// Copyright 2021 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tsdb import ( "context" "fmt" "math" "github.com/go-kit/log/level" "github.com/pkg/errors" "github.com/prometheus/prometheus/model/exemplar" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/model/metadata" "github.com/prometheus/prometheus/model/value" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/chunks" "github.com/prometheus/prometheus/tsdb/record" ) // initAppender is a helper to initialize the time bounds of the head // upon the first sample it receives. type initAppender struct { app storage.Appender head *Head } var _ storage.GetRef = &initAppender{} func (a *initAppender) Append(ref storage.SeriesRef, lset labels.Labels, t int64, v float64) (storage.SeriesRef, error) { if a.app != nil { return a.app.Append(ref, lset, t, v) } a.head.initTime(t) a.app = a.head.appender() return a.app.Append(ref, lset, t, v) } func (a *initAppender) AppendExemplar(ref storage.SeriesRef, l labels.Labels, e exemplar.Exemplar) (storage.SeriesRef, error) { // Check if exemplar storage is enabled. if !a.head.opts.EnableExemplarStorage || a.head.opts.MaxExemplars.Load() <= 0 { return 0, nil } if a.app != nil { return a.app.AppendExemplar(ref, l, e) } // We should never reach here given we would call Append before AppendExemplar // and we probably want to always base head/WAL min time on sample times. a.head.initTime(e.Ts) a.app = a.head.appender() return a.app.AppendExemplar(ref, l, e) } func (a *initAppender) AppendHistogram(ref storage.SeriesRef, l labels.Labels, t int64, h *histogram.Histogram, fh *histogram.FloatHistogram) (storage.SeriesRef, error) { if a.app != nil { return a.app.AppendHistogram(ref, l, t, h, fh) } a.head.initTime(t) a.app = a.head.appender() return a.app.AppendHistogram(ref, l, t, h, fh) } func (a *initAppender) UpdateMetadata(ref storage.SeriesRef, l labels.Labels, m metadata.Metadata) (storage.SeriesRef, error) { if a.app != nil { return a.app.UpdateMetadata(ref, l, m) } a.app = a.head.appender() return a.app.UpdateMetadata(ref, l, m) } // initTime initializes a head with the first timestamp. This only needs to be called // for a completely fresh head with an empty WAL. func (h *Head) initTime(t int64) { if !h.minTime.CompareAndSwap(math.MaxInt64, t) { return } // Ensure that max time is initialized to at least the min time we just set. // Concurrent appenders may already have set it to a higher value. h.maxTime.CompareAndSwap(math.MinInt64, t) } func (a *initAppender) GetRef(lset labels.Labels, hash uint64) (storage.SeriesRef, labels.Labels) { if g, ok := a.app.(storage.GetRef); ok { return g.GetRef(lset, hash) } return 0, labels.EmptyLabels() } func (a *initAppender) Commit() error { if a.app == nil { a.head.metrics.activeAppenders.Dec() return nil } return a.app.Commit() } func (a *initAppender) Rollback() error { if a.app == nil { a.head.metrics.activeAppenders.Dec() return nil } return a.app.Rollback() } // Appender returns a new Appender on the database. func (h *Head) Appender(_ context.Context) storage.Appender { h.metrics.activeAppenders.Inc() // The head cache might not have a starting point yet. The init appender // picks up the first appended timestamp as the base. if h.MinTime() == math.MaxInt64 { return &initAppender{ head: h, } } return h.appender() } func (h *Head) appender() *headAppender { minValidTime := h.appendableMinValidTime() appendID, cleanupAppendIDsBelow := h.iso.newAppendID(minValidTime) // Every appender gets an ID that is cleared upon commit/rollback. // Allocate the exemplars buffer only if exemplars are enabled. var exemplarsBuf []exemplarWithSeriesRef if h.opts.EnableExemplarStorage { exemplarsBuf = h.getExemplarBuffer() } return &headAppender{ head: h, minValidTime: minValidTime, mint: math.MaxInt64, maxt: math.MinInt64, headMaxt: h.MaxTime(), oooTimeWindow: h.opts.OutOfOrderTimeWindow.Load(), samples: h.getAppendBuffer(), sampleSeries: h.getSeriesBuffer(), exemplars: exemplarsBuf, histograms: h.getHistogramBuffer(), floatHistograms: h.getFloatHistogramBuffer(), metadata: h.getMetadataBuffer(), appendID: appendID, cleanupAppendIDsBelow: cleanupAppendIDsBelow, } } // appendableMinValidTime returns the minimum valid timestamp for appends, // such that samples stay ahead of prior blocks and the head compaction window. func (h *Head) appendableMinValidTime() int64 { // This boundary ensures that no samples will be added to the compaction window. // This allows race-free, concurrent appending and compaction. cwEnd := h.MaxTime() - h.chunkRange.Load()/2 // This boundary ensures that we avoid overlapping timeframes from one block to the next. // While not necessary for correctness, it means we're not required to use vertical compaction. minValid := h.minValidTime.Load() return max(cwEnd, minValid) } // AppendableMinValidTime returns the minimum valid time for samples to be appended to the Head. // Returns false if Head hasn't been initialized yet and the minimum time isn't known yet. func (h *Head) AppendableMinValidTime() (int64, bool) { if h.MinTime() == math.MaxInt64 { return 0, false } return h.appendableMinValidTime(), true } func max(a, b int64) int64 { if a > b { return a } return b } func (h *Head) getAppendBuffer() []record.RefSample { b := h.appendPool.Get() if b == nil { return make([]record.RefSample, 0, 512) } return b } func (h *Head) putAppendBuffer(b []record.RefSample) { h.appendPool.Put(b[:0]) } func (h *Head) getExemplarBuffer() []exemplarWithSeriesRef { b := h.exemplarsPool.Get() if b == nil { return make([]exemplarWithSeriesRef, 0, 512) } return b } func (h *Head) putExemplarBuffer(b []exemplarWithSeriesRef) { if b == nil { return } h.exemplarsPool.Put(b[:0]) } func (h *Head) getHistogramBuffer() []record.RefHistogramSample { b := h.histogramsPool.Get() if b == nil { return