// Copyright 2016 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "context" "errors" "fmt" "math" "os" "sort" "testing" "time" "github.com/go-kit/log" "github.com/stretchr/testify/require" "go.uber.org/goleak" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/model/timestamp" "github.com/prometheus/prometheus/promql/parser" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/tsdbutil" "github.com/prometheus/prometheus/util/stats" "github.com/prometheus/prometheus/util/teststorage" ) func TestMain(m *testing.M) { goleak.VerifyTestMain(m) } func TestQueryConcurrency(t *testing.T) { maxConcurrency := 10 dir, err := os.MkdirTemp("", "test_concurrency") require.NoError(t, err) defer os.RemoveAll(dir) queryTracker := NewActiveQueryTracker(dir, maxConcurrency, nil) t.Cleanup(queryTracker.Close) opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 100 * time.Second, ActiveQueryTracker: queryTracker, } engine := NewEngine(opts) ctx, cancelCtx := context.WithCancel(context.Background()) defer cancelCtx() block := make(chan struct{}) processing := make(chan struct{}) done := make(chan int) defer close(done) f := func(context.Context) error { select { case processing <- struct{}{}: case <-done: } select { case <-block: case <-done: } return nil } for i := 0; i < maxConcurrency; i++ { q := engine.newTestQuery(f) go q.Exec(ctx) select { case <-processing: // Expected. case <-time.After(20 * time.Millisecond): require.Fail(t, "Query within concurrency threshold not being executed") } } q := engine.newTestQuery(f) go q.Exec(ctx) select { case <-processing: require.Fail(t, "Query above concurrency threshold being executed") case <-time.After(20 * time.Millisecond): // Expected. } // Terminate a running query. block <- struct{}{} select { case <-processing: // Expected. case <-time.After(20 * time.Millisecond): require.Fail(t, "Query within concurrency threshold not being executed") } // Terminate remaining queries. for i := 0; i < maxConcurrency; i++ { block <- struct{}{} } } func TestQueryTimeout(t *testing.T) { opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 5 * time.Millisecond, } engine := NewEngine(opts) ctx, cancelCtx := context.WithCancel(context.Background()) defer cancelCtx() query := engine.newTestQuery(func(ctx context.Context) error { time.Sleep(100 * time.Millisecond) return contextDone(ctx, "test statement execution") }) res := query.Exec(ctx) require.Error(t, res.Err, "expected timeout error but got none") var e ErrQueryTimeout require.True(t, errors.As(res.Err, &e), "expected timeout error but got: %s", res.Err) } const errQueryCanceled = ErrQueryCanceled("test statement execution") func TestQueryCancel(t *testing.T) { opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 10 * time.Second, } engine := NewEngine(opts) ctx, cancelCtx := context.WithCancel(context.Background()) defer cancelCtx() // Cancel a running query before it completes. block := make(chan struct{}) processing := make(chan struct{}) query1 := engine.newTestQuery(func(ctx context.Context) error { processing <- struct{}{} <-block return contextDone(ctx, "test statement execution") }) var res *Result go func() { res = query1.Exec(ctx) processing <- struct{}{} }() <-processing query1.Cancel() block <- struct{}{} <-processing require.Error(t, res.Err, "expected cancellation error for query1 but got none") require.Equal(t, errQueryCanceled, res.Err) // Canceling a query before starting it must have no effect. query2 := engine.newTestQuery(func(ctx context.Context) error { return contextDone(ctx, "test statement execution") }) query2.Cancel() res = query2.Exec(ctx) require.NoError(t, res.Err) } // errQuerier implements storage.Querier which always returns error. type errQuerier struct { err error } func (q *errQuerier) Select(bool, *storage.SelectHints, ...*labels.Matcher) storage.SeriesSet { return errSeriesSet{err: q.err} } func (*errQuerier) LabelValues(string, ...*labels.Matcher) ([]string, storage.Warnings, error) { return nil, nil, nil } func (*errQuerier) LabelNames(...*labels.Matcher) ([]string, storage.Warnings, error) { return nil, nil, nil } func (*errQuerier) Close() error { return nil } // errSeriesSet implements storage.SeriesSet which always returns error. type errSeriesSet struct { err error } func (errSeriesSet) Next() bool { return false } func (errSeriesSet) At() storage.Series { return nil } func (e errSeriesSet) Err() error { return e.err } func (e errSeriesSet) Warnings() storage.Warnings { return nil } func TestQueryError(t *testing.T) { opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 10 * time.Second, } engine := NewEngine(opts) errStorage := ErrStorage{errors.New("storage error")} queryable := storage.QueryableFunc(func(ctx context.Context, mint, maxt int64) (storage.Querier, error) { return &errQuerier{err: errStorage}, nil }) ctx, cancelCtx := context.WithCancel(context.Background()) defer cancelCtx() vectorQuery, err := engine.NewInstantQuery(ctx, queryable, nil, "foo", time.Unix(1, 0)) require.NoError(t, err) res := vectorQuery.Exec(ctx) require.Error(t, res.Err, "expected error on failed select but got none") require.True(t, errors.Is(res.Err, errStorage), "expected error doesn't match") matrixQuery, err := engine.NewInstantQuery(ctx, queryable, nil, "foo[1m]", time.Unix(1, 0)) require.NoError(t, err) res = matrixQuery.Exec(ctx) require.Error(t, res.Err, "expected error on failed select but got none") require.True(t, errors.Is(res.Err, errStorage), "expected error doesn't match") } type noopHintRecordingQueryable struct { hints []*storage.SelectHints } func (h *noopHintRecordingQueryable) Querier(context.Context, int64, int64) (storage.Querier, error) { return &hintRecordingQuerier{Querier: &errQuerier{}, h: h}, nil } type hintRecordingQuerier struct { storage.Querier h *noopHintRecordingQueryable } func (h *hintRecordingQuerier) Select(sortSeries bool, hints *storage.SelectHints, matchers ...*labels.Matcher) storage.SeriesSet { h.h.hints = append(h.h.hints, hints) return h.Querier.Select(sortSeries, hints, matchers...) } func TestSelectHintsSetCorrectly(t *testing.T) { opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 10 * time.Second, LookbackDelta: 5 * time.Second, EnableAtModifier: true, } for _, tc := range []struct { query string // All times are in milliseconds. start int64 end int64 // TODO(bwplotka): Add support for better hints when subquerying. expected []*storage.SelectHints }{ { query: "foo", start: 10000, expected: []*storage.SelectHints{ {Start: 5000, End: 10000}, }, }, { query: "foo @ 15", start: 10000, expected: []*storage.SelectHints{ {Start: 10000, End: 15000}, }, }, { query: "foo @ 1", start: 10000, expected: []*storage.SelectHints{ {Start: -4000, End: 1000}, }, }, { query: "foo[2m]", start: 200000, expected: []*storage.SelectHints{ {Start: 80000, End: 200000, Range: 120000}, }, }, { query: "foo[2m] @ 180", start: 200000, expected: []*storage.SelectHints{ {Start: 60000, End: 180000, Range: 120000}, }, }, { query: "foo[2m] @ 300", start: 200000, expected: []*storage.SelectHints{ {Start: 180000, End: 300000, Range: 120000}, }, }, { query: "foo[2m] @ 60", start: 200000, expected: []*storage.SelectHints{ {Start: -60000, End: 60000, Range: 120000}, }, }, { query: "foo[2m] offset 2m", start: 300000, expected: []*storage.SelectHints{ {Start: 60000, End: 180000, Range: 120000}, }, }, { query: "foo[2m] @ 200 offset 2m", start: 300000, expected: []*storage.SelectHints{ {Start: -40000, End: 80000, Range: 120000}, }, }, { query: "foo[2m:1s]", start: 300000, expected: []*storage.SelectHints{ {Start: 175000, End: 300000, Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s])", start: 300000, expected: []*storage.SelectHints{ {Start: 175000, End: 300000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s] @ 300)", start: 200000, expected: []*storage.SelectHints{ {Start: 175000, End: 300000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s] @ 200)", start: 200000, expected: []*storage.SelectHints{ {Start: 75000, End: 200000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s] @ 100)", start: 200000, expected: []*storage.SelectHints{ {Start: -25000, End: 100000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s] offset 10s)", start: 300000, expected: []*storage.SelectHints{ {Start: 165000, End: 290000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time((foo offset 10s)[2m:1s] offset 10s)", start: 300000, expected: []*storage.SelectHints{ {Start: 155000, End: 280000, Func: "count_over_time", Step: 1000}, }, }, { // When the @ is on the vector selector, the enclosing subquery parameters // don't affect the hint ranges. query: "count_over_time((foo @ 200 offset 10s)[2m:1s] offset 10s)", start: 300000, expected: []*storage.SelectHints{ {Start: 185000, End: 190000, Func: "count_over_time", Step: 1000}, }, }, { // When the @ is on the vector selector, the enclosing subquery parameters // don't affect the hint ranges. query: "count_over_time((foo @ 200 offset 10s)[2m:1s] @ 100 offset 10s)", start: 300000, expected: []*storage.SelectHints{ {Start: 185000, End: 190000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time((foo offset 10s)[2m:1s] @ 100 offset 10s)", start: 300000, expected: []*storage.SelectHints{ {Start: -45000, End: 80000, Func: "count_over_time", Step: 1000}, }, }, { query: "foo", start: 10000, end: 20000, expected: []*storage.SelectHints{ {Start: 5000, End: 20000, Step: 1000}, }, }, { query: "foo @ 15", start: 10000, end: 20000, expected: []*storage.SelectHints{ {Start: 10000, End: 15000, Step: 1000}, }, }, { query: "foo @ 1", start: 10000, end: 20000, expected: []*storage.SelectHints{ {Start: -4000, End: 1000, Step: 1000}, }, }, { query: "rate(foo[2m] @ 180)", start: 200000, end: 500000, expected: []*storage.SelectHints{ {Start: 60000, End: 180000, Range: 120000, Func: "rate", Step: 1000}, }, }, { query: "rate(foo[2m] @ 300)", start: 200000, end: 500000, expected: []*storage.SelectHints{ {Start: 180000, End: 300000, Range: 120000, Func: "rate", Step: 1000}, }, }, { query: "rate(foo[2m] @ 60)", start: 200000, end: 500000, expected: []*storage.SelectHints{ {Start: -60000, End: 60000, Range: 120000, Func: "rate", Step: 1000}, }, }, { query: "rate(foo[2m])", start: 200000, end: 500000, expected: []*storage.SelectHints{ {Start: 80000, End: 500000, Range: 120000, Func: "rate", Step: 1000}, }, }, { query: "rate(foo[2m] offset 2m)", start: 300000, end: 500000, expected: []*storage.SelectHints{ {Start: 60000, End: 380000, Range: 120000, Func: "rate", Step: 1000}, }, }, { query: "rate(foo[2m:1s])", start: 300000, end: 500000, expected: []*storage.SelectHints{ {Start: 175000, End: 500000, Func: "rate", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s])", start: 300000, end: 500000, expected: []*storage.SelectHints{ {Start: 175000, End: 500000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s] offset 10s)", start: 300000, end: 500000, expected: []*storage.SelectHints{ {Start: 165000, End: 490000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s] @ 300)", start: 200000, end: 500000, expected: []*storage.SelectHints{ {Start: 175000, End: 300000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s] @ 200)", start: 200000, end: 500000, expected: []*storage.SelectHints{ {Start: 75000, End: 200000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time(foo[2m:1s] @ 100)", start: 200000, end: 500000, expected: []*storage.SelectHints{ {Start: -25000, End: 100000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time((foo offset 10s)[2m:1s] offset 10s)", start: 300000, end: 500000, expected: []*storage.SelectHints{ {Start: 155000, End: 480000, Func: "count_over_time", Step: 1000}, }, }, { // When the @ is on the vector selector, the enclosing subquery parameters // don't affect the hint ranges. query: "count_over_time((foo @ 200 offset 10s)[2m:1s] offset 10s)", start: 300000, end: 500000, expected: []*storage.SelectHints{ {Start: 185000, End: 190000, Func: "count_over_time", Step: 1000}, }, }, { // When the @ is on the vector selector, the enclosing subquery parameters // don't affect the hint ranges. query: "count_over_time((foo @ 200 offset 10s)[2m:1s] @ 100 offset 10s)", start: 300000, end: 500000, expected: []*storage.SelectHints{ {Start: 185000, End: 190000, Func: "count_over_time", Step: 1000}, }, }, { query: "count_over_time((foo offset 10s)[2m:1s] @ 100 offset 10s)", start: 300000, end: 500000, expected: []*storage.SelectHints{ {Start: -45000, End: 80000, Func: "count_over_time", Step: 1000}, }, }, { query: "sum by (dim1) (foo)", start: 10000, expected: []*storage.SelectHints{ {Start: 5000, End: 10000, Func: "sum", By: true, Grouping: []string{"dim1"}}, }, }, { query: "sum without (dim1) (foo)", start: 10000, expected: []*storage.SelectHints{ {Start: 5000, End: 10000, Func: "sum", Grouping: []string{"dim1"}}, }, }, { query: "sum by (dim1) (avg_over_time(foo[1s]))", start: 10000, expected: []*storage.SelectHints{ {Start: 9000, End: 10000, Func: "avg_over_time", Range: 1000}, }, }, { query: "sum by (dim1) (max by (dim2) (foo))", start: 10000, expected: []*storage.SelectHints{ {Start: 5000, End: 10000, Func: "max", By: true, Grouping: []string{"dim2"}}, }, }, { query: "(max by (dim1) (foo))[5s:1s]", start: 10000, expected: []*storage.SelectHints{ {Start: 0, End: 10000, Func: "max", By: true, Grouping: []string{"dim1"}, Step: 1000}, }, }, { query: "(sum(http_requests{group=~\"p.