1: if i.negIter.Next() { i.currBucket = i.negIter.At() if i.currBucket.Upper > -i.h.ZeroThreshold { i.currBucket.Upper = -i.h.ZeroThreshold } return true } i.state = 0 return i.Next() case 0: i.state = 1 if i.h.ZeroCount > 0 { i.currBucket = Bucket[float64]{ Lower: -i.h.ZeroThreshold, Upper: i.h.ZeroThreshold, LowerInclusive: true, UpperInclusive: true, Count: i.h.ZeroCount, // Index is irrelevant for the zero bucket. } return true } return i.Next() case 1: if i.posIter.Next() { i.currBucket = i.posIter.At() if i.currBucket.Lower < i.h.ZeroThreshold { i.currBucket.Lower = i.h.ZeroThreshold } return true } i.state = 42 return false } return false } func (i *allFloatBucketIterator) At() Bucket[float64] { return i.currBucket }