make([]record.RefHistogramSample, 0, 512) } return b } func (h *Head) putHistogramBuffer(b []record.RefHistogramSample) { h.histogramsPool.Put(b[:0]) } func (h *Head) getFloatHistogramBuffer() []record.RefFloatHistogramSample { b := h.floatHistogramsPool.Get() if b == nil { return make([]record.RefFloatHistogramSample, 0, 512) } return b } func (h *Head) putFloatHistogramBuffer(b []record.RefFloatHistogramSample) { h.floatHistogramsPool.Put(b[:0]) } func (h *Head) getMetadataBuffer() []record.RefMetadata { b := h.metadataPool.Get() if b == nil { return make([]record.RefMetadata, 0, 512) } return b } func (h *Head) putMetadataBuffer(b []record.RefMetadata) { h.metadataPool.Put(b[:0]) } func (h *Head) getSeriesBuffer() []*memSeries { b := h.seriesPool.Get() if b == nil { return make([]*memSeries, 0, 512) } return b } func (h *Head) putSeriesBuffer(b []*memSeries) { h.seriesPool.Put(b[:0]) } func (h *Head) getBytesBuffer() []byte { b := h.bytesPool.Get() if b == nil { return make([]byte, 0, 1024) } return b } func (h *Head) putBytesBuffer(b []byte) { h.bytesPool.Put(b[:0]) } type exemplarWithSeriesRef struct { ref storage.SeriesRef exemplar exemplar.Exemplar } type headAppender struct { head *Head minValidTime int64 // No samples below this timestamp are allowed. mint, maxt int64 headMaxt int64 // We track it here to not take the lock for every sample appended. oooTimeWindow int64 // Use the same for the entire append, and don't load the atomic for each sample. series []record.RefSeries // New series held by this appender. samples []record.RefSample // New float samples held by this appender. sampleSeries []*memSeries // Float series corresponding to the samples held by this appender (using corresponding slice indices - same series may appear more than once). histograms []record.RefHistogramSample // New histogram samples held by this appender. histogramSeries []*memSeries // HistogramSamples series corresponding to the samples held by this appender (using corresponding slice indices - same series may appear more than once). floatHistograms []record.RefFloatHistogramSample // New float histogram samples held by this appender. floatHistogramSeries []*memSeries // FloatHistogramSamples series corresponding to the samples held by this appender (using corresponding slice indices - same series may appear more than once). metadata []record.RefMetadata // New metadata held by this appender. metadataSeries []*memSeries // Series corresponding to the metadata held by this appender. exemplars []exemplarWithSeriesRef // New exemplars held by this appender. appendID, cleanupAppendIDsBelow uint64 closed bool } func (a *headAppender) Append(ref storage.SeriesRef, lset labels.Labels, t int64, v float64) (storage.SeriesRef, error) { // For OOO inserts, this restriction is irrelevant and will be checked later once we confirm the sample is an in-order append. // If OOO inserts are disabled, we may as well as check this as early as we can and avoid more work. if a.oooTimeWindow == 0 && t < a.minValidTime { a.head.metrics.outOfBoundSamples.WithLabelValues(sampleMetricTypeFloat).Inc() return 0, storage.ErrOutOfBounds } s := a.head.series.getByID(chunks.HeadSeriesRef(ref)) if s == nil { // Ensure no empty labels have gotten through. lset = lset.WithoutEmpty() if lset.IsEmpty() { return 0, errors.Wrap(ErrInvalidSample, "empty labelset") } if l, dup := lset.HasDuplicateLabelNames(); dup { return 0, errors.Wrap(ErrInvalidSample, fmt.Sprintf(`label name "%s" is not unique`, l)) } var created bool var err error s, created, err = a.head.getOrCreate(lset.Hash(), lset) if err != nil { return 0, err } if created { a.series = append(a.series, record.RefSeries{ Ref: s.ref, Labels: lset, }) } } if value.IsStaleNaN(v) { switch { case s.lastHistogramValue != nil: return a.AppendHistogram(ref, lset, t, &histogram.Histogram{Sum: v}, nil) case s.lastFloatHistogramValue != nil: return a.AppendHistogram(ref, lset, t, nil, &histogram.FloatHistogram{Sum: v}) } } s.Lock() // TODO(codesome): If we definitely know at this point that the sample is ooo, then optimise // to skip that sample from the WAL and write only in the WBL. _, delta, err := s.appendable(t, v, a.headMaxt, a.minValidTime, a.oooTimeWindow) if err == nil { s.pendingCommit = true } s.Unlock() if delta > 0 { a.head.metrics.oooHistogram.Observe(float64(delta) / 1000) } if err != nil { switch err { case storage.ErrOutOfOrderSample: a.head.metrics.outOfOrderSamples.WithLabelValues(sampleMetricTypeFloat).Inc() case storage.ErrTooOldSample: a.head.metrics.tooOldSamples.WithLabelValues(sampleMetricTypeFloat).Inc() } return 0, err } if t < a.mint { a.mint = t } if t > a.maxt { a.maxt = t } a.samples = append(a.samples, record.RefSample{ Ref: s.ref, T: t, V: v, }) a.sampleSeries = append(a.sampleSeries, s) return storage.SeriesRef(s.ref), nil } // appendable checks whether the given sample is valid for appending to the series. (if we return false and no error) // The sample belongs to the out of order chunk if we return true and no error. // An error signifies the sample cannot be handled. func (s *memSeries) appendable(t int64, v float64, headMaxt, minValidTime, oooTimeWindow int64) (isOOO bool, oooDelta int64, err error) { // Check if we can append in the in-order chunk. if t >= minValidTime { if s.headChunks == nil { // The series has no sample and was freshly created. return false, 0, nil } msMaxt := s.maxTime() if t > msMaxt { return false, 0, nil } if t == msMaxt { // We are allowing exact duplicates as we can encounter them in valid cases // like federation and erroring out at that time would be extremely noisy. // This only checks against the latest in-order sample. // The OOO headchunk has its own method to detect these duplicates. if math.Float64bits(s.lastValue) != math.Float64bits(v) { return false, 