*\"})+max(http_requests{group=~\"c.*\"}))[20s:5s]", start: 120000, expected: []*storage.SelectHints{ {Start: 95000, End: 120000, Func: "sum", By: true, Step: 5000}, {Start: 95000, End: 120000, Func: "max", By: true, Step: 5000}, }, }, { query: "foo @ 50 + bar @ 250 + baz @ 900", start: 100000, end: 500000, expected: []*storage.SelectHints{ {Start: 45000, End: 50000, Step: 1000}, {Start: 245000, End: 250000, Step: 1000}, {Start: 895000, End: 900000, Step: 1000}, }, }, { query: "foo @ 50 + bar + baz @ 900", start: 100000, end: 500000, expected: []*storage.SelectHints{ {Start: 45000, End: 50000, Step: 1000}, {Start: 95000, End: 500000, Step: 1000}, {Start: 895000, End: 900000, Step: 1000}, }, }, { query: "rate(foo[2s] @ 50) + bar @ 250 + baz @ 900", start: 100000, end: 500000, expected: []*storage.SelectHints{ {Start: 48000, End: 50000, Step: 1000, Func: "rate", Range: 2000}, {Start: 245000, End: 250000, Step: 1000}, {Start: 895000, End: 900000, Step: 1000}, }, }, { query: "rate(foo[2s:1s] @ 50) + bar + baz", start: 100000, end: 500000, expected: []*storage.SelectHints{ {Start: 43000, End: 50000, Step: 1000, Func: "rate"}, {Start: 95000, End: 500000, Step: 1000}, {Start: 95000, End: 500000, Step: 1000}, }, }, { query: "rate(foo[2s:1s] @ 50) + bar + rate(baz[2m:1s] @ 900 offset 2m) ", start: 100000, end: 500000, expected: []*storage.SelectHints{ {Start: 43000, End: 50000, Step: 1000, Func: "rate"}, {Start: 95000, End: 500000, Step: 1000}, {Start: 655000, End: 780000, Step: 1000, Func: "rate"}, }, }, { // Hints are based on the inner most subquery timestamp. query: `sum_over_time(sum_over_time(metric{job="1"}[100s])[100s:25s] @ 50)[3s:1s] @ 3000`, start: 100000, expected: []*storage.SelectHints{ {Start: -150000, End: 50000, Range: 100000, Func: "sum_over_time", Step: 25000}, }, }, { // Hints are based on the inner most subquery timestamp. query: `sum_over_time(sum_over_time(metric{job="1"}[100s])[100s:25s] @ 3000)[3s:1s] @ 50`, expected: []*storage.SelectHints{ {Start: 2800000, End: 3000000, Range: 100000, Func: "sum_over_time", Step: 25000}, }, }, } { t.Run(tc.query, func(t *testing.T) { engine := NewEngine(opts) hintsRecorder := &noopHintRecordingQueryable{} var ( query Query err error ) ctx := context.Background() if tc.end == 0 { query, err = engine.NewInstantQuery(ctx, hintsRecorder, nil, tc.query, timestamp.Time(tc.start)) } else { query, err = engine.NewRangeQuery(ctx, hintsRecorder, nil, tc.query, timestamp.Time(tc.start), timestamp.Time(tc.end), time.Second) } require.NoError(t, err) res := query.Exec(context.Background()) require.NoError(t, res.Err) require.Equal(t, tc.expected, hintsRecorder.hints) }) } } func TestEngineShutdown(t *testing.T) { opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 10 * time.Second, } engine := NewEngine(opts) ctx, cancelCtx := context.WithCancel(context.Background()) block := make(chan struct{}) processing := make(chan struct{}) // Shutdown engine on first handler execution. Should handler execution ever become // concurrent this test has to be adjusted accordingly. f := func(ctx context.Context) error { processing <- struct{}{} <-block return contextDone(ctx, "test statement execution") } query1 := engine.newTestQuery(f) // Stopping the engine must cancel the base context. While executing queries is // still possible, their context is canceled from the beginning and execution should // terminate immediately. var res *Result go func() { res = query1.Exec(ctx) processing <- struct{}{} }() <-processing cancelCtx() block <- struct{}{} <-processing require.Error(t, res.Err, "expected error on shutdown during query but got none") require.Equal(t, errQueryCanceled, res.Err) query2 := engine.newTestQuery(func(context.Context) error { require.FailNow(t, "reached query execution unexpectedly") return nil }) // The second query is started after the engine shut down. It must // be canceled immediately. res2 := query2.Exec(ctx) require.Error(t, res2.Err, "expected error on querying with canceled context but got none") var e ErrQueryCanceled require.True(t, errors.As(res2.Err, &e), "expected cancellation error but got: %s", res2.Err) } func TestEngineEvalStmtTimestamps(t *testing.T) { storage := LoadedStorage(t, ` load 10s metric 1 2 `) t.Cleanup(func() { storage.Close() }) cases := []struct { Query string Result parser.Value Start time.Time End time.Time Interval time.Duration ShouldError bool }{ // Instant queries. { Query: "1", Result: Scalar{V: 1, T: 1000}, Start: time.Unix(1, 0), }, { Query: "metric", Result: Vector{ Sample{ F: 1, T: 1000, Metric: labels.FromStrings("__name__", "metric"), }, }, Start: time.Unix(1, 0), }, { Query: "metric[20s]", Result: Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 2, T: 10000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, Start: time.Unix(10, 0), }, // Range queries. { Query: "1", Result: Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 1000}, {F: 1, T: 2000}}, Metric: labels.EmptyLabels(), }, }, Start: time.Unix(0, 0), End: time.Unix(2, 0), Interval: time.Second, }, { Query: "metric", Result: Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 1000}, {F: 1, T: 2000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, Start: time.Unix(0, 0), End: time.Unix(2, 0), Interval: time.Second, }, { Query: "metric", Result: Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 5000}, {F: 2, T: 10000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, Start: time.Unix(0, 0), End: time.Unix(10, 0), Interval: 5 * time.Second, }, { Query: `count_values("wrong label!", metric)`, ShouldError: true, }, } for i, c := range cases { t.Run(fmt.Sprintf("%d query=%s", i, c.Query), func(t *testing.T) { var err error var qry Query engine := newTestEngine() if c.Interval == 0 { qry, err = engine.NewInstantQuery(context.Background(), storage, nil, c.Query, c.Start) } else { qry, err = engine.NewRangeQuery(context.Background(), storage, nil, c.Query, c.Start, c.End, c.Interval) } require.NoError(t, err) res := qry.Exec(context.Background()) if c.ShouldError { require.Error(t, res.Err, "expected error for the query %q", c.Query) return } require.NoError(t, res.Err) require.Equal(t, c.Result, res.Value, "query %q failed", c.Query) }) } } func TestQueryStatistics(t *testing.T) { storage := LoadedStorage(t, ` load 10s metricWith1SampleEvery10Seconds 1+1x100 metricWith3SampleEvery10Seconds{a="1",b="1"} 1+1x100 metricWith3SampleEvery10Seconds{a="2",b="2"} 1+1x100 metricWith3SampleEvery10Seconds{a="3",b="2"} 1+1x100 `) t.Cleanup(func() { storage.Close() }) cases := []struct { Query string SkipMaxCheck bool TotalSamples int64 TotalSamplesPerStep stats.TotalSamplesPerStep PeakSamples int Start time.Time End time.Time Interval time.Duration }{ { Query: `"literal string"`, SkipMaxCheck: true, // This can't fail from a max samples limit. Start: time.Unix(21, 0), TotalSamples: 0, TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 0, }, }, { Query: "1", Start: time.Unix(21, 0), TotalSamples: 0, PeakSamples: 1, TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 0, }, }, { Query: "metricWith1SampleEvery10Seconds", Start: time.Unix(21, 0), PeakSamples: 1, TotalSamples: 1, // 1 sample / 10 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 1, }, }, { // timestamp function has a special handling. Query: "timestamp(metricWith1SampleEvery10Seconds)", Start: time.Unix(21, 0), PeakSamples: 2, TotalSamples: 1, // 1 sample / 10 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 1, }, }, { Query: "metricWith1SampleEvery10Seconds", Start: time.Unix(22, 0), PeakSamples: 1, TotalSamples: 1, // 1 sample / 10 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 22000: 1, // Aligned to the step time, not the sample time. }, }, { Query: "metricWith1SampleEvery10Seconds offset 10s", Start: time.Unix(21, 0), PeakSamples: 1, TotalSamples: 1, // 1 sample / 10 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 1, }, }, { Query: "metricWith1SampleEvery10Seconds @ 15", Start: time.Unix(21, 0), PeakSamples: 1, TotalSamples: 1, // 1 sample / 10 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 1, }, }, { Query: `metricWith3SampleEvery10Seconds{a="1"}`, Start: time.Unix(21, 0), PeakSamples: 1, TotalSamples: 1, // 1 sample / 10 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 1, }, }, { Query: `metricWith3SampleEvery10Seconds{a="1"} @ 19`, Start: time.Unix(21, 0), PeakSamples: 1, TotalSamples: 1, // 1 sample / 10 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 1, }, }, { Query: `metricWith3SampleEvery10Seconds{a="1"}[20s] @ 19`, Start: time.Unix(21, 0), PeakSamples: 2, TotalSamples: 2, // (1 sample / 10 seconds) * 20s TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 2, }, }, { Query: "metricWith3SampleEvery10Seconds", Start: time.Unix(21, 0), PeakSamples: 3, TotalSamples: 3, // 3 samples / 10 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 21000: 3, }, }, { Query: "metricWith1SampleEvery10Seconds[60s]", Start: time.Unix(201, 0), PeakSamples: 6, TotalSamples: 6, // 1 sample / 10 seconds * 60 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 6, }, }, { Query: "max_over_time(metricWith1SampleEvery10Seconds[59s])[20s:5s]", Start: time.Unix(201, 0), PeakSamples: 10, TotalSamples: 24, // (1 sample / 10 seconds * 60 seconds) * 60/5 (using 59s so we always return 6 samples // as if we run a query on 00 looking back 60 seconds we will return 7 samples; // see next test). TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 24, }, }, { Query: "max_over_time(metricWith1SampleEvery10Seconds[60s])[20s:5s]", Start: time.Unix(201, 0), PeakSamples: 11, TotalSamples: 26, // (1 sample / 10 seconds * 60 seconds) + 2 as // max_over_time(metricWith1SampleEvery10Seconds[60s]) @ 190 and 200 will return 7 samples. TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 26, }, }, { Query: "metricWith1SampleEvery10Seconds[60s] @ 30", Start: time.Unix(201, 0), PeakSamples: 4, TotalSamples: 4, // @ modifier force the evaluation to at 30 seconds - So it brings 4 datapoints (0, 10, 20, 30 seconds) * 1 series TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 4, }, }, { Query: "sum(max_over_time(metricWith3SampleEvery10Seconds[60s] @ 30))", Start: time.Unix(201, 0), PeakSamples: 7, TotalSamples: 12, // @ modifier force the evaluation to at 30 seconds - So it brings 4 datapoints (0, 10, 20, 30 seconds) * 3 series TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 12, }, }, { Query: "sum by (b) (max_over_time(metricWith3SampleEvery10Seconds[60s] @ 30))", Start: time.Unix(201, 0), PeakSamples: 8, TotalSamples: 12, // @ modifier force the evaluation to at 30 seconds - So it brings 4 datapoints (0, 10, 20, 30 seconds) * 3 series TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 12, }, }, { Query: "metricWith1SampleEvery10Seconds[60s] offset 10s", Start: time.Unix(201, 0), PeakSamples: 6, TotalSamples: 6, // 1 sample / 10 seconds * 60 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 6, }, }, { Query: "metricWith3SampleEvery10Seconds[60s]", Start: time.Unix(201, 0), PeakSamples: 18, TotalSamples: 18, // 3 sample / 10 seconds * 60 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 18, }, }, { Query: "max_over_time(metricWith1SampleEvery10Seconds[60s])", Start: time.Unix(201, 0), PeakSamples: 7, TotalSamples: 6, // 1 sample / 10 seconds * 60 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 6, }, }, { Query: "absent_over_time(metricWith1SampleEvery10Seconds[60s])", Start: time.Unix(201, 0), PeakSamples: 7, TotalSamples: 6, // 1 sample / 10 seconds * 60 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 6, }, }, { Query: "max_over_time(metricWith3SampleEvery10Seconds[60s])", Start: time.Unix(201, 0), PeakSamples: 9, TotalSamples: 18, // 3 sample / 10 seconds * 60 seconds TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 18, }, }, { Query: "metricWith1SampleEvery10Seconds[60s:5s]", Start: time.Unix(201, 0), PeakSamples: 12, TotalSamples: 12, // 1 sample per query * 12 queries (60/5) TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 12, }, }, { Query: "metricWith1SampleEvery10Seconds[60s:5s] offset 10s", Start: time.Unix(201, 0), PeakSamples: 12, TotalSamples: 12, // 1 sample per query * 12 queries (60/5) TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 12, }, }, { Query: "max_over_time(metricWith3SampleEvery10Seconds[60s:5s])", Start: time.Unix(201, 0), PeakSamples: 51, TotalSamples: 36, // 3 sample per query * 12 queries (60/5) TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 36, }, }, { Query: "sum(max_over_time(metricWith3SampleEvery10Seconds[60s:5s])) + sum(max_over_time(metricWith3SampleEvery10Seconds[60s:5s]))", Start: time.Unix(201, 0), PeakSamples: 52, TotalSamples: 72, // 2 * (3 sample per query * 12 queries (60/5)) TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 72, }, }, { Query: `metricWith3SampleEvery10Seconds{a="1"}`, Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 4, TotalSamples: 4, // 1 sample per query * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 1, 206000: 1, 211000: 1, 216000: 1, }, }, { Query: `metricWith3SampleEvery10Seconds{a="1"}`, Start: time.Unix(204, 0), End: time.Unix(223, 0), Interval: 5 * time.Second, PeakSamples: 4, TotalSamples: 4, // 1 sample per query * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 204000: 1, // aligned to the step time, not the sample time 209000: 1, 214000: 1, 219000: 1, }, }, { // timestamp function as a special handling Query: "timestamp(metricWith1SampleEvery10Seconds)", Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 5, TotalSamples: 4, // (1 sample / 10 seconds) * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 1, 206000: 1, 211000: 1, 216000: 1, }, }, { Query: `max_over_time(metricWith3SampleEvery10Seconds{a="1"}[10s])`, Start: time.Unix(991, 0), End: time.Unix(1021, 0), Interval: 10 * time.Second, PeakSamples: 2, TotalSamples: 2, // 1 sample per query * 2 steps with data TotalSamplesPerStep: stats.TotalSamplesPerStep{ 991000: 1, 1001000: 1, 1011000: 0, 1021000: 0, }, }, { Query: `metricWith3SampleEvery10Seconds{a="1"} offset 10s`, Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 4, TotalSamples: 4, // 1 sample per query * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 1, 206000: 1, 211000: 1, 216000: 1, }, }, { Query: "max_over_time(metricWith3SampleEvery10Seconds[60s] @ 30)", Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 12, TotalSamples: 48, // @ modifier force the evaluation timestamp at 30 seconds - So it brings 4 datapoints (0, 10, 20, 30 seconds) * 3 series * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 12, 206000: 12, 211000: 12, 216000: 12, }, }, { Query: `metricWith3SampleEvery10Seconds`, Start: time.Unix(201, 0), End: time.Unix(220, 0), PeakSamples: 12, Interval: 5 * time.Second, TotalSamples: 12, // 3 sample per query * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 3, 206000: 3, 211000: 3, 216000: 3, }, }, { Query: `max_over_time(metricWith3SampleEvery10Seconds[60s])`, Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 18, TotalSamples: 72, // (3 sample / 10 seconds * 60 seconds) * 4 steps = 72 TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 18, 206000: 18, 211000: 18, 216000: 18, }, }, { Query: "max_over_time(metricWith3SampleEvery10Seconds[60s:5s])", Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 72, TotalSamples: 144, // 3 sample per query * 12 queries (60/5) * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 36, 206000: 36, 211000: 36, 216000: 36, }, }, { Query: "max_over_time(metricWith1SampleEvery10Seconds[60s:5s])", Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 32, TotalSamples: 48, // 1 sample per query * 12 queries (60/5) * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 12, 206000: 12, 211000: 12, 216000: 12, }, }, { Query: "sum by (b) (max_over_time(metricWith1SampleEvery10Seconds[60s:5s]))", Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 32, TotalSamples: 48, // 1 sample per query * 12 queries (60/5) * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 12, 206000: 12, 211000: 12, 216000: 12, }, }, { Query: "sum(max_over_time(metricWith3SampleEvery10Seconds[60s:5s])) + sum(max_over_time(metricWith3SampleEvery10Seconds[60s:5s]))", Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 76, TotalSamples: 288, // 2 * (3 sample per query * 12 queries (60/5) * 4 steps) TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 72, 206000: 72, 211000: 72, 216000: 72, }, }, { Query: "sum(max_over_time(metricWith3SampleEvery10Seconds[60s:5s])) + sum(max_over_time(metricWith1SampleEvery10Seconds[60s:5s]))", Start: time.Unix(201, 0), End: time.Unix(220, 0), Interval: 5 * time.Second, PeakSamples: 72, TotalSamples: 192, // (1 sample per query * 12 queries (60/5) + 3 sample per query * 12 queries (60/5)) * 4 steps TotalSamplesPerStep: stats.TotalSamplesPerStep{ 201000: 48, 206000: 48, 211000: 48, 216000: 48, }, }, } engine := newTestEngine() engine.enablePerStepStats = true origMaxSamples := engine.maxSamplesPerQuery for _, c := range cases { t.Run(c.Query, func(t *testing.T) { opts := NewPrometheusQueryOpts(true, 0) engine.maxSamplesPerQuery = origMaxSamples runQuery := func(expErr error) *stats.Statistics { var err error var qry Query if c.Interval == 0 { qry, err = engine.NewInstantQuery(context.Background(), storage, opts, c.Query, c.Start) } else { qry, err = engine.NewRangeQuery(context.Background(), storage, opts, c.Query, c.Start, c.End, c.Interval) } require.NoError(t, err) res := qry.Exec(context.Background()) require.Equal(t, expErr, res.Err) return qry.Stats() } stats := runQuery(nil) require.Equal(t, c.TotalSamples, stats.Samples.TotalSamples, "Total samples mismatch") require.Equal(t, &c.TotalSamplesPerStep, stats.Samples.TotalSamplesPerStepMap(), "Total samples per time mismatch") require.Equal(t, c.PeakSamples, stats.Samples.PeakSamples, "Peak samples mismatch") // Check that the peak is correct by setting the max to one less. if c.SkipMaxCheck { return } engine.maxSamplesPerQuery = stats.Samples.PeakSamples - 1 runQuery(ErrTooManySamples(env)) }) } } func TestMaxQuerySamples(t *testing.T) { storage := LoadedStorage(t, ` load 10s metric 1+1x100 bigmetric{a="1"} 1+1x100 bigmetric{a="2"} 1+1x100 `) t.Cleanup(func() { storage.Close() }) // These test cases should be touching the limit exactly (hence no exceeding). // Exceeding the limit will be tested by doing -1 to the MaxSamples. cases := []struct { Query string MaxSamples int Start time.Time End time.Time Interval time.Duration }{ // Instant queries. { Query: "1", MaxSamples: 1, Start: time.Unix(1, 0), }, { Query: "metric", MaxSamples: 1, Start: time.Unix(1, 0), }, { Query: "metric[20s]", MaxSamples: 2, Start: time.Unix(10, 0), }, { Query: "rate(metric[20s])", MaxSamples: 3, Start: time.Unix(10, 0), }, { Query: "metric[20s:5s]", MaxSamples: 3, Start: time.Unix(10, 0), }, { Query: "metric[20s] @ 10", MaxSamples: 2, Start: time.Unix(0, 0), }, // Range queries. { Query: "1", MaxSamples: 3, Start: time.Unix(0, 0), End: time.Unix(2, 0), Interval: time.Second, }, { Query: "1", MaxSamples: 3, Start: time.Unix(0, 0), End: time.Unix(2, 0), Interval: time.Second, }, { Query: "metric", MaxSamples: 3, Start: time.Unix(0, 0), End: time.Unix(2, 0), Interval: time.Second, }, { Query: "metric", MaxSamples: 3, Start: time.Unix(0, 0), End: time.Unix(10, 0), Interval: 5 * time.Second, }, { Query: "rate(bigmetric[1s])", MaxSamples: 1, Start: time.Unix(0, 0), End: time.Unix(10, 0), Interval: 5 * time.Second, }, { // Result is duplicated, so @ also produces 3 samples. Query: "metric @ 10", MaxSamples: 3, Start: time.Unix(0, 0), End: time.Unix(10, 0), Interval: 5 * time.Second, }, { // The peak samples in memory is during the first evaluation: // - Subquery takes 22 samples, 11 for each bigmetric, // - Result is calculated per series where the series samples is buffered, hence 11 more here. // - The result of two series is added before the last series buffer is discarded, so 2 more here. // Hence at peak it is 22 (subquery) + 11 (buffer of a series) + 2 (result from 2 series). // The subquery samples and the buffer is discarded before duplicating. Query: `rate(bigmetric[10s:1s] @ 10)`, MaxSamples: 35, Start: time.Unix(0, 0), End: time.Unix(10, 0), Interval: 5 * time.Second, }, { // Here the reasoning is same as above. But LHS and RHS are done one after another. // So while one of them takes 35 samples at peak, we need to hold the 2 sample // result of the other till then. Query: `rate(bigmetric[10s:1s] @ 10) + rate(bigmetric[10s:1s] @ 30)`, MaxSamples: 37, Start: time.Unix(0, 0), End: time.Unix(10, 0), Interval: 5 * time.Second, }, { // Sample as above but with only 1 part as step invariant. // Here the peak is caused by the non-step invariant part as it touches more time range. // Hence at peak it is 2*21 (subquery from 0s to 20s) // + 11 (buffer of a series per evaluation) // + 6 (result from 2 series at 3 eval times). Query: `rate(bigmetric[10s:1s]) + rate(bigmetric[10s:1s] @ 30)`, MaxSamples: 59, Start: time.Unix(10, 0), End: time.Unix(20, 0), Interval: 5 * time.Second, }, { // Nested subquery. // We saw that innermost rate takes 35 samples which is still the peak // since the other two subqueries just duplicate the result. Query: `rate(rate(bigmetric[10s:1s] @ 10)[100s:25s] @ 1000)[100s:20s] @ 2000`, MaxSamples: 35, Start: time.Unix(10, 0), }, { // Nested subquery. // Now the outmost subquery produces more samples than inner most rate. Query: `rate(rate(bigmetric[10s:1s] @ 10)[100s:25s] @ 1000)[17s:1s] @ 2000`, MaxSamples: 36, Start: time.Unix(10, 0), }, } for _, c := range cases { t.Run(c.Query, func(t *testing.T) { engine := newTestEngine() testFunc := func(expError error) { var err error var qry Query if c.Interval == 0 { qry, err = engine.NewInstantQuery(context.Background(), storage, nil, c.Query, c.Start) } else { qry, err = engine.NewRangeQuery(context.Background(), storage, nil, c.Query, c.Start, c.End, c.Interval) } require.NoError(t, err) res := qry.Exec(context.Background()) stats := qry.Stats() require.Equal(t, expError, res.Err) require.NotNil(t, stats) if expError == nil { require.Equal(t, c.MaxSamples, stats.Samples.PeakSamples, "peak samples mismatch for query %q", c.Query) } } // Within limit. engine.maxSamplesPerQuery = c.MaxSamples testFunc(nil) // Exceeding limit. engine.maxSamplesPerQuery = c.MaxSamples - 1 testFunc(ErrTooManySamples(env)) }) } } func TestAtModifier(t *testing.T) { engine := newTestEngine() storage := LoadedStorage(t, ` load 10s metric{job="1"} 0+1x1000 metric{job="2"} 0+2x1000 metric_topk{instance="1"} 0+1x1000 metric_topk{instance="2"} 0+2x1000 metric_topk{instance="3"} 1000-1x1000 load 1ms metric_ms 0+1x10000 `) t.Cleanup(func() { storage.Close() }) lbls1 := labels.FromStrings("__name__", "metric", "job", "1") lbls2 := labels.FromStrings("__name__", "metric", "job", "2") lblstopk2 := labels.FromStrings("__name__", "metric_topk", "instance", "2") lblstopk3 := labels.FromStrings("__name__", "metric_topk", "instance", "3") lblsms := labels.FromStrings("__name__", "metric_ms") lblsneg := labels.FromStrings("__name__", "metric_neg") // Add some samples with negative timestamp. db := storage.DB app := db.Appender(context.Background()) ref, err := app.Append(0, lblsneg, -1000000, 1000) require.NoError(t, err) for ts := int64(-1000000 + 1000); ts <= 0; ts += 1000 { _, err := app.Append(ref, labels.EmptyLabels(), ts, -float64(ts/1000)+1) require.NoError(t, err) } // To test the fix for https://github.com/prometheus/prometheus/issues/8433. _, err = app.Append(0, labels.FromStrings("__name__", "metric_timestamp"), 3600*1000, 1000) require.NoError(t, err) require.NoError(t, app.Commit()) cases := []struct { query string start, end, interval int64 // Time in seconds. result parser.Value }{ { // Time of the result is the evaluation time. query: `metric_neg @ 0`, start: 100, result: Vector{ Sample{F: 1, T: 100000, Metric: lblsneg}, }, }, { query: `metric_neg @ -200`, start: 100, result: Vector{ Sample{F: 201, T: 100000, Metric: lblsneg}, }, }, { query: `metric{job="2"} @ 50`, start: -2, end: 2, interval: 1, result: Matrix{ Series{ Floats: []FPoint{{F: 10, T: -2000}, {F: 10, T: -1000}, {F: 10, T: 0}, {F: 10, T: 1000}, {F: 10, T: 2000}}, Metric: lbls2, }, }, }, { // Timestamps for matrix selector does not depend on the evaluation time. query: "metric[20s] @ 300", start: 10, result: Matrix{ Series{ Floats: []FPoint{{F: 28, T: 280000}, {F: 29, T: 290000}, {F: 30, T: 300000}}, Metric: lbls1, }, Series{ Floats: []FPoint{{F: 56, T: 280000}, {F: 58, T: 290000}, {F: 60, T: 300000}}, Metric: lbls2, }, }, }, { query: `metric_neg[2s] @ 0`, start: 100, result: Matrix{ Series{ Floats: []FPoint{{F: 3, T: -2000}, {F: 2, T: -1000}, {F: 1, T: 0}}, Metric: lblsneg, }, }, }, { query: `metric_neg[3s] @ -500`, start: 100, result: Matrix{ Series{ Floats: []FPoint{{F: 504, T: -503000}, {F: 503, T: -502000}, {F: 502, T: -501000}, {F: 501, T: -500000}}, Metric: lblsneg, }, }, }, { query: `metric_ms[3ms] @ 2.345`, start: 100, result: Matrix{ Series{ Floats: []FPoint{{F: 2342, T: 2342}, {F: 2343, T: 2343}, {F: 2344, T: 2344}, {F: 2345, T: 2345}}, Metric: lblsms, }, }, }, { query: "metric[100s:25s] @ 300", start: 100, result: Matrix{ Series{ Floats: []FPoint{{F: 20, T: 200000}, {F: 22, T: 225000}, {F: 25, T: 250000}, {F: 27, T: 275000}, {F: 30, T: 300000}}, Metric: lbls1, }, Series{ Floats: []FPoint{{F: 40, T: 200000}, {F: 44, T: 225000}, {F: 50, T: 250000}, {F: 54, T: 275000}, {F: 60, T: 300000}}, Metric: lbls2, }, }, }, { query: "metric_neg[50s:25s] @ 0", start: 100, result: Matrix{ Series{ Floats: []FPoint{{F: 51, T: -50000}, {F: 26, T: -25000}, {F: 1, T: 0}}, Metric: lblsneg, }, }, }, { query: "metric_neg[50s:25s] @ -100", start: 100, result: Matrix{ Series{ Floats: []FPoint{{F: 151, T: -150000}, {F: 126, T: -125000}, {F: 101, T: -100000}}, Metric: lblsneg, }, }, }, { query: `metric_ms[100ms:25ms] @ 2.345`, start: 100, result: Matrix{ Series{ Floats: []FPoint{{F: 2250, T: 2250}, {F: 2275, T: 2275}, {F: 2300, T: 2300}, {F: 2325, T: 2325}}, Metric: lblsms, }, }, }, { query: `metric_topk and topk(1, sum_over_time(metric_topk[50s] @ 100))`, start: 50, end: 80, interval: 10, result: Matrix{ Series{ Floats: []FPoint{{F: 995, T: 50000}, {F: 994, T: 60000}, {F: 993, T: 70000}, {F: 992, T: 80000}}, Metric: lblstopk3, }, }, }, { query: `metric_topk and topk(1, sum_over_time(metric_topk[50s] @ 5000))`, start: 50, end: 80, interval: 10, result: Matrix{ Series{ Floats: []FPoint{{F: 10, T: 50000}, {F: 12, T: 60000}, {F: 14, T: 70000}, {F: 16, T: 80000}}, Metric: lblstopk2, }, }, }, { query: `metric_topk and topk(1, sum_over_time(metric_topk[50s] @ end()))`, start: 70, end: 100, interval: 10, result: Matrix{ Series{ Floats: []FPoint{{F: 993, T: 70000}, {F: 992, T: 80000}, {F: 991, T: 90000}, {F: 990, T: 100000}}, Metric: lblstopk3, }, }, }, { query: `metric_topk and topk(1, sum_over_time(metric_topk[50s] @ start()))`, start: 100, end: 130, interval: 10, result: Matrix{ Series{ Floats: []FPoint{{F: 990, T: 100000}, {F: 989, T: 110000}, {F: 988, T: 120000}, {F: 987, T: 130000}}, Metric: lblstopk3, }, }, }, { // Tests for https://github.com/prometheus/prometheus/issues/8433. // The trick here is that the query range should be > lookback delta. query: `timestamp(metric_timestamp @ 3600)`, start: 0, end: 7 * 60, interval: 60, result: Matrix{ Series{ Floats: []FPoint{ {F: 3600, T: 0}, {F: 3600, T: 60 * 1000}, {F: 3600, T: 2 * 60 * 1000}, {F: 3600, T: 3 * 60 * 1000}, {F: 3600, T: 4 * 60 * 1000}, {F: 3600, T: 5 * 60 * 1000}, {F: 3600, T: 6 * 60 * 1000}, {F: 3600, T: 7 * 60 * 1000}, }, Metric: labels.EmptyLabels(), }, }, }, } for _, c := range cases { t.Run(c.query, func(t *testing.T) { if c.interval == 0 { c.interval = 1 } start, end, interval := time.Unix(c.start, 0), time.Unix(c.end, 0), time.Duration(c.interval)*time.Second var err error var qry Query if c.end == 0 { qry, err = engine.NewInstantQuery(context.Background(), storage, nil, c.query, start) } else { qry, err = engine.NewRangeQuery(context.Background(), storage, nil, c.query, start, end, interval) } require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) if expMat, ok := c.result.(Matrix); ok { sort.Sort(expMat) sort.Sort(res.Value.(Matrix)) } require.Equal(t, c.result, res.Value, "query %q failed", c.query) }) } } func TestRecoverEvaluatorRuntime(t *testing.T) { var output []interface{} logger := log.Logger(log.LoggerFunc(func(keyvals ...interface{}) error { output = append(output, keyvals...) return nil })) ev := &evaluator{logger: logger} expr, _ := parser.ParseExpr("sum(up)") var err error defer func() { require.EqualError(t, err, "unexpected error: runtime error: index out of range [123] with length 0") require.Contains(t, output, "sum(up)") }() defer ev.recover(expr, nil, &err) // Cause a runtime panic. var a []int //nolint:govet a[123] = 1 } func TestRecoverEvaluatorError(t *testing.T) { ev := &evaluator{logger: log.NewNopLogger()} var err error e := errors.New("custom error") defer func() { require.EqualError(t, err, e.Error()) }() defer ev.recover(nil, nil, &err) panic(e) } func TestRecoverEvaluatorErrorWithWarnings(t *testing.T) { ev := &evaluator{logger: log.NewNopLogger()} var err error var ws storage.Warnings warnings := storage.Warnings{errors.New("custom warning")} e := errWithWarnings{ err: errors.New("custom error"), warnings: warnings, } defer func() { require.EqualError(t, err, e.Error()) require.Equal(t, warnings, ws, "wrong warning message") }() defer ev.recover(nil, &ws, &err) panic(e) } func TestSubquerySelector(t *testing.T) { type caseType struct { Query string Result Result Start time.Time } for _, tst := range []struct { loadString string cases []caseType }{ { loadString: `load 10s metric 1 2`, cases: []caseType{ { Query: "metric[20s:10s]", Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 2, T: 10000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, nil, }, Start: time.Unix(10, 0), }, { Query: "metric[20s:5s]", Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 5000}, {F: 2, T: 10000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, nil, }, Start: time.Unix(10, 0), }, { Query: "metric[20s:5s] offset 2s", Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 5000}, {F: 2, T: 10000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, nil, }, Start: time.Unix(12, 0), }, { Query: "metric[20s:5s] offset 6s", Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 5000}, {F: 2, T: 10000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, nil, }, Start: time.Unix(20, 0), }, { Query: "metric[20s:5s] offset 4s", Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 2, T: 15000}, {F: 2, T: 20000}, {F: 2, T: 25000}, {F: 2, T: 30000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, nil, }, Start: time.Unix(35, 0), }, { Query: "metric[20s:5s] offset 5s", Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 2, T: 10000}, {F: 2, T: 15000}, {F: 2, T: 20000}, {F: 2, T: 25000}, {F: 2, T: 30000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, nil, }, Start: time.Unix(35, 0), }, { Query: "metric[20s:5s] offset 6s", Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 2, T: 10000}, {F: 2, T: 15000}, {F: 2, T: 20000}, {F: 2, T: 25000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, nil, }, Start: time.Unix(35, 0), }, { Query: "metric[20s:5s] offset 7s", Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 2, T: 10000}, {F: 2, T: 15000}, {F: 2, T: 20000}, {F: 2, T: 25000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, nil, }, Start: time.Unix(35, 0), }, }, }, { loadString: `load 10s http_requests{job="api-server", instance="0", group="production"} 0+10x1000 100+30x1000 http_requests{job="api-server", instance="1", group="production"} 0+20x1000 200+30x1000 http_requests{job="api-server", instance="0", group="canary"} 0+30x1000 300+80x1000 http_requests{job="api-server", instance="1", group="canary"} 0+40x2000`, cases: []caseType{ { // Normal selector. Query: `http_requests{group=~"pro.*",instance="0"}[30s:10s]`, Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 9990, T: 9990000}, {F: 10000, T: 10000000}, {F: 100, T: 10010000}, {F: 130, T: 10020000}}, Metric: labels.FromStrings("__name__", "http_requests", "job", "api-server", "instance", "0", "group", "production"), }, }, nil, }, Start: time.Unix(10020, 0), }, { // Default step. Query: `http_requests{group=~"pro.*",instance="0"}[5m:]`, Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 9840, T: 9840000}, {F: 9900, T: 9900000}, {F: 9960, T: 9960000}, {F: 130, T: 10020000}, {F: 310, T: 10080000}}, Metric: labels.FromStrings("__name__", "http_requests", "job", "api-server", "instance", "0", "group", "production"), }, }, nil, }, Start: time.Unix(10100, 0), }, { // Checking if high offset (>LookbackDelta) is being taken care of. Query: `http_requests{group=~"pro.*",instance="0"}[5m:] offset 20m`, Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 8640, T: 8640000}, {F: 8700, T: 8700000}, {F: 8760, T: 8760000}, {F: 8820, T: 8820000}, {F: 8880, T: 8880000}}, Metric: labels.FromStrings("__name__", "http_requests", "job", "api-server", "instance", "0", "group", "production"), }, }, nil, }, Start: time.Unix(10100, 0), }, { Query: `rate(http_requests[1m])[15s:5s]`, Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 3, T: 7985000}, {F: 3, T: 7990000}, {F: 3, T: 7995000}, {F: 3, T: 8000000}}, Metric: labels.FromStrings("job", "api-server", "instance", "0", "group", "canary"), }, Series{ Floats: []FPoint{{F: 4, T: 7985000}, {F: 4, T: 7990000}, {F: 4, T: 7995000}, {F: 4, T: 8000000}}, Metric: labels.FromStrings("job", "api-server", "instance", "1", "group", "canary"), }, Series{ Floats: []FPoint{{F: 1, T: 7985000}, {F: 1, T: 7990000}, {F: 1, T: 7995000}, {F: 1, T: 8000000}}, Metric: labels.FromStrings("job", "api-server", "instance", "0", "group", "production"), }, Series{ Floats: []FPoint{{F: 2, T: 7985000}, {F: 2, T: 7990000}, {F: 2, T: 7995000}, {F: 2, T: 8000000}}, Metric: labels.FromStrings("job", "api-server", "instance", "1", "group", "production"), }, }, nil, }, Start: time.Unix(8000, 0), }, { Query: `sum(http_requests{group=~"pro.*"})[30s:10s]`, Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 270, T: 90000}, {F: 300, T: 100000}, {F: 330, T: 110000}, {F: 360, T: 120000}}, Metric: labels.EmptyLabels(), }, }, nil, }, Start: time.Unix(120, 0), }, { Query: `sum(http_requests)[40s:10s]`, Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 800, T: 80000}, {F: 900, T: 90000}, {F: 1000, T: 100000}, {F: 1100, T: 110000}, {F: 1200, T: 120000}}, Metric: labels.EmptyLabels(), }, }, nil, }, Start: time.Unix(120, 0), }, { Query: `(sum(http_requests{group=~"p.*"})+sum(http_requests{group=~"c.*"}))[20s:5s]`, Result: Result{ nil, Matrix{ Series{ Floats: []FPoint{{F: 1000, T: 100000}, {F: 1000, T: 105000}, {F: 1100, T: 110000}, {F: 1100, T: 115000}, {F: 1200, T: 120000}}, Metric: labels.EmptyLabels(), }, }, nil, }, Start: time.Unix(120, 0), }, }, }, } { t.Run("", func(t *testing.T) { engine := newTestEngine() storage := LoadedStorage(t, tst.loadString) t.Cleanup(func() { storage.Close() }) for _, c := range tst.cases { t.Run(c.Query, func(t *testing.T) { qry, err := engine.NewInstantQuery(context.Background(), storage, nil, c.Query, c.Start) require.NoError(t, err) res := qry.Exec(context.Background()) require.Equal(t, c.Result.Err, res.Err) mat := res.Value.(Matrix) sort.Sort(mat) require.Equal(t, c.Result.Value, mat) }) } }) } } func TestTimestampFunction_StepsMoreOftenThanSamples(t *testing.T) { engine := newTestEngine() storage := LoadedStorage(t, ` load 1m metric 0+1x1000 `) t.Cleanup(func() { storage.Close() }) query := "timestamp(metric)" start := time.Unix(0, 0) end := time.Unix(61, 0) interval := time.Second // We expect the value to be 0 for t=0s to t=59s (inclusive), then 60 for t=60s and t=61s. expectedPoints := []FPoint{} for t := 0; t <= 59; t++ { expectedPoints = append(expectedPoints, FPoint{F: 0, T: int64(t * 1000)}) } expectedPoints = append( expectedPoints, FPoint{F: 60, T: 60_000}, FPoint{F: 60, T: 61_000}, ) expectedResult := Matrix{ Series{ Floats: expectedPoints, Metric: labels.EmptyLabels(), }, } qry, err := engine.NewRangeQuery(context.Background(), storage, nil, query, start, end, interval) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) require.Equal(t, expectedResult, res.Value) } type FakeQueryLogger struct { closed bool logs []interface{} } func NewFakeQueryLogger() *FakeQueryLogger { return &FakeQueryLogger{ closed: false, logs: make([]interface{}, 0), } } func (f *FakeQueryLogger) Close() error { f.closed = true return nil } func (f *FakeQueryLogger) Log(l ...interface{}) error { f.logs = append(f.logs, l...) return nil } func TestQueryLogger_basic(t *testing.T) { opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 10 * time.Second, } engine := NewEngine(opts) queryExec := func() { ctx, cancelCtx := context.WithCancel(context.Background()) defer cancelCtx() query := engine.newTestQuery(func(ctx context.Context) error { return contextDone(ctx, "test statement execution") }) res := query.Exec(ctx) require.NoError(t, res.Err) } // Query works without query log initialized. queryExec() f1 := NewFakeQueryLogger() engine.SetQueryLogger(f1) queryExec() for i, field := range []interface{}{"params", map[string]interface{}{"query": "test statement"}} { require.Equal(t, field, f1.logs[i]) } l := len(f1.logs) queryExec() require.Equal(t, 2*l, len(f1.logs)) // Test that we close the query logger when unsetting it. require.False(t, f1.closed, "expected f1 to be open, got closed") engine.SetQueryLogger(nil) require.True(t, f1.closed, "expected f1 to be closed, got open") queryExec() // Test that we close the query logger when swapping. f2 := NewFakeQueryLogger() f3 := NewFakeQueryLogger() engine.SetQueryLogger(f2) require.False(t, f2.closed, "expected f2 to be open, got closed") queryExec() engine.SetQueryLogger(f3) require.True(t, f2.closed, "expected f2 to be closed, got open") require.False(t, f3.closed, "expected f3 to be open, got closed") queryExec() } func TestQueryLogger_fields(t *testing.T) { opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 10 * time.Second, } engine := NewEngine(opts) f1 := NewFakeQueryLogger() engine.SetQueryLogger(f1) ctx, cancelCtx := context.WithCancel(context.Background()) ctx = NewOriginContext(ctx, map[string]interface{}{"foo": "bar"}) defer cancelCtx() query := engine.newTestQuery(func(ctx context.Context) error { return contextDone(ctx, "test statement execution") }) res := query.Exec(ctx) require.NoError(t, res.Err) expected := []string{"foo", "bar"} for i, field := range expected { v := f1.logs[len(f1.logs)-len(expected)+i].