0, storage.ErrDuplicateSampleForTimestamp } // Sample is identical (ts + value) with most current (highest ts) sample in sampleBuf. return false, 0, nil } } // The sample cannot go in the in-order chunk. Check if it can go in the out-of-order chunk. if oooTimeWindow > 0 && t >= headMaxt-oooTimeWindow { return true, headMaxt - t, nil } // The sample cannot go in both in-order and out-of-order chunk. if oooTimeWindow > 0 { return true, headMaxt - t, storage.ErrTooOldSample } if t < minValidTime { return false, headMaxt - t, storage.ErrOutOfBounds } return false, headMaxt - t, storage.ErrOutOfOrderSample } // appendableHistogram checks whether the given histogram is valid for appending to the series. func (s *memSeries) appendableHistogram(t int64, h *histogram.Histogram) error { if s.headChunks == nil { return nil } if t > s.headChunks.maxTime { return nil } if t < s.headChunks.maxTime { return storage.ErrOutOfOrderSample } // We are allowing exact duplicates as we can encounter them in valid cases // like federation and erroring out at that time would be extremely noisy. if !h.Equals(s.lastHistogramValue) { return storage.ErrDuplicateSampleForTimestamp } return nil } // appendableFloatHistogram checks whether the given float histogram is valid for appending to the series. func (s *memSeries) appendableFloatHistogram(t int64, fh *histogram.FloatHistogram) error { if s.headChunks == nil { return nil } if t > s.headChunks.maxTime { return nil } if t < s.headChunks.maxTime { return storage.ErrOutOfOrderSample } // We are allowing exact duplicates as we can encounter them in valid cases // like federation and erroring out at that time would be extremely noisy. if !fh.Equals(s.lastFloatHistogramValue) { return storage.ErrDuplicateSampleForTimestamp } return nil } // AppendExemplar for headAppender assumes the series ref already exists, and so it doesn't // use getOrCreate or make any of the lset validity checks that Append does. func (a *headAppender) AppendExemplar(ref storage.SeriesRef, lset labels.Labels, e exemplar.Exemplar) (storage.SeriesRef, error) { // Check if exemplar storage is enabled. if !a.head.opts.EnableExemplarStorage || a.head.opts.MaxExemplars.Load() <= 0 { return 0, nil } // Get Series s := a.head.series.getByID(chunks.HeadSeriesRef(ref)) if s == nil { s = a.head.series.getByHash(lset.Hash(), lset) if s != nil { ref = storage.SeriesRef(s.ref) } } if s == nil { return 0, fmt.Errorf("unknown HeadSeriesRef when trying to add exemplar: %d", ref) } // Ensure no empty labels have gotten through. e.Labels = e.Labels.WithoutEmpty() err := a.head.exemplars.ValidateExemplar(s.lset, e) if err != nil { if err == storage.ErrDuplicateExemplar || err == storage.ErrExemplarsDisabled { // Duplicate, don't return an error but don't accept the exemplar. return 0, nil } return 0, err } a.exemplars = append(a.exemplars, exemplarWithSeriesRef{ref, e}) return storage.SeriesRef(s.ref), nil } func (a *headAppender) AppendHistogram(ref storage.SeriesRef, lset labels.Labels, t int64, h *histogram.Histogram, fh *histogram.FloatHistogram) (storage.SeriesRef, error) { if !a.head.opts.EnableNativeHistograms.Load() { return 0, storage.ErrNativeHistogramsDisabled } if t < a.minValidTime { a.head.metrics.outOfBoundSamples.WithLabelValues(sampleMetricTypeHistogram).Inc() return 0, storage.ErrOutOfBounds } if h != nil { if err := ValidateHistogram(h); err != nil { return 0, err } } if fh != nil { if err := ValidateFloatHistogram(fh); err != nil { return 0, err } } s := a.head.series.getByID(chunks.HeadSeriesRef(ref)) if s == nil { // Ensure no empty labels have gotten through. lset = lset.WithoutEmpty() if lset.IsEmpty() { return 0, errors.Wrap(ErrInvalidSample, "empty labelset") } if l, dup := lset.HasDuplicateLabelNames(); dup { return 0, errors.Wrap(ErrInvalidSample, fmt.Sprintf(`label name "%s" is not unique`, l)) } var created bool var err error s, created, err = a.head.getOrCreate(lset.Hash(), lset) if err != nil { return 0, err } if created { switch { case h != nil: s.lastHistogramValue = &histogram.Histogram{} case fh != nil: s.lastFloatHistogramValue = &histogram.FloatHistogram{} } a.series = append(a.series, record.RefSeries{ Ref: s.ref, Labels: lset, }) } } switch { case h != nil: s.Lock() if err := s.appendableHistogram(t, h); err != nil { s.Unlock() if err == storage.ErrOutOfOrderSample { a.head.metrics.outOfOrderSamples.WithLabelValues(sampleMetricTypeHistogram).Inc() } return 0, err } s.pendingCommit = true s.Unlock() a.histograms = append(a.histograms, record.RefHistogramSample{ Ref: s.ref, T: t, H: h, }) a.histogramSeries = append(a.histogramSeries, s) case fh != nil: s.Lock() if err := s.appendableFloatHistogram(t, fh); err != nil { s.Unlock() if err == storage.ErrOutOfOrderSample { a.head.metrics.outOfOrderSamples.WithLabelValues(sampleMetricTypeHistogram).Inc() } return 0, err } s.pendingCommit = true s.Unlock() a.floatHistograms = append(a.floatHistograms, record.RefFloatHistogramSample{ Ref: s.ref, T: t, FH: fh, }) a.floatHistogramSeries = append(a.floatHistogramSeries, s) } if t < a.mint { a.mint = t } if t > a.maxt { a.maxt = t } return storage.SeriesRef(s.ref), nil } // UpdateMetadata for headAppender assumes the series ref already exists, and so it doesn't // use getOrCreate or make any of the lset sanity checks that Append does. func (a *headAppender) UpdateMetadata(ref storage.SeriesRef, lset labels.Labels, meta metadata.Metadata) (storage.SeriesRef, error) { s := a.head.series.getByID(chunks.HeadSeriesRef(ref)) if s == nil { s = a.head.series.getByHash(lset.Hash(), lset) if s != nil { ref = storage.SeriesRef(s.ref) } } if s == nil { return 0, fmt.Errorf("unknown series when trying to add metadata with HeadSeriesRef: %d and labels: %s", ref, lset) } s.RLock() hasNewMetadata := s.meta == nil || *s.meta != meta s.RUnlock() if hasNewMetadata { a.metadata = append(a.metadata, record.RefMetadata{ Ref: s.ref, Type: record.GetMetricType(meta.Type), Unit: meta.Unit, Help: meta.Help, }) a.metadataSeries = append(a.metadataSeries, s) } return ref, nil } func ValidateHistogram(h *histogram.Histogram) error { if err := checkHistogramSpans(h.NegativeSpans, len(h.NegativeBuckets)); err != nil { return errors.Wrap(err, "negative side") } if err := checkHistogramSpans(h.PositiveSpans, len(h.PositiveBuckets)); err != nil { return errors.Wrap(err, "positive side") } var nCount, pCount uint64 err := checkHistogramBuckets(h.NegativeBuckets, &nCount, true) if err != nil { return errors.Wrap(err, "negative side") } err = checkHistogramBuckets(h.PositiveBuckets, &pCount, true) if err != nil { return errors.Wrap(err, "positive side") } if c := nCount + pCount + h.ZeroCount; c > h.Count { return errors.Wrap( storage.ErrHistogramCountNotBigEnough, fmt.Sprintf("%d observations found in buckets, but the Count field is %d", c, h.Count), ) } return nil } func ValidateFloatHistogram(h *histogram.FloatHistogram) error { if err := checkHistogramSpans(h.NegativeSpans, len(h.NegativeBuckets)); err != nil { return errors.Wrap(err, "negative side") } if err := checkHistogramSpans(h.PositiveSpans, len(h.PositiveBuckets)); err != nil { return errors.Wrap(err, "positive side") } var nCount, pCount float64 err := checkHistogramBuckets(h.NegativeBuckets, &nCount, false) if err != nil { return errors.Wrap(err, "negative side") } err = checkHistogramBuckets(h.PositiveBuckets, &pCount, false) if err != nil { return errors.Wrap(err, "positive side") } // We do not check for h.Count being at least as large as the sum of the // counts in the buckets because floating point precision issues can // create false positives here. return nil } func checkHistogramSpans(spans []histogram.Span, numBuckets int) error { var spanBuckets int for n, span := range spans { if n > 0 && span.Offset < 0 { return errors.Wrap( storage.ErrHistogramSpanNegativeOffset, fmt.Sprintf("span number %d with offset %d", n+1, span.Offset), ) } spanBuckets += int(span.Length) } if spanBuckets != numBuckets { return errors.Wrap( storage.ErrHistogramSpansBucketsMismatch, fmt.Sprintf("spans need %d buckets, have %d buckets", spanBuckets, numBuckets), ) } return nil } func checkHistogramBuckets[BC histogram.BucketCount, IBC histogram.InternalBucketCount](buckets []IBC, count *BC, deltas bool) error { if len(buckets) == 0 { return nil } var last IBC for i := 0; i < len(buckets); i++ { var c IBC if deltas { c = last + buckets[i] } else { c = buckets[i] } if c < 0 { return errors.Wrap( storage.ErrHistogramNegativeBucketCount, fmt.Sprintf("bucket number %d has observation count of %v", i+1, c), ) } last = c *count += BC(c) } return nil } var _ storage.GetRef = &headAppender{} func (a *headAppender) GetRef(lset labels.Labels, hash uint64) (storage.SeriesRef, labels.Labels) { s := a.head.series.getByHash(hash, lset) if s == nil { return 0, labels.EmptyLabels() } // returned labels must be suitable to pass to Append() return storage.SeriesRef(s.ref), s.lset } // log writes all headAppender's data to the WAL. func (a *headAppender) log() error { if a.head.wal == nil { return nil } buf := a.head.getBytesBuffer() defer func() { a.head.putBytesBuffer(buf) }() var rec []byte var enc record.Encoder if len(a.series) > 0 { rec = enc.Series(a.series, buf) buf = rec[:0] if err := a.head.wal.Log(rec); err != nil { return errors.Wrap(err, "log series") } } if len(a.metadata) > 0 { rec = enc.Metadata(a.metadata, buf) buf = rec[:0] if err := a.head.wal.Log(rec); err != nil { return errors.Wrap(err, "log metadata") } } if len(a.samples) > 0 { rec = enc.Samples(a.samples, buf) buf = rec[:0] if err := a.head.wal.Log(rec); err != nil { return errors.Wrap(err, "log samples") } } if len(a.exemplars) > 0 { rec = enc.Exemplars(exemplarsForEncoding(a.exemplars), buf) buf = rec[:0] if err := a.head.wal.Log(rec); err != nil { return errors.Wrap(err, "log exemplars") } } if len(a.histograms) > 0 { rec = enc.HistogramSamples(a.histograms, buf) buf = rec[:0] if err := a.head.wal.Log(rec); err != nil { return errors.Wrap(err, "log histograms") } } if len(a.floatHistograms) > 0 { rec = enc.FloatHistogramSamples(a.floatHistograms, buf) buf = rec[:0] if err := a.head.wal.Log(rec); err != nil { return errors.Wrap(err, "log float histograms") } } return nil } func exemplarsForEncoding(es []exemplarWithSeriesRef) []record.RefExemplar { ret := make([]record.RefExemplar, 0, len(es)) for _, e := range es { ret = append(ret, record.RefExemplar{ Ref: chunks.HeadSeriesRef(e.ref), T: e.exemplar.Ts, V: e.exemplar.Value, Labels: e.exemplar.Labels, }) } return ret } // Commit writes to the WAL and adds the data to the Head. // TODO(codesome): Refactor this method to reduce indentation and make it more readable. func (a *headAppender) Commit() (err error) { if a.closed { return ErrAppenderClosed } defer func() { a.closed = true }() if err := a.log(); err != nil { _ = a.Rollback() // Most likely the same error will happen again. return errors.Wrap(err, "write to WAL") } if a.head.writeNotified != nil { a.head.writeNotified.Notify() } // No errors logging to WAL, so pass the exemplars along to the in memory storage. for _, e := range a.exemplars { s := a.head.series.getByID(chunks.HeadSeriesRef(e.ref)) // We don't instrument exemplar appends here, all is instrumented by storage. if err := a.head.exemplars.AddExemplar(s.lset, e.exemplar); err != nil { if err == storage.ErrOutOfOrderExemplar { continue } level.Debug(a.head.logger).Log("msg", "Unknown error while adding exemplar", "err", err) } } defer a.head.metrics.activeAppenders.Dec() defer a.head.putAppendBuffer(a.samples) defer a.head.putSeriesBuffer(a.sampleSeries) defer a.head.putExemplarBuffer(a.exemplars) defer a.head.putHistogramBuffer(a.histograms) defer a.head.putFloatHistogramBuffer(a.floatHistograms) defer a.head.putMetadataBuffer(a.metadata) defer a.head.iso.closeAppend(a.appendID) var ( samplesAppended = len(a.samples) oooAccepted int // number of samples out of order but accepted: with ooo enabled and within time window oooRejected int // number of samples rejected due to: out of order but OOO support disabled. tooOldRejected int // number of samples rejected due to: that are out of order but too old (OOO support enabled, but outside time window) oobRejected int // number of samples rejected due to: out of bounds: with t < minValidTime (OOO support disabled) inOrderMint int64 = math.MaxInt64 inOrderMaxt int64 = math.MinInt64 ooomint int64 = math.MaxInt64 ooomaxt int64 = math.MinInt64 wblSamples []record.RefSample oooMmapMarkers map[chunks.HeadSeriesRef]chunks.ChunkDiskMapperRef oooRecords [][]byte oooCapMax = a.head.opts.OutOfOrderCapMax.Load() series *memSeries appendChunkOpts = chunkOpts{ chunkDiskMapper: a.head.chunkDiskMapper, chunkRange: a.head.chunkRange.Load(), samplesPerChunk: a.head.opts.SamplesPerChunk, } enc record.Encoder ) defer func() { for i := range oooRecords { a.head.putBytesBuffer(oooRecords[i][:0]) } }() collectOOORecords := func() { if a.head.wbl == nil { // WBL is not enabled. So no need to collect. wblSamples = nil oooMmapMarkers = nil return } // The m-map happens before adding a new sample. So we collect // the m-map markers first, and then samples. // WBL Graphically: // WBL Before this Commit(): [old samples before this commit for chunk 1] // WBL After this Commit(): [old samples before this commit for chunk 1][new samples in this commit for chunk 1]mmapmarker1[samples for chunk 2]mmapmarker2[samples for chunk 3] if oooMmapMarkers != nil { markers := make([]record.RefMmapMarker, 0, len(oooMmapMarkers)) for ref, mmapRef := range oooMmapMarkers { markers = append(markers, record.RefMmapMarker{ Ref: ref, MmapRef: mmapRef, }) } r := enc.MmapMarkers(markers, a.head.getBytesBuffer()) oooRecords = append(oooRecords, r) } if len(wblSamples) > 0 { r := enc.Samples(wblSamples, a.head.getBytesBuffer()) oooRecords = append(oooRecords, r) } wblSamples = nil oooMmapMarkers = nil } for i, s := range a.samples { series = a.sampleSeries[i] series.Lock() oooSample, _, err := series.appendable(s.T, s.V, a.headMaxt, a.minValidTime, a.oooTimeWindow) switch err { case nil: // Do nothing. case storage.ErrOutOfOrderSample: samplesAppended-- oooRejected++ case storage.ErrOutOfBounds: samplesAppended-- oobRejected++ case storage.ErrTooOldSample: samplesAppended-- tooOldRejected++ default: samplesAppended-- } var ok, chunkCreated bool switch { case err != nil: // Do nothing here. case oooSample: // Sample is OOO and OOO handling is enabled // and the delta is within the OOO tolerance. var mmapRef chunks.ChunkDiskMapperRef ok, chunkCreated, mmapRef = series.insert(s.T, s.V, a.head.chunkDiskMapper, oooCapMax) if chunkCreated { r, ok := oooMmapMarkers[series.ref] if !ok || r != 0 { // !ok means there are no markers collected for these samples yet. So we first flush the samples // before setting this m-map marker. // r != 0 means we have already m-mapped a chunk for this series in the same Commit(). // Hence, before we m-map again, we should add the samples and m-map markers // seen till now to the WBL records. collectOOORecords() } if oooMmapMarkers == nil { oooMmapMarkers = make(map[chunks.HeadSeriesRef]chunks.ChunkDiskMapperRef) } oooMmapMarkers[series.ref] = mmapRef } if ok { wblSamples = append(wblSamples, s) if s.T < ooomint { ooomint = s.T } if s.T > ooomaxt { ooomaxt = s.T } oooAccepted++ } else { // Sample is an exact duplicate of the last sample. // NOTE: We can only detect updates if they clash with a sample in the OOOHeadChunk, // not with samples in already flushed OOO chunks. // TODO(codesome): Add error reporting? It depends on addressing https://github.com/prometheus/prometheus/discussions/10305. samplesAppended-- } default: ok, chunkCreated = series.append(s.T, s.V, a.appendID, appendChunkOpts) if ok { if s.T < inOrderMint { inOrderMint = s.T } if s.T > inOrderMaxt { inOrderMaxt = s.T } } else { // The sample is an exact duplicate, and should be silently dropped. samplesAppended-- } } if chunkCreated { a.head.metrics.chunks.Inc() a.head.metrics.chunksCreated.Inc() } series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow) series.pendingCommit = false series.Unlock() } histogramsTotal := len(a.histograms) histoOOORejected := 0 for i, s := range a.histograms { series = a.histogramSeries[i] series.Lock() ok, chunkCreated := series.appendHistogram(s.T, s.H, a.appendID, appendChunkOpts) series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow) series.pendingCommit = false series.Unlock() if ok { if s.T < inOrderMint { inOrderMint = s.T } if s.T > inOrderMaxt { inOrderMaxt = s.T } } else { histogramsTotal-- histoOOORejected++ } if chunkCreated { a.head.metrics.chunks.Inc() a.head.metrics.chunksCreated.Inc() } } histogramsTotal += len(a.floatHistograms) for i, s := range a.floatHistograms { series = a.floatHistogramSeries[i] series.Lock() ok, chunkCreated := series.appendFloatHistogram(s.T, s.FH, a.appendID, appendChunkOpts) series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow) series.pendingCommit = false series.Unlock() if ok { if s.T < inOrderMint { inOrderMint = s.T } if s.T > inOrderMaxt { inOrderMaxt = s.T } } else { histogramsTotal-- histoOOORejected++ } if chunkCreated { a.head.metrics.chunks.Inc() a.head.metrics.chunksCreated.Inc() } } for i, m := range a.metadata { series = a.metadataSeries[i] series.Lock() series.meta = &metadata.Metadata{Type: record.ToTextparseMetricType(m.Type), Unit: m.Unit, Help: m.Help} series.Unlock() } a.head.metrics.outOfOrderSamples.WithLabelValues(sampleMetricTypeFloat).Add(float64(oooRejected)) a.head.metrics.outOfOrderSamples.WithLabelValues(sampleMetricTypeHistogram).Add(float64(histoOOORejected)) a.head.metrics.outOfBoundSamples.WithLabelValues(sampleMetricTypeFloat).Add(float64(oobRejected)) a.head.metrics.tooOldSamples.WithLabelValues(sampleMetricTypeFloat).Add(float64(tooOldRejected)) a.head.metrics.samplesAppended.WithLabelValues(sampleMetricTypeFloat).Add(float64(samplesAppended)) a.head.metrics.samplesAppended.WithLabelValues(sampleMetricTypeHistogram).Add(float64(histogramsTotal)) a.head.metrics.outOfOrderSamplesAppended.Add(float64(oooAccepted)) a.head.updateMinMaxTime(inOrderMint, inOrderMaxt) a.head.updateMinOOOMaxOOOTime(ooomint, ooomaxt) collectOOORecords() if a.head.wbl != nil { if err := a.head.wbl.Log(oooRecords...); err != nil { // TODO(codesome): Currently WBL logging of ooo samples is best effort here since we cannot try logging // until we have found what samples become OOO. We can try having a metric for this failure. // Returning the error here is not correct because we have already put the samples into the memory, // hence the append/insert was a success. level.Error(a.head.logger).Log("msg", "Failed to log out of order samples into the WAL", "err", err) } } return nil } // insert is like append, except it inserts. Used for OOO samples. func (s *memSeries) insert(t int64, v float64, chunkDiskMapper *chunks.ChunkDiskMapper, oooCapMax int64) (inserted, chunkCreated bool, mmapRef chunks.ChunkDiskMapperRef) { if s.ooo == nil { s.ooo = &memSeriesOOOFields{} } c := s.ooo.oooHeadChunk if c == nil || c.chunk.NumSamples() == int(oooCapMax) { // Note: If no new samples come in then we rely on compaction to clean up stale in-memory OOO chunks. c, mmapRef = s.cutNewOOOHeadChunk(t, chunkDiskMapper) chunkCreated = true } ok := c.chunk.Insert(t, v) if ok { if chunkCreated || t < c.minTime { c.minTime = t } if chunkCreated || t > c.maxTime { c.maxTime = t } } return ok, chunkCreated, mmapRef } // chunkOpts are chunk-level options that are passed when appending to a memSeries. type chunkOpts struct { chunkDiskMapper *chunks.ChunkDiskMapper chunkRange int64 samplesPerChunk int } // append adds the sample (t, v) to the series. The caller also has to provide // the appendID for isolation. (The appendID can be zero, which results in no // isolation for this append.) // It is unsafe to call this concurrently with s.iterator(...) without holding the series lock. func (s *memSeries) append(t int64, v float64, appendID uint64, o chunkOpts) (sampleInOrder, chunkCreated bool) { c, sampleInOrder, chunkCreated := s.appendPreprocessor(t, chunkenc.EncXOR, o) if !sampleInOrder { return sampleInOrder, chunkCreated } s.app.Append(t, v) c.maxTime = t s.lastValue = v s.lastHistogramValue = nil s.lastFloatHistogramValue = nil if appendID > 0 { s.txs.add(appendID) } return true, chunkCreated } // appendHistogram adds the histogram. // It is unsafe to call this concurrently with s.iterator(...) without holding the series lock. // In case of recoding the existing chunk, a new chunk is allocated and the old chunk is dropped. // To keep the meaning of prometheus_tsdb_head_chunks and prometheus_tsdb_head_chunks_created_total // consistent, we return chunkCreated=false in this case. func (s *memSeries) appendHistogram(t int64, h *histogram.Histogram, appendID uint64, o chunkOpts) (sampleInOrder, chunkCreated bool) { // Head controls the execution of recoding, so that we own the proper // chunk reference afterwards and mmap used up chunks. // Ignoring ok is ok, since we don't want to compare to the wrong previous appender anyway. prevApp, _ := s.app.(*chunkenc.HistogramAppender) c, sampleInOrder, chunkCreated := s.histogramsAppendPreprocessor(t, chunkenc.EncHistogram, o) if !sampleInOrder { return sampleInOrder, chunkCreated } var ( newChunk chunkenc.Chunk recoded bool ) if !chunkCreated { // Ignore the previous appender if we continue the current chunk. prevApp = nil } newChunk, recoded, s.app, _ = s.app.AppendHistogram(prevApp, t, h, false) // false=request a new chunk if needed s.lastHistogramValue = h s.lastFloatHistogramValue = nil if appendID > 0 { s.txs.add(appendID) } if newChunk == nil { // Sample was appended to existing chunk or is the first sample in a new chunk. c.maxTime = t return true, chunkCreated } if recoded { // The appender needed to recode the chunk. c.maxTime = t c.chunk = newChunk return true, false } s.headChunks = &memChunk{ chunk: newChunk, minTime: t, maxTime: t, prev: s.headChunks, } s.nextAt = rangeForTimestamp(t, o.chunkRange) return true, true } // appendFloatHistogram adds the float histogram. // It is unsafe to call this concurrently with s.iterator(...) without holding the series lock. // In case of recoding the existing chunk, a new chunk is allocated and the old chunk is dropped. // To keep the meaning of prometheus_tsdb_head_chunks and prometheus_tsdb_head_chunks_created_total // consistent, we return chunkCreated=false in this case. func (s *memSeries) appendFloatHistogram(t int64, fh *histogram.FloatHistogram, appendID uint64, o chunkOpts) (sampleInOrder, chunkCreated bool) { // Head controls the execution of recoding, so that we own the proper // chunk reference afterwards and mmap used up chunks. // Ignoring ok is ok, since we don't want to compare to the wrong previous appender anyway. prevApp, _ := s.app.