(string) require.Equal(t, field, v) } } func TestQueryLogger_error(t *testing.T) { opts := EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 10, Timeout: 10 * time.Second, } engine := NewEngine(opts) f1 := NewFakeQueryLogger() engine.SetQueryLogger(f1) ctx, cancelCtx := context.WithCancel(context.Background()) ctx = NewOriginContext(ctx, map[string]interface{}{"foo": "bar"}) defer cancelCtx() testErr := errors.New("failure") query := engine.newTestQuery(func(ctx context.Context) error { return testErr }) res := query.Exec(ctx) require.Error(t, res.Err, "query should have failed") for i, field := range []interface{}{"params", map[string]interface{}{"query": "test statement"}, "error", testErr} { require.Equal(t, f1.logs[i], field) } } func TestPreprocessAndWrapWithStepInvariantExpr(t *testing.T) { startTime := time.Unix(1000, 0) endTime := time.Unix(9999, 0) testCases := []struct { input string // The input to be parsed. expected parser.Expr // The expected expression AST. outputTest bool }{ { input: "123.4567", expected: &parser.StepInvariantExpr{ Expr: &parser.NumberLiteral{ Val: 123.4567, PosRange: parser.PositionRange{Start: 0, End: 8}, }, }, }, { input: `"foo"`, expected: &parser.StepInvariantExpr{ Expr: &parser.StringLiteral{ Val: "foo", PosRange: parser.PositionRange{Start: 0, End: 5}, }, }, }, { input: "foo * bar", expected: &parser.BinaryExpr{ Op: parser.MUL, LHS: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 0, End: 3, }, }, RHS: &parser.VectorSelector{ Name: "bar", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "bar"), }, PosRange: parser.PositionRange{ Start: 6, End: 9, }, }, VectorMatching: &parser.VectorMatching{Card: parser.CardOneToOne}, }, }, { input: "foo * bar @ 10", expected: &parser.BinaryExpr{ Op: parser.MUL, LHS: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 0, End: 3, }, }, RHS: &parser.StepInvariantExpr{ Expr: &parser.VectorSelector{ Name: "bar", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "bar"), }, PosRange: parser.PositionRange{ Start: 6, End: 14, }, Timestamp: makeInt64Pointer(10000), }, }, VectorMatching: &parser.VectorMatching{Card: parser.CardOneToOne}, }, }, { input: "foo @ 20 * bar @ 10", expected: &parser.StepInvariantExpr{ Expr: &parser.BinaryExpr{ Op: parser.MUL, LHS: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 0, End: 8, }, Timestamp: makeInt64Pointer(20000), }, RHS: &parser.VectorSelector{ Name: "bar", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "bar"), }, PosRange: parser.PositionRange{ Start: 11, End: 19, }, Timestamp: makeInt64Pointer(10000), }, VectorMatching: &parser.VectorMatching{Card: parser.CardOneToOne}, }, }, }, { input: "test[5s]", expected: &parser.MatrixSelector{ VectorSelector: &parser.VectorSelector{ Name: "test", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "test"), }, PosRange: parser.PositionRange{ Start: 0, End: 4, }, }, Range: 5 * time.Second, EndPos: 8, }, }, { input: `test{a="b"}[5y] @ 1603774699`, expected: &parser.StepInvariantExpr{ Expr: &parser.MatrixSelector{ VectorSelector: &parser.VectorSelector{ Name: "test", Timestamp: makeInt64Pointer(1603774699000), LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "a", "b"), parser.MustLabelMatcher(labels.MatchEqual, "__name__", "test"), }, PosRange: parser.PositionRange{ Start: 0, End: 11, }, }, Range: 5 * 365 * 24 * time.Hour, EndPos: 28, }, }, }, { input: "sum by (foo)(some_metric)", expected: &parser.AggregateExpr{ Op: parser.SUM, Expr: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 13, End: 24, }, }, Grouping: []string{"foo"}, PosRange: parser.PositionRange{ Start: 0, End: 25, }, }, }, { input: "sum by (foo)(some_metric @ 10)", expected: &parser.StepInvariantExpr{ Expr: &parser.AggregateExpr{ Op: parser.SUM, Expr: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 13, End: 29, }, Timestamp: makeInt64Pointer(10000), }, Grouping: []string{"foo"}, PosRange: parser.PositionRange{ Start: 0, End: 30, }, }, }, }, { input: "sum(some_metric1 @ 10) + sum(some_metric2 @ 20)", expected: &parser.StepInvariantExpr{ Expr: &parser.BinaryExpr{ Op: parser.ADD, VectorMatching: &parser.VectorMatching{}, LHS: &parser.AggregateExpr{ Op: parser.SUM, Expr: &parser.VectorSelector{ Name: "some_metric1", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric1"), }, PosRange: parser.PositionRange{ Start: 4, End: 21, }, Timestamp: makeInt64Pointer(10000), }, PosRange: parser.PositionRange{ Start: 0, End: 22, }, }, RHS: &parser.AggregateExpr{ Op: parser.SUM, Expr: &parser.VectorSelector{ Name: "some_metric2", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric2"), }, PosRange: parser.PositionRange{ Start: 29, End: 46, }, Timestamp: makeInt64Pointer(20000), }, PosRange: parser.PositionRange{ Start: 25, End: 47, }, }, }, }, }, { input: "some_metric and topk(5, rate(some_metric[1m] @ 20))", expected: &parser.BinaryExpr{ Op: parser.LAND, VectorMatching: &parser.VectorMatching{ Card: parser.CardManyToMany, }, LHS: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 0, End: 11, }, }, RHS: &parser.StepInvariantExpr{ Expr: &parser.AggregateExpr{ Op: parser.TOPK, Expr: &parser.Call{ Func: parser.MustGetFunction("rate"), Args: parser.Expressions{ &parser.MatrixSelector{ VectorSelector: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 29, End: 40, }, Timestamp: makeInt64Pointer(20000), }, Range: 1 * time.Minute, EndPos: 49, }, }, PosRange: parser.PositionRange{ Start: 24, End: 50, }, }, Param: &parser.NumberLiteral{ Val: 5, PosRange: parser.PositionRange{ Start: 21, End: 22, }, }, PosRange: parser.PositionRange{ Start: 16, End: 51, }, }, }, }, }, { input: "time()", expected: &parser.Call{ Func: parser.MustGetFunction("time"), Args: parser.Expressions{}, PosRange: parser.PositionRange{ Start: 0, End: 6, }, }, }, { input: `foo{bar="baz"}[10m:6s]`, expected: &parser.SubqueryExpr{ Expr: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "bar", "baz"), parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 0, End: 14, }, }, Range: 10 * time.Minute, Step: 6 * time.Second, EndPos: 22, }, }, { input: `foo{bar="baz"}[10m:6s] @ 10`, expected: &parser.StepInvariantExpr{ Expr: &parser.SubqueryExpr{ Expr: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "bar", "baz"), parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 0, End: 14, }, }, Range: 10 * time.Minute, Step: 6 * time.Second, Timestamp: makeInt64Pointer(10000), EndPos: 27, }, }, }, { // Even though the subquery is step invariant, the inside is also wrapped separately. input: `sum(foo{bar="baz"} @ 20)[10m:6s] @ 10`, expected: &parser.StepInvariantExpr{ Expr: &parser.SubqueryExpr{ Expr: &parser.StepInvariantExpr{ Expr: &parser.AggregateExpr{ Op: parser.SUM, Expr: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "bar", "baz"), parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 4, End: 23, }, Timestamp: makeInt64Pointer(20000), }, PosRange: parser.PositionRange{ Start: 0, End: 24, }, }, }, Range: 10 * time.Minute, Step: 6 * time.Second, Timestamp: makeInt64Pointer(10000), EndPos: 37, }, }, }, { input: `min_over_time(rate(foo{bar="baz"}[2s])[5m:] @ 1603775091)[4m:3s]`, expected: &parser.SubqueryExpr{ Expr: &parser.StepInvariantExpr{ Expr: &parser.Call{ Func: parser.MustGetFunction("min_over_time"), Args: parser.Expressions{ &parser.SubqueryExpr{ Expr: &parser.Call{ Func: parser.MustGetFunction("rate"), Args: parser.Expressions{ &parser.MatrixSelector{ VectorSelector: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "bar", "baz"), parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 19, End: 33, }, }, Range: 2 * time.Second, EndPos: 37, }, }, PosRange: parser.PositionRange{ Start: 14, End: 38, }, }, Range: 5 * time.Minute, Timestamp: makeInt64Pointer(1603775091000), EndPos: 56, }, }, PosRange: parser.PositionRange{ Start: 0, End: 57, }, }, }, Range: 4 * time.Minute, Step: 3 * time.Second, EndPos: 64, }, }, { input: `some_metric @ 123 offset 1m [10m:5s]`, expected: &parser.SubqueryExpr{ Expr: &parser.StepInvariantExpr{ Expr: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 0, End: 27, }, Timestamp: makeInt64Pointer(123000), OriginalOffset: 1 * time.Minute, }, }, Range: 10 * time.Minute, Step: 5 * time.Second, EndPos: 36, }, }, { input: `some_metric[10m:5s] offset 1m @ 123`, expected: &parser.StepInvariantExpr{ Expr: &parser.SubqueryExpr{ Expr: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 0, End: 11, }, }, Timestamp: makeInt64Pointer(123000), OriginalOffset: 1 * time.Minute, Range: 10 * time.Minute, Step: 5 * time.Second, EndPos: 35, }, }, }, { input: `(foo + bar{nm="val"} @ 1234)[5m:] @ 1603775019`, expected: &parser.StepInvariantExpr{ Expr: &parser.SubqueryExpr{ Expr: &parser.ParenExpr{ Expr: &parser.BinaryExpr{ Op: parser.ADD, VectorMatching: &parser.VectorMatching{ Card: parser.CardOneToOne, }, LHS: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 1, End: 4, }, }, RHS: &parser.StepInvariantExpr{ Expr: &parser.VectorSelector{ Name: "bar", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "nm", "val"), parser.MustLabelMatcher(labels.MatchEqual, "__name__", "bar"), }, Timestamp: makeInt64Pointer(1234000), PosRange: parser.PositionRange{ Start: 7, End: 27, }, }, }, }, PosRange: parser.PositionRange{ Start: 0, End: 28, }, }, Range: 5 * time.Minute, Timestamp: makeInt64Pointer(1603775019000), EndPos: 46, }, }, }, { input: "abs(abs(metric @ 10))", expected: &parser.StepInvariantExpr{ Expr: &parser.Call{ Func: &parser.Function{ Name: "abs", ArgTypes: []parser.ValueType{parser.ValueTypeVector}, ReturnType: parser.ValueTypeVector, }, Args: parser.Expressions{&parser.Call{ Func: &parser.Function{ Name: "abs", ArgTypes: []parser.ValueType{parser.ValueTypeVector}, ReturnType: parser.ValueTypeVector, }, Args: parser.Expressions{&parser.VectorSelector{ Name: "metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "metric"), }, PosRange: parser.PositionRange{ Start: 8, End: 19, }, Timestamp: makeInt64Pointer(10000), }}, PosRange: parser.PositionRange{ Start: 4, End: 20, }, }}, PosRange: parser.PositionRange{ Start: 0, End: 21, }, }, }, }, { input: "sum(sum(some_metric1 @ 10) + sum(some_metric2 @ 20))", expected: &parser.StepInvariantExpr{ Expr: &parser.AggregateExpr{ Op: parser.SUM, Expr: &parser.BinaryExpr{ Op: parser.ADD, VectorMatching: &parser.VectorMatching{}, LHS: &parser.AggregateExpr{ Op: parser.SUM, Expr: &parser.VectorSelector{ Name: "some_metric1", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric1"), }, PosRange: parser.PositionRange{ Start: 8, End: 25, }, Timestamp: makeInt64Pointer(10000), }, PosRange: parser.PositionRange{ Start: 4, End: 26, }, }, RHS: &parser.AggregateExpr{ Op: parser.SUM, Expr: &parser.VectorSelector{ Name: "some_metric2", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric2"), }, PosRange: parser.PositionRange{ Start: 33, End: 50, }, Timestamp: makeInt64Pointer(20000), }, PosRange: parser.PositionRange{ Start: 29, End: 52, }, }, }, PosRange: parser.PositionRange{ Start: 0, End: 52, }, }, }, }, { input: `foo @ start()`, expected: &parser.StepInvariantExpr{ Expr: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 0, End: 13, }, Timestamp: makeInt64Pointer(timestamp.FromTime(startTime)), StartOrEnd: parser.START, }, }, }, { input: `foo @ end()`, expected: &parser.StepInvariantExpr{ Expr: &parser.VectorSelector{ Name: "foo", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "foo"), }, PosRange: parser.PositionRange{ Start: 0, End: 11, }, Timestamp: makeInt64Pointer(timestamp.FromTime(endTime)), StartOrEnd: parser.END, }, }, }, { input: `test[5y] @ start()`, expected: &parser.StepInvariantExpr{ Expr: &parser.MatrixSelector{ VectorSelector: &parser.VectorSelector{ Name: "test", Timestamp: makeInt64Pointer(timestamp.FromTime(startTime)), StartOrEnd: parser.START, LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "test"), }, PosRange: parser.PositionRange{ Start: 0, End: 4, }, }, Range: 5 * 365 * 24 * time.Hour, EndPos: 18, }, }, }, { input: `test[5y] @ end()`, expected: &parser.StepInvariantExpr{ Expr: &parser.MatrixSelector{ VectorSelector: &parser.VectorSelector{ Name: "test", Timestamp: makeInt64Pointer(timestamp.FromTime(endTime)), StartOrEnd: parser.END, LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "test"), }, PosRange: parser.PositionRange{ Start: 0, End: 4, }, }, Range: 5 * 365 * 24 * time.Hour, EndPos: 16, }, }, }, { input: `some_metric[10m:5s] @ start()`, expected: &parser.StepInvariantExpr{ Expr: &parser.SubqueryExpr{ Expr: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 0, End: 11, }, }, Timestamp: makeInt64Pointer(timestamp.FromTime(startTime)), StartOrEnd: parser.START, Range: 10 * time.Minute, Step: 5 * time.Second, EndPos: 29, }, }, }, { input: `some_metric[10m:5s] @ end()`, expected: &parser.StepInvariantExpr{ Expr: &parser.SubqueryExpr{ Expr: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 0, End: 11, }, }, Timestamp: makeInt64Pointer(timestamp.FromTime(endTime)), StartOrEnd: parser.END, Range: 10 * time.Minute, Step: 5 * time.Second, EndPos: 27, }, }, }, { input: `floor(some_metric / (3 * 1024))`, outputTest: true, expected: &parser.Call{ Func: &parser.Function{ Name: "floor", ArgTypes: []parser.ValueType{parser.ValueTypeVector}, ReturnType: parser.ValueTypeVector, }, Args: parser.Expressions{ &parser.BinaryExpr{ Op: parser.DIV, LHS: &parser.VectorSelector{ Name: "some_metric", LabelMatchers: []*labels.Matcher{ parser.MustLabelMatcher(labels.MatchEqual, "__name__", "some_metric"), }, PosRange: parser.PositionRange{ Start: 6, End: 17, }, }, RHS: &parser.StepInvariantExpr{ Expr: &parser.ParenExpr{ Expr: &parser.BinaryExpr{ Op: parser.MUL, LHS: &parser.NumberLiteral{ Val: 3, PosRange: parser.PositionRange{ Start: 21, End: 22, }, }, RHS: &parser.NumberLiteral{ Val: 1024, PosRange: parser.PositionRange{ Start: 25, End: 29, }, }, }, PosRange: parser.PositionRange{ Start: 20, End: 30, }, }, }, }, }, PosRange: parser.PositionRange{ Start: 0, End: 31, }, }, }, } for _, test := range testCases { t.Run(test.input, func(t *testing.T) { expr, err := parser.ParseExpr(test.input) require.NoError(t, err) expr = PreprocessExpr(expr, startTime, endTime) if test.outputTest { require.Equal(t, test.input, expr.String(), "error on input '%s'", test.input) } require.Equal(t, test.expected, expr, "error on input '%s'", test.input) }) } } func TestEngineOptsValidation(t *testing.T) { cases := []struct { opts EngineOpts query string fail bool expError error }{ { opts: EngineOpts{EnableAtModifier: false}, query: "metric @ 100", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: false}, query: "rate(metric[1m] @ 100)", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: false}, query: "rate(metric[1h:1m] @ 100)", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: false}, query: "metric @ start()", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: false}, query: "rate(metric[1m] @ start())", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: false}, query: "rate(metric[1h:1m] @ start())", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: false}, query: "metric @ end()", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: false}, query: "rate(metric[1m] @ end())", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: false}, query: "rate(metric[1h:1m] @ end())", fail: true, expError: ErrValidationAtModifierDisabled, }, { opts: EngineOpts{EnableAtModifier: true}, query: "metric @ 100", }, { opts: EngineOpts{EnableAtModifier: true}, query: "rate(metric[1m] @ start())", }, { opts: EngineOpts{EnableAtModifier: true}, query: "rate(metric[1h:1m] @ end())", }, { opts: EngineOpts{EnableNegativeOffset: false}, query: "metric offset -1s", fail: true, expError: ErrValidationNegativeOffsetDisabled, }, { opts: EngineOpts{EnableNegativeOffset: true}, query: "metric offset -1s", }, { opts: EngineOpts{EnableAtModifier: true, EnableNegativeOffset: true}, query: "metric @ 100 offset -2m", }, { opts: EngineOpts{EnableAtModifier: true, EnableNegativeOffset: true}, query: "metric offset -2m @ 100", }, } for _, c := range cases { eng := NewEngine(c.opts) _, err1 := eng.NewInstantQuery(context.Background(), nil, nil, c.query, time.Unix(10, 0)) _, err2 := eng.NewRangeQuery(context.Background(), nil, nil, c.query, time.Unix(0, 0), time.Unix(10, 0), time.Second) if c.fail { require.Equal(t, c.expError, err1) require.Equal(t, c.expError, err2) } else { require.Nil(t, err1) require.Nil(t, err2) } } } func TestRangeQuery(t *testing.T) { cases := []struct { Name string Load string Query string Result parser.Value Start time.Time End time.Time Interval time.Duration }{ { Name: "sum_over_time with all values", Load: `load 30s bar 0 1 10 100 1000`, Query: "sum_over_time(bar[30s])", Result: Matrix{ Series{ Floats: []FPoint{{F: 0, T: 0}, {F: 11, T: 60000}, {F: 1100, T: 120000}}, Metric: labels.EmptyLabels(), }, }, Start: time.Unix(0, 0), End: time.Unix(120, 0), Interval: 60 * time.Second, }, { Name: "sum_over_time with trailing values", Load: `load 30s bar 0 1 10 100 1000 0 0 0 0`, Query: "sum_over_time(bar[30s])", Result: Matrix{ Series{ Floats: []FPoint{{F: 0, T: 0}, {F: 11, T: 60000}, {F: 1100, T: 120000}}, Metric: labels.EmptyLabels(), }, }, Start: time.Unix(0, 0), End: time.Unix(120, 0), Interval: 60 * time.Second, }, { Name: "sum_over_time with all values long", Load: `load 30s bar 0 1 10 100 1000 10000 100000 1000000 10000000`, Query: "sum_over_time(bar[30s])", Result: Matrix{ Series{ Floats: []FPoint{{F: 0, T: 0}, {F: 11, T: 60000}, {F: 1100, T: 120000}, {F: 110000, T: 180000}, {F: 11000000, T: 240000}}, Metric: labels.EmptyLabels(), }, }, Start: time.Unix(0, 0), End: time.Unix(240, 0), Interval: 60 * time.Second, }, { Name: "sum_over_time with all values random", Load: `load 30s bar 5 17 42 2 7 905 51`, Query: "sum_over_time(bar[30s])", Result: Matrix{ Series{ Floats: []FPoint{{F: 5, T: 0}, {F: 59, T: 60000}, {F: 9, T: 120000}, {F: 956, T: 180000}}, Metric: labels.EmptyLabels(), }, }, Start: time.Unix(0, 0), End: time.Unix(180, 0), Interval: 60 * time.Second, }, { Name: "metric query", Load: `load 30s metric 1+1x4`, Query: "metric", Result: Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 3, T: 60000}, {F: 5, T: 120000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, Start: time.Unix(0, 0), End: time.Unix(120, 0), Interval: 1 * time.Minute, }, { Name: "metric query with trailing values", Load: `load 30s metric 1+1x8`, Query: "metric", Result: Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 3, T: 60000}, {F: 5, T: 120000}}, Metric: labels.FromStrings("__name__", "metric"), }, }, Start: time.Unix(0, 0), End: time.Unix(120, 0), Interval: 1 * time.Minute, }, { Name: "short-circuit", Load: `load 30s foo{job="1"} 1+1x4 bar{job="2"} 1+1x4`, Query: `foo > 2 or bar`, Result: Matrix{ Series{ Floats: []FPoint{{F: 1, T: 0}, {F: 3, T: 60000}, {F: 5, T: 120000}}, Metric: labels.FromStrings( "__name__", "bar", "job", "2", ), }, Series{ Floats: []FPoint{{F: 3, T: 60000}, {F: 5, T: 120000}}, Metric: labels.FromStrings( "__name__", "foo", "job", "1", ), }, }, Start: time.Unix(0, 0), End: time.Unix(120, 0), Interval: 1 * time.Minute, }, } for _, c := range cases { t.Run(c.Name, func(t *testing.T) { engine := newTestEngine() storage := LoadedStorage(t, c.Load) t.Cleanup(func() { storage.Close() }) qry, err := engine.NewRangeQuery(context.Background(), storage, nil, c.Query, c.Start, c.End, c.Interval) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) require.Equal(t, c.Result, res.Value) }) } } func TestNativeHistogramRate(t *testing.T) { // TODO(beorn7): Integrate histograms into the PromQL testing framework // and write more tests there. engine := newTestEngine() storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) seriesName := "sparse_histogram_series" lbls := labels.FromStrings("__name__", seriesName) app := storage.Appender(context.Background()) for i, h := range tsdbutil.GenerateTestHistograms(100) { _, err := app.AppendHistogram(0, lbls, int64(i)*int64(15*time.Second/time.Millisecond), h, nil) require.NoError(t, err) } require.NoError(t, app.Commit()) queryString := fmt.Sprintf("rate(%s[1m])", seriesName) qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(int64(5*time.Minute/time.Millisecond))) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) require.Len(t, vector, 1) actualHistogram := vector[0].H expectedHistogram := &histogram.FloatHistogram{ CounterResetHint: histogram.GaugeType, Schema: 1, ZeroThreshold: 0.001, ZeroCount: 1. / 15., Count: 9. / 15., Sum: 1.226666666666667, PositiveSpans: []histogram.Span{{Offset: 0, Length: 2}, {Offset: 1, Length: 2}}, PositiveBuckets: []float64{1. / 15., 1. / 15., 1. / 15., 1. / 15.}, NegativeSpans: []histogram.Span{{Offset: 0, Length: 2}, {Offset: 1, Length: 2}}, NegativeBuckets: []float64{1. / 15., 1. / 15., 1. / 15., 1. / 15.}, } require.Equal(t, expectedHistogram, actualHistogram) } func TestNativeFloatHistogramRate(t *testing.T) { // TODO(beorn7): Integrate histograms into the PromQL testing framework // and write more tests there. engine := newTestEngine() storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) seriesName := "sparse_histogram_series" lbls := labels.FromStrings("__name__", seriesName) app := storage.Appender(context.Background()) for i, fh := range tsdbutil.GenerateTestFloatHistograms(100) { _, err := app.AppendHistogram(0, lbls, int64(i)*int64(15*time.Second/time.Millisecond), nil, fh) require.NoError(t, err) } require.NoError(t, app.Commit()) queryString := fmt.Sprintf("rate(%s[1m])", seriesName) qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(int64(5*time.Minute/time.Millisecond))) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) require.Len(t, vector, 1) actualHistogram := vector[0].H expectedHistogram := &histogram.FloatHistogram{ CounterResetHint: histogram.GaugeType, Schema: 1, ZeroThreshold: 0.001, ZeroCount: 1. / 15., Count: 9. / 15., Sum: 1.226666666666667, PositiveSpans: []histogram.Span{{Offset: 0, Length: 2}, {Offset: 1, Length: 2}}, PositiveBuckets: []float64{1. / 15., 1. / 15., 1. / 15., 1. / 15.}, NegativeSpans: []histogram.Span{{Offset: 0, Length: 2}, {Offset: 1, Length: 2}}, NegativeBuckets: []float64{1. / 15., 1. / 15., 1. / 15., 1. / 15.}, } require.Equal(t, expectedHistogram, actualHistogram) } func TestNativeHistogram_HistogramCountAndSum(t *testing.T) { // TODO(codesome): Integrate histograms into the PromQL testing framework // and write more tests there. h := &histogram.Histogram{ Count: 24, ZeroCount: 4, ZeroThreshold: 0.001, Sum: 100, Schema: 0, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{2, 1, -2, 3}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, NegativeBuckets: []int64{2, 1, -2, 3}, } for _, floatHisto := range []bool{true, false} { t.Run(fmt.Sprintf("floatHistogram=%t", floatHisto), func(t *testing.T) { engine := newTestEngine() storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) seriesName := "sparse_histogram_series" lbls := labels.FromStrings("__name__", seriesName) ts := int64(10 * time.Minute / time.Millisecond) app := storage.Appender(context.Background()) var err error if floatHisto { _, err = app.AppendHistogram(0, lbls, ts, nil, h.ToFloat()) } else { _, err = app.AppendHistogram(0, lbls, ts, h, nil) } require.NoError(t, err) require.NoError(t, app.Commit()) queryString := fmt.Sprintf("histogram_count(%s)", seriesName) qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) require.Len(t, vector, 1) require.Nil(t, vector[0].H) if floatHisto { require.Equal(t, h.ToFloat().Count, vector[0].F) } else { require.Equal(t, float64(h.Count), vector[0].F) } queryString = fmt.Sprintf("histogram_sum(%s)", seriesName) qry, err = engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res = qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err = res.Vector() require.NoError(t, err) require.Len(t, vector, 1) require.Nil(t, vector[0].H) if floatHisto { require.Equal(t, h.ToFloat().Sum, vector[0].F) } else { require.Equal(t, h.Sum, vector[0].F) } }) } } func TestNativeHistogram_HistogramStdDevVar(t *testing.T) { // TODO(codesome): Integrate histograms into the PromQL testing framework // and write more tests there. testCases := []struct { name string h *histogram.Histogram stdVar float64 }{ { name: "1, 2, 3, 4 low-res", h: &histogram.Histogram{ Count: 4, Sum: 10, Schema: 2, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 1}, {Offset: 3, Length: 1}, {Offset: 2, Length: 2}, }, PositiveBuckets: []int64{1, 0, 0, 0}, }, stdVar: 1.163807968526718, // actual variance: 1.25 }, { name: "1, 2, 3, 4 hi-res", h: &histogram.Histogram{ Count: 4, Sum: 10, Schema: 8, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 1}, {Offset: 255, Length: 1}, {Offset: 149, Length: 1}, {Offset: 105, Length: 1}, }, PositiveBuckets: []int64{1, 0, 0, 0}, }, stdVar: 1.2471347737158793, // actual variance: 1.25 }, { name: "-50, -8, 0, 3, 8, 9, 100", h: &histogram.Histogram{ Count: 7, ZeroCount: 1, Sum: 62, Schema: 3, PositiveSpans: []histogram.Span{ {Offset: 13, Length: 1}, {Offset: 10, Length: 1}, {Offset: 1, Length: 1}, {Offset: 27, Length: 1}, }, PositiveBuckets: []int64{1, 0, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 24, Length: 1}, {Offset: 21, Length: 1}, }, NegativeBuckets: []int64{1, 0}, }, stdVar: 1544.8582535368798, // actual variance: 1738.4082 }, { name: "-50, -8, 0, 3, 8, 9, 100, NaN", h: &histogram.Histogram{ Count: 8, ZeroCount: 1, Sum: math.NaN(), Schema: 3, PositiveSpans: []histogram.Span{ {Offset: 13, Length: 1}, {Offset: 10, Length: 1}, {Offset: 1, Length: 1}, {Offset: 27, Length: 1}, }, PositiveBuckets: []int64{1, 0, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 24, Length: 1}, {Offset: 21, Length: 1}, }, NegativeBuckets: []int64{1, 0}, }, stdVar: math.NaN(), }, { name: "-50, -8, 0, 3, 8, 9, 100, +Inf", h: &histogram.Histogram{ Count: 8, ZeroCount: 1, Sum: math.Inf(1), Schema: 3, PositiveSpans: []histogram.Span{ {Offset: 13, Length: 1}, {Offset: 10, Length: 1}, {Offset: 1, Length: 1}, {Offset: 27, Length: 1}, }, PositiveBuckets: []int64{1, 0, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 24, Length: 1}, {Offset: 21, Length: 1}, }, NegativeBuckets: []int64{1, 0}, }, stdVar: math.NaN(), }, } for _, tc := range testCases { for _, floatHisto := range []bool{true, false} { t.Run(fmt.Sprintf("%s floatHistogram=%t", tc.name, floatHisto), func(t *testing.T) { engine := newTestEngine() storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) seriesName := "sparse_histogram_series" lbls := labels.FromStrings("__name__", seriesName) ts := int64(10 * time.Minute / time.Millisecond) app := storage.Appender(context.Background()) var err error