(*chunkenc.FloatHistogramAppender) c, sampleInOrder, chunkCreated := s.histogramsAppendPreprocessor(t, chunkenc.EncFloatHistogram, o) if !sampleInOrder { return sampleInOrder, chunkCreated } var ( newChunk chunkenc.Chunk recoded bool ) if !chunkCreated { // Ignore the previous appender if we continue the current chunk. prevApp = nil } newChunk, recoded, s.app, _ = s.app.AppendFloatHistogram(prevApp, t, fh, false) // False means request a new chunk if needed. s.lastHistogramValue = nil s.lastFloatHistogramValue = fh if appendID > 0 { s.txs.add(appendID) } if newChunk == nil { // Sample was appended to existing chunk or is the first sample in a new chunk. c.maxTime = t return true, chunkCreated } if recoded { // The appender needed to recode the chunk. c.maxTime = t c.chunk = newChunk return true, false } s.headChunks = &memChunk{ chunk: newChunk, minTime: t, maxTime: t, prev: s.headChunks, } s.nextAt = rangeForTimestamp(t, o.chunkRange) return true, true } // appendPreprocessor takes care of cutting new XOR chunks and m-mapping old ones. XOR chunks are cut based on the // number of samples they contain with a soft cap in bytes. // It is unsafe to call this concurrently with s.iterator(...) without holding the series lock. // This should be called only when appending data. func (s *memSeries) appendPreprocessor(t int64, e chunkenc.Encoding, o chunkOpts) (c *memChunk, sampleInOrder, chunkCreated bool) { // We target chunkenc.MaxBytesPerXORChunk as a hard for the size of an XOR chunk. We must determine whether to cut // a new head chunk without knowing the size of the next sample, however, so we assume the next sample will be a // maximally-sized sample (19 bytes). const maxBytesPerXORChunk = chunkenc.MaxBytesPerXORChunk - 19 c = s.headChunks if c == nil { if len(s.mmappedChunks) > 0 && s.mmappedChunks[len(s.mmappedChunks)-1].maxTime >= t { // Out of order sample. Sample timestamp is already in the mmapped chunks, so ignore it. return c, false, false } // There is no head chunk in this series yet, create the first chunk for the sample. c = s.cutNewHeadChunk(t, e, o.chunkRange) chunkCreated = true } // Out of order sample. if c.maxTime >= t { return c, false, chunkCreated } // Check the chunk size, unless we just created it and if the chunk is too large, cut a new one. if !chunkCreated && len(c.chunk.Bytes()) > maxBytesPerXORChunk { c = s.cutNewHeadChunk(t, e, o.chunkRange) chunkCreated = true } if c.chunk.Encoding() != e { // The chunk encoding expected by this append is different than the head chunk's // encoding. So we cut a new chunk with the expected encoding. c = s.cutNewHeadChunk(t, e, o.chunkRange) chunkCreated = true } numSamples := c.chunk.NumSamples() if numSamples == 0 { // It could be the new chunk created after reading the chunk snapshot, // hence we fix the minTime of the chunk here. c.minTime = t s.nextAt = rangeForTimestamp(c.minTime, o.chunkRange) } // If we reach 25% of a chunk's desired sample count, predict an end time // for this chunk that will try to make samples equally distributed within // the remaining chunks in the current chunk range. // At latest it must happen at the timestamp set when the chunk was cut. if numSamples == o.samplesPerChunk/4 { s.nextAt = computeChunkEndTime(c.minTime, c.maxTime, s.nextAt, 4) } // If numSamples > samplesPerChunk*2 then our previous prediction was invalid, // most likely because samples rate has changed and now they are arriving more frequently. // Since we assume that the rate is higher, we're being conservative and cutting at 2*samplesPerChunk // as we expect more chunks to come. // Note that next chunk will have its nextAt recalculated for the new rate. if t >= s.nextAt || numSamples >= o.samplesPerChunk*2 { c = s.cutNewHeadChunk(t, e, o.chunkRange) chunkCreated = true } return c, true, chunkCreated } // histogramsAppendPreprocessor takes care of cutting new histogram chunks and m-mapping old ones. Histogram chunks are // cut based on their size in bytes. // It is unsafe to call this concurrently with s.iterator(...) without holding the series lock. // This should be called only when appending data. func (s *memSeries) histogramsAppendPreprocessor(t int64, e chunkenc.Encoding, o chunkOpts) (c *memChunk, sampleInOrder, chunkCreated bool) { c = s.headChunks if c == nil { if len(s.mmappedChunks) > 0 && s.mmappedChunks[len(s.mmappedChunks)-1].maxTime >= t { // Out of order sample. Sample timestamp is already in the mmapped chunks, so ignore it. return c, false, false } // There is no head chunk in this series yet, create the first chunk for the sample. c = s.cutNewHeadChunk(t, e, o.chunkRange) chunkCreated = true } // Out of order sample. if c.maxTime >= t { return c, false, chunkCreated } if c.chunk.Encoding() != e { // The chunk encoding expected by this append is different than the head chunk's // encoding. So we cut a new chunk with the expected encoding. c = s.cutNewHeadChunk(t, e, o.chunkRange) chunkCreated = true } numSamples := c.chunk.NumSamples() targetBytes := chunkenc.TargetBytesPerHistogramChunk numBytes := len(c.chunk.Bytes()) if numSamples == 0 { // It could be the new chunk created after reading the chunk snapshot, // hence we fix the minTime of the chunk here. c.minTime = t s.nextAt = rangeForTimestamp(c.minTime, o.chunkRange) } // Below, we will enforce chunkenc.MinSamplesPerHistogramChunk. There are, however, two cases that supersede it: // - The current chunk range is ending before chunkenc.MinSamplesPerHistogramChunk will be satisfied. // - s.nextAt was set while loading a chunk snapshot with the intent that a new chunk be cut on the next append. var nextChunkRangeStart int64 if s.histogramChunkHasComputedEndTime { nextChunkRangeStart = rangeForTimestamp(c.minTime, o.chunkRange) } else { // If we haven't yet computed an end time yet, s.nextAt is either set to // rangeForTimestamp(c.minTime, o.chunkRange) or was set while loading a chunk snapshot. Either way, we want to // skip enforcing chunkenc.MinSamplesPerHistogramChunk. nextChunkRangeStart = s.nextAt } // If we reach 25% of a chunk's desired maximum size, predict an end time // for this chunk that will try to make samples equally distributed within // the remaining chunks in the current chunk range. // At the latest it must happen at the timestamp set when the chunk