if floatHisto { _, err = app.AppendHistogram(0, lbls, ts, nil, tc.h.ToFloat()) } else { _, err = app.AppendHistogram(0, lbls, ts, tc.h, nil) } require.NoError(t, err) require.NoError(t, app.Commit()) queryString := fmt.Sprintf("histogram_stdvar(%s)", seriesName) qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) require.Len(t, vector, 1) require.Nil(t, vector[0].H) require.InEpsilon(t, tc.stdVar, vector[0].F, 1e-12) queryString = fmt.Sprintf("histogram_stddev(%s)", seriesName) qry, err = engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res = qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err = res.Vector() require.NoError(t, err) require.Len(t, vector, 1) require.Nil(t, vector[0].H) require.InEpsilon(t, math.Sqrt(tc.stdVar), vector[0].F, 1e-12) }) } } } func TestNativeHistogram_HistogramQuantile(t *testing.T) { // TODO(codesome): Integrate histograms into the PromQL testing framework // and write more tests there. type subCase struct { quantile string value float64 } cases := []struct { text string // Histogram to test. h *histogram.Histogram // Different quantiles to test for this histogram. subCases []subCase }{ { text: "all positive buckets with zero bucket", h: &histogram.Histogram{ Count: 12, ZeroCount: 2, ZeroThreshold: 0.001, Sum: 100, // Does not matter. Schema: 0, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{2, 1, -2, 3}, }, subCases: []subCase{ { quantile: "1.0001", value: math.Inf(1), }, { quantile: "1", value: 16, }, { quantile: "0.99", value: 15.759999999999998, }, { quantile: "0.9", value: 13.600000000000001, }, { quantile: "0.6", value: 4.799999999999997, }, { quantile: "0.5", value: 1.6666666666666665, }, { // Zero bucket. quantile: "0.1", value: 0.0006000000000000001, }, { quantile: "0", value: 0, }, { quantile: "-1", value: math.Inf(-1), }, }, }, { text: "all negative buckets with zero bucket", h: &histogram.Histogram{ Count: 12, ZeroCount: 2, ZeroThreshold: 0.001, Sum: 100, // Does not matter. Schema: 0, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, NegativeBuckets: []int64{2, 1, -2, 3}, }, subCases: []subCase{ { quantile: "1.0001", value: math.Inf(1), }, { // Zero bucket. quantile: "1", value: 0, }, { // Zero bucket. quantile: "0.99", value: -6.000000000000048e-05, }, { // Zero bucket. quantile: "0.9", value: -0.0005999999999999996, }, { quantile: "0.5", value: -1.6666666666666667, }, { quantile: "0.1", value: -13.6, }, { quantile: "0", value: -16, }, { quantile: "-1", value: math.Inf(-1), }, }, }, { text: "both positive and negative buckets with zero bucket", h: &histogram.Histogram{ Count: 24, ZeroCount: 4, ZeroThreshold: 0.001, Sum: 100, // Does not matter. Schema: 0, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{2, 1, -2, 3}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, NegativeBuckets: []int64{2, 1, -2, 3}, }, subCases: []subCase{ { quantile: "1.0001", value: math.Inf(1), }, { quantile: "1", value: 16, }, { quantile: "0.99", value: 15.519999999999996, }, { quantile: "0.9", value: 11.200000000000003, }, { quantile: "0.7", value: 1.2666666666666657, }, { // Zero bucket. quantile: "0.55", value: 0.0006000000000000005, }, { // Zero bucket. quantile: "0.5", value: 0, }, { // Zero bucket. quantile: "0.45", value: -0.0005999999999999996, }, { quantile: "0.3", value: -1.266666666666667, }, { quantile: "0.1", value: -11.2, }, { quantile: "0.01", value: -15.52, }, { quantile: "0", value: -16, }, { quantile: "-1", value: math.Inf(-1), }, }, }, } engine := newTestEngine() storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) idx := int64(0) for _, floatHisto := range []bool{true, false} { for _, c := range cases { t.Run(fmt.Sprintf("%s floatHistogram=%t", c.text, floatHisto), func(t *testing.T) { seriesName := "sparse_histogram_series" lbls := labels.FromStrings("__name__", seriesName) ts := idx * int64(10*time.Minute/time.Millisecond) app := storage.Appender(context.Background()) var err error if floatHisto { _, err = app.AppendHistogram(0, lbls, ts, nil, c.h.ToFloat()) } else { _, err = app.AppendHistogram(0, lbls, ts, c.h, nil) } require.NoError(t, err) require.NoError(t, app.Commit()) for j, sc := range c.subCases { t.Run(fmt.Sprintf("%d %s", j, sc.quantile), func(t *testing.T) { queryString := fmt.Sprintf("histogram_quantile(%s, %s)", sc.quantile, seriesName) qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) require.Len(t, vector, 1) require.Nil(t, vector[0].H) require.True(t, almostEqual(sc.value, vector[0].F)) }) } idx++ }) } } } func TestNativeHistogram_HistogramFraction(t *testing.T) { // TODO(codesome): Integrate histograms into the PromQL testing framework // and write more tests there. type subCase struct { lower, upper string value float64 } invariantCases := []subCase{ { lower: "42", upper: "3.1415", value: 0, }, { lower: "0", upper: "0", value: 0, }, { lower: "0.000001", upper: "0.000001", value: 0, }, { lower: "42", upper: "42", value: 0, }, { lower: "-3.1", upper: "-3.1", value: 0, }, { lower: "3.1415", upper: "NaN", value: math.NaN(), }, { lower: "NaN", upper: "42", value: math.NaN(), }, { lower: "NaN", upper: "NaN", value: math.NaN(), }, { lower: "-Inf", upper: "+Inf", value: 1, }, } cases := []struct { text string // Histogram to test. h *histogram.Histogram // Different ranges to test for this histogram. subCases []subCase }{ { text: "empty histogram", h: &histogram.Histogram{}, subCases: []subCase{ { lower: "3.1415", upper: "42", value: math.NaN(), }, }, }, { text: "all positive buckets with zero bucket", h: &histogram.Histogram{ Count: 12, ZeroCount: 2, ZeroThreshold: 0.001, Sum: 100, // Does not matter. Schema: 0, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{2, 1, -2, 3}, // Abs: 2, 3, 1, 4 }, subCases: append([]subCase{ { lower: "0", upper: "+Inf", value: 1, }, { lower: "-Inf", upper: "0", value: 0, }, { lower: "-0.001", upper: "0", value: 0, }, { lower: "0", upper: "0.001", value: 2. / 12., }, { lower: "0", upper: "0.0005", value: 1. / 12., }, { lower: "0.001", upper: "inf", value: 10. / 12., }, { lower: "-inf", upper: "-0.001", value: 0, }, { lower: "1", upper: "2", value: 3. / 12., }, { lower: "1.5", upper: "2", value: 1.5 / 12., }, { lower: "1", upper: "8", value: 4. / 12., }, { lower: "1", upper: "6", value: 3.5 / 12., }, { lower: "1.5", upper: "6", value: 2. / 12., }, { lower: "-2", upper: "-1", value: 0, }, { lower: "-2", upper: "-1.5", value: 0, }, { lower: "-8", upper: "-1", value: 0, }, { lower: "-6", upper: "-1", value: 0, }, { lower: "-6", upper: "-1.5", value: 0, }, }, invariantCases...), }, { text: "all negative buckets with zero bucket", h: &histogram.Histogram{ Count: 12, ZeroCount: 2, ZeroThreshold: 0.001, Sum: 100, // Does not matter. Schema: 0, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, NegativeBuckets: []int64{2, 1, -2, 3}, }, subCases: append([]subCase{ { lower: "0", upper: "+Inf", value: 0, }, { lower: "-Inf", upper: "0", value: 1, }, { lower: "-0.001", upper: "0", value: 2. / 12., }, { lower: "0", upper: "0.001", value: 0, }, { lower: "-0.0005", upper: "0", value: 1. / 12., }, { lower: "0.001", upper: "inf", value: 0, }, { lower: "-inf", upper: "-0.001", value: 10. / 12., }, { lower: "1", upper: "2", value: 0, }, { lower: "1.5", upper: "2", value: 0, }, { lower: "1", upper: "8", value: 0, }, { lower: "1", upper: "6", value: 0, }, { lower: "1.5", upper: "6", value: 0, }, { lower: "-2", upper: "-1", value: 3. / 12., }, { lower: "-2", upper: "-1.5", value: 1.5 / 12., }, { lower: "-8", upper: "-1", value: 4. / 12., }, { lower: "-6", upper: "-1", value: 3.5 / 12., }, { lower: "-6", upper: "-1.5", value: 2. / 12., }, }, invariantCases...), }, { text: "both positive and negative buckets with zero bucket", h: &histogram.Histogram{ Count: 24, ZeroCount: 4, ZeroThreshold: 0.001, Sum: 100, // Does not matter. Schema: 0, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{2, 1, -2, 3}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, NegativeBuckets: []int64{2, 1, -2, 3}, }, subCases: append([]subCase{ { lower: "0", upper: "+Inf", value: 0.5, }, { lower: "-Inf", upper: "0", value: 0.5, }, { lower: "-0.001", upper: "0", value: 2. / 24, }, { lower: "0", upper: "0.001", value: 2. / 24., }, { lower: "-0.0005", upper: "0.0005", value: 2. / 24., }, { lower: "0.001", upper: "inf", value: 10. / 24., }, { lower: "-inf", upper: "-0.001", value: 10. / 24., }, { lower: "1", upper: "2", value: 3. / 24., }, { lower: "1.5", upper: "2", value: 1.5 / 24., }, { lower: "1", upper: "8", value: 4. / 24., }, { lower: "1", upper: "6", value: 3.5 / 24., }, { lower: "1.5", upper: "6", value: 2. / 24., }, { lower: "-2", upper: "-1", value: 3. / 24., }, { lower: "-2", upper: "-1.5", value: 1.5 / 24., }, { lower: "-8", upper: "-1", value: 4. / 24., }, { lower: "-6", upper: "-1", value: 3.5 / 24., }, { lower: "-6", upper: "-1.5", value: 2. / 24., }, }, invariantCases...), }, } idx := int64(0) for _, floatHisto := range []bool{true, false} { for _, c := range cases { t.Run(fmt.Sprintf("%s floatHistogram=%t", c.text, floatHisto), func(t *testing.T) { engine := newTestEngine() storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) seriesName := "sparse_histogram_series" lbls := labels.FromStrings("__name__", seriesName) ts := idx * int64(10*time.Minute/time.Millisecond) app := storage.Appender(context.Background()) var err error if floatHisto { _, err = app.AppendHistogram(0, lbls, ts, nil, c.h.ToFloat()) } else { _, err = app.AppendHistogram(0, lbls, ts, c.h, nil) } require.NoError(t, err) require.NoError(t, app.Commit()) for j, sc := range c.subCases { t.Run(fmt.Sprintf("%d %s %s", j, sc.lower, sc.upper), func(t *testing.T) { queryString := fmt.Sprintf("histogram_fraction(%s, %s, %s)", sc.lower, sc.upper, seriesName) qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) require.Len(t, vector, 1) require.Nil(t, vector[0].H) if math.IsNaN(sc.value) { require.True(t, math.IsNaN(vector[0].F)) return } require.Equal(t, sc.value, vector[0].F) }) } idx++ }) } } } func TestNativeHistogram_Sum_Count_Add_AvgOperator(t *testing.T) { // TODO(codesome): Integrate histograms into the PromQL testing framework // and write more tests there. cases := []struct { histograms []histogram.Histogram expected histogram.FloatHistogram expectedAvg histogram.FloatHistogram }{ { histograms: []histogram.Histogram{ { CounterResetHint: histogram.GaugeType, Schema: 0, Count: 25, Sum: 1234.5, ZeroThreshold: 0.001, ZeroCount: 4, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{1, 1, -1, 0}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 2, Length: 2}, }, NegativeBuckets: []int64{2, 2, -3, 8}, }, { CounterResetHint: histogram.GaugeType, Schema: 0, Count: 41, Sum: 2345.6, ZeroThreshold: 0.001, ZeroCount: 5, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 4}, {Offset: 0, Length: 0}, {Offset: 0, Length: 3}, }, PositiveBuckets: []int64{1, 2, -2, 1, -1, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 1, Length: 4}, {Offset: 2, Length: 0}, {Offset: 2, Length: 3}, }, NegativeBuckets: []int64{1, 3, -2, 5, -2, 0, -3}, }, { CounterResetHint: histogram.GaugeType, Schema: 0, Count: 41, Sum: 1111.1, ZeroThreshold: 0.001, ZeroCount: 5, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 4}, {Offset: 0, Length: 0}, {Offset: 0, Length: 3}, }, PositiveBuckets: []int64{1, 2, -2, 1, -1, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 1, Length: 4}, {Offset: 2, Length: 0}, {Offset: 2, Length: 3}, }, NegativeBuckets: []int64{1, 3, -2, 5, -2, 0, -3}, }, { CounterResetHint: histogram.GaugeType, Schema: 1, // Everything is 0 just to make the count 4 so avg has nicer numbers. }, }, expected: histogram.FloatHistogram{ CounterResetHint: histogram.GaugeType, Schema: 0, ZeroThreshold: 0.001, ZeroCount: 14, Count: 107, Sum: 4691.2, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 7}, }, PositiveBuckets: []float64{3, 8, 2, 5, 3, 2, 2}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 6}, {Offset: 3, Length: 3}, }, NegativeBuckets: []float64{2, 6, 8, 4, 15, 9, 10, 10, 4}, }, expectedAvg: histogram.FloatHistogram{ CounterResetHint: histogram.GaugeType, Schema: 0, ZeroThreshold: 0.001, ZeroCount: 3.5, Count: 26.75, Sum: 1172.8, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 7}, }, PositiveBuckets: []float64{0.75, 2, 0.5, 1.25, 0.75, 0.5, 0.5}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 6}, {Offset: 3, Length: 3}, }, NegativeBuckets: []float64{0.5, 1.5, 2, 1, 3.75, 2.25, 2.5, 2.5, 1}, }, }, } idx0 := int64(0) for _, c := range cases { for _, floatHisto := range []bool{true, false} { t.Run(fmt.Sprintf("floatHistogram=%t %d", floatHisto, idx0), func(t *testing.T) { storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) seriesName := "sparse_histogram_series" seriesNameOverTime := "sparse_histogram_series_over_time" engine := newTestEngine() ts := idx0 * int64(10*time.Minute/time.Millisecond) app := storage.Appender(context.Background()) for idx1, h := range c.histograms { lbls := labels.FromStrings("__name__", seriesName, "idx", fmt.Sprintf("%d", idx1)) // Since we mutate h later, we need to create a copy here. var err error if floatHisto { _, err = app.AppendHistogram(0, lbls, ts, nil, h.Copy().ToFloat()) } else { _, err = app.AppendHistogram(0, lbls, ts, h.Copy(), nil) } require.NoError(t, err) lbls = labels.FromStrings("__name__", seriesNameOverTime) newTs := ts + int64(idx1)*int64(time.Minute/time.Millisecond) // Since we mutate h later, we need to create a copy here. if floatHisto { _, err = app.AppendHistogram(0, lbls, newTs, nil, h.Copy().ToFloat()) } else { _, err = app.AppendHistogram(0, lbls, newTs, h.Copy(), nil) } require.NoError(t, err) } require.NoError(t, app.Commit()) queryAndCheck := func(queryString string, ts int64, exp Vector) { qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) require.Equal(t, exp, vector) } // sum(). queryString := fmt.Sprintf("sum(%s)", seriesName) queryAndCheck(queryString, ts, []Sample{{T: ts, H: &c.expected, Metric: labels.EmptyLabels()}}) // + operator. queryString = fmt.Sprintf(`%s{idx="0"}`, seriesName) for idx := 1; idx < len(c.histograms); idx++ { queryString += fmt.Sprintf(` + ignoring(idx) %s{idx="%d"}`, seriesName, idx) } queryAndCheck(queryString, ts, []Sample{{T: ts, H: &c.expected, Metric: labels.EmptyLabels()}}) // count(). queryString = fmt.Sprintf("count(%s)", seriesName) queryAndCheck(queryString, ts, []Sample{{T: ts, F: 4, Metric: labels.EmptyLabels()}}) // avg(). queryString = fmt.Sprintf("avg(%s)", seriesName) queryAndCheck(queryString, ts, []Sample{{T: ts, H: &c.expectedAvg, Metric: labels.EmptyLabels()}}) offset := int64(len(c.histograms) - 1) newTs := ts + offset*int64(time.Minute/time.Millisecond) // sum_over_time(). queryString = fmt.Sprintf("sum_over_time(%s[%dm:1m])", seriesNameOverTime, offset) queryAndCheck(queryString, newTs, []Sample{{T: newTs, H: &c.expected, Metric: labels.EmptyLabels()}}) // avg_over_time(). queryString = fmt.Sprintf("avg_over_time(%s[%dm:1m])", seriesNameOverTime, offset) queryAndCheck(queryString, newTs, []Sample{{T: newTs, H: &c.expectedAvg, Metric: labels.EmptyLabels()}}) }) idx0++ } } } func TestNativeHistogram_SubOperator(t *testing.T) { // TODO(codesome): Integrate histograms into the PromQL testing framework // and write more tests there. cases := []struct { histograms []histogram.Histogram expected histogram.FloatHistogram }{ { histograms: []histogram.Histogram{ { Schema: 0, Count: 41, Sum: 2345.6, ZeroThreshold: 0.001, ZeroCount: 5, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 4}, {Offset: 0, Length: 0}, {Offset: 0, Length: 3}, }, PositiveBuckets: []int64{1, 2, -2, 1, -1, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 1, Length: 4}, {Offset: 2, Length: 0}, {Offset: 2, Length: 3}, }, NegativeBuckets: []int64{1, 3, -2, 5, -2, 0, -3}, }, { Schema: 0, Count: 11, Sum: 1234.5, ZeroThreshold: 0.001, ZeroCount: 3, PositiveSpans: []histogram.Span{ {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{2, -1}, NegativeSpans: []histogram.Span{ {Offset: 2, Length: 2}, }, NegativeBuckets: []int64{3, -1}, }, }, expected: histogram.FloatHistogram{ Schema: 0, Count: 30, Sum: 1111.1, ZeroThreshold: 0.001, ZeroCount: 2, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 2}, {Offset: 1, Length: 4}, }, PositiveBuckets: []float64{1, 1, 2, 1, 1, 1}, NegativeSpans: []histogram.Span{ {Offset: 1, Length: 2}, {Offset: 1, Length: 1}, {Offset: 4, Length: 3}, }, NegativeBuckets: []float64{1, 1, 7, 5, 5, 2}, }, }, { histograms: []histogram.Histogram{ { Schema: 0, Count: 41, Sum: 2345.6, ZeroThreshold: 0.001, ZeroCount: 5, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 4}, {Offset: 0, Length: 0}, {Offset: 0, Length: 3}, }, PositiveBuckets: []int64{1, 2, -2, 1, -1, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 1, Length: 4}, {Offset: 2, Length: 0}, {Offset: 2, Length: 3}, }, NegativeBuckets: []int64{1, 3, -2, 5, -2, 0, -3}, }, { Schema: 1, Count: 11, Sum: 1234.5, ZeroThreshold: 0.001, ZeroCount: 3, PositiveSpans: []histogram.Span{ {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{2, -1}, NegativeSpans: []histogram.Span{ {Offset: 2, Length: 2}, }, NegativeBuckets: []int64{3, -1}, }, }, expected: histogram.FloatHistogram{ Schema: 0, Count: 30, Sum: 1111.1, ZeroThreshold: 0.001, ZeroCount: 2, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 1}, {Offset: 1, Length: 5}, }, PositiveBuckets: []float64{1, 1, 2, 1, 1, 1}, NegativeSpans: []histogram.Span{ {Offset: 1, Length: 4}, {Offset: 4, Length: 3}, }, NegativeBuckets: []float64{-2, 2, 2, 7, 5, 5, 2}, }, }, { histograms: []histogram.Histogram{ { Schema: 1, Count: 11, Sum: 1234.5, ZeroThreshold: 0.001, ZeroCount: 3, PositiveSpans: []histogram.Span{ {Offset: 1, Length: 2}, }, PositiveBuckets: []int64{2, -1}, NegativeSpans: []histogram.Span{ {Offset: 2, Length: 2}, }, NegativeBuckets: []int64{3, -1}, }, { Schema: 0, Count: 41, Sum: 2345.6, ZeroThreshold: 0.001, ZeroCount: 5, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 4}, {Offset: 0, Length: 0}, {Offset: 0, Length: 3}, }, PositiveBuckets: []int64{1, 2, -2, 1, -1, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 1, Length: 4}, {Offset: 2, Length: 0}, {Offset: 2, Length: 3}, }, NegativeBuckets: []int64{1, 3, -2, 5, -2, 0, -3}, }, }, expected: histogram.FloatHistogram{ Schema: 0, Count: -30, Sum: -1111.1, ZeroThreshold: 0.001, ZeroCount: -2, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 1}, {Offset: 1, Length: 5}, }, PositiveBuckets: []float64{-1, -1, -2, -1, -1, -1}, NegativeSpans: []histogram.Span{ {Offset: 1, Length: 4}, {Offset: 4, Length: 3}, }, NegativeBuckets: []float64{2, -2, -2, -7, -5, -5, -2}, }, }, } idx0 := int64(0) for _, c := range cases { for _, floatHisto := range []bool{true, false} { t.Run(fmt.Sprintf("floatHistogram=%t %d", floatHisto, idx0), func(t *testing.T) { engine := newTestEngine() storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) seriesName := "sparse_histogram_series" ts := idx0 * int64(10*time.Minute/time.Millisecond) app := storage.Appender(context.Background()) for idx1, h := range c.histograms { lbls := labels.FromStrings("__name__", seriesName, "idx", fmt.Sprintf("%d", idx1)) // Since we mutate h later, we need to create a copy here. var err error if floatHisto { _, err = app.AppendHistogram(0, lbls, ts, nil, h.Copy().ToFloat()) } else { _, err = app.AppendHistogram(0, lbls, ts, h.Copy(), nil) } require.NoError(t, err) } require.NoError(t, app.Commit()) queryAndCheck := func(queryString string, exp Vector) { qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) if len(vector) == len(exp) { for i, e := range exp { got := vector[i].H if got != e.H { // Error messages are better if we compare structs, not pointers. require.Equal(t, *e.H, *got) } } } require.Equal(t, exp, vector) } // - operator. queryString := fmt.Sprintf(`%s{idx="0"}`, seriesName) for idx := 1; idx < len(c.histograms); idx++ { queryString += fmt.Sprintf(` - ignoring(idx) %s{idx="%d"}`, seriesName, idx) } queryAndCheck(queryString, []Sample{{T: ts, H: &c.expected, Metric: labels.EmptyLabels()}}) }) } idx0++ } } func TestNativeHistogram_MulDivOperator(t *testing.T) { // TODO(codesome): Integrate histograms into the PromQL testing framework // and write more tests there. originalHistogram := histogram.Histogram{ Schema: 0, Count: 21, Sum: 33, ZeroThreshold: 0.001, ZeroCount: 3, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, PositiveBuckets: []int64{3, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, NegativeBuckets: []int64{3, 0, 0}, } cases := []struct { scalar float64 histogram histogram.Histogram expectedMul histogram.FloatHistogram expectedDiv histogram.FloatHistogram }{ { scalar: 3, histogram: originalHistogram, expectedMul: histogram.FloatHistogram{ Schema: 0, Count: 63, Sum: 99, ZeroThreshold: 0.001, ZeroCount: 9, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, PositiveBuckets: []float64{9, 9, 9}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, NegativeBuckets: []float64{9, 9, 9}, }, expectedDiv: histogram.FloatHistogram{ Schema: 0, Count: 7, Sum: 11, ZeroThreshold: 0.001, ZeroCount: 1, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, PositiveBuckets: []float64{1, 1, 1}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, NegativeBuckets: []float64{1, 1, 1}, }, }, { scalar: 0, histogram: originalHistogram, expectedMul: histogram.FloatHistogram{ Schema: 0, Count: 0, Sum: 0, ZeroThreshold: 0.001, ZeroCount: 0, PositiveSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, PositiveBuckets: []float64{0, 0, 0}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, NegativeBuckets: []float64{0, 0, 0}, }, expectedDiv: histogram.FloatHistogram{ Schema: 0, Count: math.Inf(1), Sum: math.Inf(1), ZeroThreshold: 0.001, ZeroCount: math.Inf(1), PositiveSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, PositiveBuckets: []float64{math.Inf(1), math.Inf(1), math.Inf(1)}, NegativeSpans: []histogram.Span{ {Offset: 0, Length: 3}, }, NegativeBuckets: []float64{math.Inf(1), math.Inf(1), math.Inf(1)}, }, }, } idx0 := int64(0) for _, c := range cases { for _, floatHisto := range []bool{true, false} { t.Run(fmt.Sprintf("floatHistogram=%t %d", floatHisto, idx0), func(t *testing.T) { storage := teststorage.New(t) t.Cleanup(func() { storage.Close() }) seriesName := "sparse_histogram_series" floatSeriesName := "float_series" engine := newTestEngine() ts := idx0 * int64(10*time.Minute/time.Millisecond) app := storage.Appender(context.Background()) h := c.histogram lbls := labels.FromStrings("__name__", seriesName) // Since we mutate h later, we need to create a copy here. var err error if floatHisto { _, err = app.AppendHistogram(0, lbls, ts, nil, h.Copy().ToFloat()) } else { _, err = app.AppendHistogram(0, lbls, ts, h.Copy(), nil) } require.NoError(t, err) _, err = app.Append(0, labels.FromStrings("__name__", floatSeriesName), ts, c.scalar) require.NoError(t, err) require.NoError(t, app.Commit()) queryAndCheck := func(queryString string, exp Vector) { qry, err := engine.NewInstantQuery(context.Background(), storage, nil, queryString, timestamp.Time(ts)) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vector, err := res.Vector() require.NoError(t, err) require.Equal(t, exp, vector) } // histogram * scalar. queryString := fmt.Sprintf(`%s * %f`, seriesName, c.scalar) queryAndCheck(queryString, []Sample{{T: ts, H: &c.expectedMul, Metric: labels.EmptyLabels()}}) // scalar * histogram. queryString = fmt.Sprintf(`%f * %s`, c.scalar, seriesName) queryAndCheck(queryString, []Sample{{T: ts, H: &c.expectedMul, Metric: labels.EmptyLabels()}}) // histogram * float. queryString = fmt.Sprintf(`%s * %s`, seriesName, floatSeriesName) queryAndCheck(queryString, []Sample{{T: ts, H: &c.expectedMul, Metric: labels.EmptyLabels()}}) // float * histogram. queryString = fmt.Sprintf(`%s * %s`, floatSeriesName, seriesName) queryAndCheck(queryString, []Sample{{T: ts, H: &c.expectedMul, Metric: labels.EmptyLabels()}}) // histogram / scalar. queryString = fmt.Sprintf(`%s / %f`, seriesName, c.scalar) queryAndCheck(queryString, []Sample{{T: ts, H: &c.expectedDiv, Metric: labels.EmptyLabels()}}) // histogram / float. queryString = fmt.Sprintf(`%s / %s`, seriesName, floatSeriesName) queryAndCheck(queryString, []Sample{{T: ts, H: &c.expectedDiv, Metric: labels.EmptyLabels()}}) }) idx0++ } } } func TestQueryLookbackDelta(t *testing.T) { var ( load = `load 5m metric 0 1 2 ` query = "metric" lastDatapointTs = time.Unix(600, 0) ) cases := []struct { name string ts time.Time engineLookback, queryLookback time.Duration expectSamples bool }{ { name: "default lookback delta", ts: lastDatapointTs.Add(defaultLookbackDelta), expectSamples: true, }, { name: "outside default lookback delta", ts: lastDatapointTs.Add(defaultLookbackDelta + time.Millisecond), expectSamples: false, }, { name: "custom engine lookback delta", ts: lastDatapointTs.Add(10 * time.Minute), engineLookback: 10 * time.Minute, expectSamples: true, }, { name: "outside custom engine lookback delta", ts: lastDatapointTs.Add(10*time.Minute + time.Millisecond), engineLookback: 10 * time.Minute, expectSamples: false, }, { name: "custom query lookback delta", ts: lastDatapointTs.Add(20 * time.Minute), engineLookback: 10 * time.Minute, queryLookback: 20 * time.Minute, expectSamples: true, }, { name: "outside custom query lookback delta", ts: lastDatapointTs.Add(20*time.Minute + time.Millisecond), engineLookback: 10 * time.Minute, queryLookback: 20 * time.Minute, expectSamples: false, }, { name: "negative custom query lookback delta", ts: lastDatapointTs.Add(20 * time.Minute), engineLookback: -10 * time.Minute, queryLookback: 20 * time.Minute, expectSamples: true, }, } for _, c := range cases { c := c t.Run(c.name, func(t *testing.T) { engine := newTestEngine() storage := LoadedStorage(t, load) t.Cleanup(func() { storage.Close() }) if c.engineLookback != 0 { engine.lookbackDelta = c.engineLookback } opts := NewPrometheusQueryOpts(false, c.queryLookback) qry, err := engine.NewInstantQuery(context.Background(), storage, opts, query, c.ts) require.NoError(t, err) res := qry.Exec(context.Background()) require.NoError(t, res.Err) vec, ok := res.Value.(Vector) require.True(t, ok) if c.expectSamples { require.NotEmpty(t, vec) } else { require.Empty(t, vec) } }) } }