was cut. if !s.histogramChunkHasComputedEndTime && numBytes >= targetBytes/4 { ratioToFull := float64(targetBytes) / float64(numBytes) s.nextAt = computeChunkEndTime(c.minTime, c.maxTime, s.nextAt, ratioToFull) s.histogramChunkHasComputedEndTime = true } // If numBytes > targetBytes*2 then our previous prediction was invalid. This could happen if the sample rate has // increased or if the bucket/span count has increased. // Note that next chunk will have its nextAt recalculated for the new rate. if (t >= s.nextAt || numBytes >= targetBytes*2) && (numSamples >= chunkenc.MinSamplesPerHistogramChunk || t >= nextChunkRangeStart) { c = s.cutNewHeadChunk(t, e, o.chunkRange) chunkCreated = true } // The new chunk will also need a new computed end time. if chunkCreated { s.histogramChunkHasComputedEndTime = false } return c, true, chunkCreated } // computeChunkEndTime estimates the end timestamp based the beginning of a // chunk, its current timestamp and the upper bound up to which we insert data. // It assumes that the time range is 1/ratioToFull full. // Assuming that the samples will keep arriving at the same rate, it will make the // remaining n chunks within this chunk range (before max) equally sized. func computeChunkEndTime(start, cur, max int64, ratioToFull float64) int64 { n := float64(max-start) / (float64(cur-start+1) * ratioToFull) if n <= 1 { return max } return int64(float64(start) + float64(max-start)/math.Floor(n)) } func (s *memSeries) cutNewHeadChunk(mint int64, e chunkenc.Encoding, chunkRange int64) *memChunk { // When cutting a new head chunk we create a new memChunk instance with .prev // pointing at the current .headChunks, so it forms a linked list. // All but first headChunks list elements will be m-mapped as soon as possible // so this is a single element list most of the time. s.headChunks = &memChunk{ minTime: mint, maxTime: math.MinInt64, prev: s.headChunks, } if chunkenc.IsValidEncoding(e) { var err error s.headChunks.chunk, err = chunkenc.NewEmptyChunk(e) if err != nil { panic(err) // This should never happen. } } else { s.headChunks.chunk = chunkenc.NewXORChunk() } // Set upper bound on when the next chunk must be started. An earlier timestamp // may be chosen dynamically at a later point. s.nextAt = rangeForTimestamp(mint, chunkRange) app, err := s.headChunks.chunk.Appender() if err != nil { panic(err) } s.app = app return s.headChunks } // cutNewOOOHeadChunk cuts a new OOO chunk and m-maps the old chunk. // The caller must ensure that s.ooo is not nil. func (s *memSeries) cutNewOOOHeadChunk(mint int64, chunkDiskMapper *chunks.ChunkDiskMapper) (*oooHeadChunk, chunks.ChunkDiskMapperRef) { ref := s.mmapCurrentOOOHeadChunk(chunkDiskMapper) s.ooo.oooHeadChunk = &oooHeadChunk{ chunk: NewOOOChunk(), minTime: mint, maxTime: math.MinInt64, } return s.ooo.oooHeadChunk, ref } func (s *memSeries) mmapCurrentOOOHeadChunk(chunkDiskMapper *chunks.ChunkDiskMapper) chunks.ChunkDiskMapperRef { if s.ooo == nil || s.ooo.oooHeadChunk == nil { // There is no head chunk, so nothing to m-map here. return 0 } xor, _ := s.ooo.oooHeadChunk.chunk.ToXOR() // Encode to XorChunk which is more compact and implements all of the needed functionality. chunkRef := chunkDiskMapper.WriteChunk(s.ref, s.ooo.oooHeadChunk.minTime, s.ooo.oooHeadChunk.maxTime, xor, true, handleChunkWriteError) s.ooo.oooMmappedChunks = append(s.ooo.oooMmappedChunks, &mmappedChunk{ ref: chunkRef, numSamples: uint16(xor.NumSamples()), minTime: s.ooo.oooHeadChunk.minTime, maxTime: s.ooo.oooHeadChunk.maxTime, }) s.ooo.oooHeadChunk = nil return chunkRef } // mmapChunks will m-map all but first chunk on s.headChunks list. func (s *memSeries) mmapChunks(chunkDiskMapper *chunks.ChunkDiskMapper) (count int) { if s.headChunks == nil || s.headChunks.prev == nil { // There is none or only one head chunk, so nothing to m-map here. return } // Write chunks starting from the oldest one and stop before we get to current s.headChunk. // If we have this chain: s.headChunk{t4} -> t3 -> t2 -> t1 -> t0 // then we need to write chunks t0 to t3, but skip s.headChunks. for i := s.headChunks.len() - 1; i > 0; i-- { chk := s.headChunks.atOffset(i) chunkRef := chunkDiskMapper.WriteChunk(s.ref, chk.minTime, chk.maxTime, chk.chunk, false, handleChunkWriteError) s.mmappedChunks = append(s.mmappedChunks, &mmappedChunk{ ref: chunkRef, numSamples: uint16(chk.chunk.NumSamples()), minTime: chk.minTime, maxTime: chk.maxTime, }) count++ } // Once we've written out all chunks except s.headChunks we need to unlink these from s.headChunk. s.headChunks.prev = nil return count } func handleChunkWriteError(err error) { if err != nil && err != chunks.ErrChunkDiskMapperClosed { panic(err) } } // Rollback removes the samples and exemplars from headAppender and writes any series to WAL. func (a *headAppender) Rollback() (err error) { if a.closed { return ErrAppenderClosed } defer func() { a.closed = true }() defer a.head.metrics.activeAppenders.Dec() defer a.head.iso.closeAppend(a.appendID) defer a.head.putSeriesBuffer(a.sampleSeries) var series *memSeries for i := range a.samples { series = a.sampleSeries[i] series.Lock() series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow) series.pendingCommit = false series.Unlock() } for i := range a.histograms { series = a.histogramSeries[i] series.Lock() series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow) series.pendingCommit = false series.Unlock() } a.head.putAppendBuffer(a.samples) a.head.putExemplarBuffer(a.exemplars) a.head.putHistogramBuffer(a.histograms) a.head.putFloatHistogramBuffer(a.floatHistograms) a.head.putMetadataBuffer(a.metadata) a.samples = nil a.exemplars = nil a.histograms = nil a.metadata = nil // Series are created in the head memory regardless of rollback. Thus we have // to log them to the WAL in any case. return a.log() }