// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tsdb import ( "math/rand" "os" "path/filepath" "sort" "time" "github.com/coreos/etcd/pkg/fileutil" "github.com/go-kit/kit/log" "github.com/oklog/ulid" "github.com/pkg/errors" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/tsdb/chunks" "github.com/prometheus/tsdb/labels" ) // ExponentialBlockRanges returns the time ranges based on the stepSize func ExponentialBlockRanges(minSize int64, steps, stepSize int) []int64 { ranges := make([]int64, 0, steps) curRange := minSize for i := 0; i < steps; i++ { ranges = append(ranges, curRange) curRange = curRange * int64(stepSize) } return ranges } // Compactor provides compaction against an underlying storage // of time series data. type Compactor interface { // Plan returns a set of non-overlapping directories that can // be compacted concurrently. // Results returned when compactions are in progress are undefined. Plan(dir string) ([]string, error) // Write persists a Block into a directory. Write(dest string, b BlockReader, mint, maxt int64) error // Compact runs compaction against the provided directories. Must // only be called concurrently with results of Plan(). Compact(dest string, dirs ...string) error } // LeveledCompactor implements the Compactor interface. type LeveledCompactor struct { dir string metrics *compactorMetrics logger log.Logger ranges []int64 chunkPool chunks.Pool } type compactorMetrics struct { ran prometheus.Counter failed prometheus.Counter duration prometheus.Histogram chunkSize prometheus.Histogram chunkSamples prometheus.Histogram chunkRange prometheus.Histogram } func newCompactorMetrics(r prometheus.Registerer) *compactorMetrics { m := &compactorMetrics{} m.ran = prometheus.NewCounter(prometheus.CounterOpts{ Name: "tsdb_compactions_total", Help: "Total number of compactions that were executed for the partition.", }) m.failed = prometheus.NewCounter(prometheus.CounterOpts{ Name: "tsdb_compactions_failed_total", Help: "Total number of compactions that failed for the partition.", }) m.duration = prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "tsdb_compaction_duration", Help: "Duration of compaction runs.", Buckets: prometheus.ExponentialBuckets(1, 2, 10), }) m.chunkSize = prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "tsdb_compaction_chunk_size", Help: "Final size of chunks on their first compaction", Buckets: prometheus.ExponentialBuckets(32, 1.5, 12), }) m.chunkSamples = prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "tsdb_compaction_chunk_samples", Help: "Final number of samples on their first compaction", Buckets: prometheus.ExponentialBuckets(4, 1.5, 12), }) m.chunkRange = prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "tsdb_compaction_chunk_range", Help: "Final time range of chunks on their first compaction", Buckets: prometheus.ExponentialBuckets(100, 4, 10), }) if r != nil { r.MustRegister( m.ran, m.failed, m.duration, m.chunkRange, m.chunkSamples, m.chunkSize, ) } return m } // NewLeveledCompactor returns a LeveledCompactor. func NewLeveledCompactor(r prometheus.Registerer, l log.Logger, ranges []int64, pool chunks.Pool) (*LeveledCompactor, error) { if len(ranges) == 0 { return nil, errors.Errorf("at least one range must be provided") } if pool == nil { pool = chunks.NewPool() } return &LeveledCompactor{ ranges: ranges, chunkPool: pool, logger: l, metrics: newCompactorMetrics(r), }, nil } type dirMeta struct { dir string meta *BlockMeta } // Plan returns a list of compactable blocks in the provided directory. func (c *LeveledCompactor) Plan(dir string) ([]string, error) { dirs, err := blockDirs(dir) if err != nil { return nil, err } var dms []dirMeta for _, dir := range dirs { meta, err := readMetaFile(dir) if err != nil { return nil, err } dms = append(dms, dirMeta{dir, meta}) } return c.plan(dms) } func (c *LeveledCompactor) plan(dms []dirMeta) ([]string, error) { sort.Slice(dms, func(i, j int) bool { return dms[i].meta.MinTime < dms[j].meta.MinTime }) var res []string for _, dm := range c.selectDirs(dms) { res = append(res, dm.dir) } if len(res) > 0 { return res, nil } // Compact any blocks that have >5% tombstones. for i := len(dms) - 1; i >= 0; i-- { meta := dms[i].meta if meta.MaxTime-meta.MinTime < c.ranges[len(c.ranges)/2] { break } if float64(meta.Stats.NumTombstones)/float64(meta.Stats.NumSeries+1) > 0.05 { return []string{dms[i].dir}, nil } } return nil, nil } // selectDirs returns the dir metas that should be compacted into a single new block. // If only a single block range is configured, the result is always nil. func (c *LeveledCompactor) selectDirs(ds []dirMeta) []dirMeta { if len(c.ranges) < 2 || len(ds) < 1 { return nil } highTime := ds[len(ds)-1].meta.MinTime for _, iv := range c.ranges[1:] { parts := splitByRange(ds, iv) if len(parts) == 0 { continue } for _, p := range parts { mint := p[0].meta.MinTime maxt := p[len(p)-1].meta.MaxTime // Pick the range of blocks if it spans the full range (potentially with gaps) // or is before the most recent block. // This ensures we don't compact blocks prematurely when another one of the same // size still fits in the range. if (maxt-mint == iv || maxt <= highTime) && len(p) > 1 { return p } } } return nil } // splitByRange splits the directories by the time range. The range sequence starts at 0. // // For example, if we have blocks [0-10, 10-20, 50-60, 90-100] and the split range tr is 30 // it returns [0-10, 10-20], [50-60], [90-100]. func splitByRange(ds []dirMeta, tr int64) [][]dirMeta { var splitDirs [][]dirMeta for i := 0; i < len(ds); { var ( group []dirMeta t0 int64 m = ds[i].meta ) // Compute start of aligned time range of size tr closest to the current block's start. if m.MinTime >= 0 { t0 = tr * (m.MinTime / tr) } else { t0 = tr * ((m.MinTime - tr + 1) / tr) } // Skip blocks that don't fall into the range. This can happen via mis-alignment or // by being the multiple of the intended range. if ds[i].meta.MinTime < t0 || ds[i].meta.MaxTime > t0+tr { i++ continue } // Add all dirs to the current group that are within [t0, t0+tr]. for ; i < len(ds); i++ { // Either the block falls into the next range or doesn't fit at all (checked above). if ds[i].meta.MinTime < t0 || ds[i].meta.MaxTime > t0+tr { break } group = append(group, ds[i]) } if len(group) > 0 { splitDirs = append(splitDirs, group) } } return splitDirs } func compactBlockMetas(uid ulid.ULID, blocks ...*BlockMeta) *BlockMeta { res := &BlockMeta{ ULID: uid, MinTime: blocks[0].MinTime, MaxTime: blocks[len(blocks)-1].MaxTime, } sources := map[ulid.ULID]struct{}{} for _, b := range blocks { if b.Compaction.Level > res.Compaction.Level { res.Compaction.Level = b.Compaction.Level } for _, s := range b.Compaction.Sources { sources[s] = struct{}{} } } res.Compaction.Level++ for s := range sources { res.Compaction.Sources = append(res.Compaction.Sources, s) } sort.Slice(res.Compaction.Sources, func(i, j int) bool { return res.Compaction.Sources[i].Compare(res.Compaction.Sources[j]) < 0 }) return res } // Compact creates a new block in the compactor's directory from the blocks in the // provided directories. func (c *LeveledCompactor) Compact(dest string, dirs ...string) (err error) { var blocks []BlockReader var metas []*BlockMeta for _, d := range dirs { b, err := newPersistedBlock(d, c.chunkPool) if err != nil { return err } defer b.Close() meta, err := readMetaFile(d) if err != nil { return err } metas = append(metas, meta) blocks = append(blocks, b) } entropy := rand.New(rand.NewSource(time.Now().UnixNano())) uid := ulid.MustNew(ulid.Now(), entropy) return c.write(dest, compactBlockMetas(uid, metas...), blocks...) } func (c *LeveledCompactor) Write(dest string, b BlockReader, mint, maxt int64) error { entropy := rand.New(rand.NewSource(time.Now().UnixNano())) uid := ulid.MustNew(ulid.Now(), entropy) meta := &BlockMeta{ ULID: uid, MinTime: mint, MaxTime: maxt, } meta.Compaction.Level = 1 meta.Compaction.Sources = []ulid.ULID{uid} return c.write(dest, meta, b) } // instrumentedChunkWriter is used for level 1 compactions to record statistics // about compacted chunks. type instrumentedChunkWriter struct { ChunkWriter size prometheus.Histogram samples prometheus.Histogram trange prometheus.Histogram } func (w *instrumentedChunkWriter) WriteChunks(chunks ...ChunkMeta) error { for _, c := range chunks { w.size.Observe(float64(len(c.Chunk.Bytes()))) w.samples.Observe(float64(c.Chunk.NumSamples())) w.trange.Observe(float64(c.MaxTime - c.MinTime)) } return w.ChunkWriter.WriteChunks(chunks...) } // write creates a new block that is the union of the provided blocks into dir. // It cleans up all files of the old blocks after completing successfully. func (c *LeveledCompactor) write(dest string, meta *BlockMeta, blocks ...BlockReader) (err error) { c.logger.Log("msg", "compact blocks", "count", len(blocks), "mint", meta.MinTime, "maxt", meta.MaxTime) defer func(t time.Time) { if err != nil { c.metrics.failed.Inc() } c.metrics.ran.Inc() c.metrics.duration.Observe(time.Since(t).Seconds()) }(time.Now()) dir := filepath.Join(dest, meta.ULID.String()) tmp := dir + ".tmp" if err = os.RemoveAll(tmp); err != nil { return err } if err = os.MkdirAll(tmp, 0777); err != nil { return err } // Populate chunk and index files into temporary directory with // data of all blocks. var chunkw ChunkWriter chunkw, err = newChunkWriter(chunkDir(tmp)) if err != nil { return errors.Wrap(err, "open chunk writer") } // Record written chunk sizes on level 1 compactions. if meta.Compaction.Level == 1 { chunkw = &instrumentedChunkWriter{ ChunkWriter: chunkw, size: c.metrics.chunkSize, samples: c.metrics.chunkSamples, trange: c.metrics.chunkRange, } } indexw, err := newIndexWriter(tmp) if err != nil { return errors.Wrap(err, "open index writer") } if err := c.populateBlock(blocks, meta, indexw, chunkw); err != nil { return errors.Wrap(err, "write compaction") } if err = writeMetaFile(tmp, meta); err != nil { return errors.Wrap(err, "write merged meta") } if err = chunkw.Close(); err != nil { return errors.Wrap(err, "close chunk writer") } if err = indexw.Close(); err != nil { return errors.Wrap(err, "close index writer") } // Create an empty tombstones file. if err := writeTombstoneFile(tmp, newEmptyTombstoneReader()); err != nil { return errors.Wrap(err, "write new tombstones file") } // Block successfully written, make visible and remove old ones. if err := renameFile(tmp, dir); err != nil { return errors.Wrap(err, "rename block dir") } // Properly sync parent dir to ensure changes are visible. df, err := fileutil.OpenDir(dir) if err != nil { return errors.Wrap(err, "sync block dir") } defer df.Close() if err := fileutil.Fsync(df); err != nil { return errors.Wrap(err, "sync block dir") } return nil } // populateBlock fills the index and chunk writers with new data gathered as the union // of the provided blocks. It returns meta information for the new block. func (c *LeveledCompactor) populateBlock(blocks []BlockReader, meta *BlockMeta, indexw IndexWriter, chunkw ChunkWriter) error { var ( set compactionSet allSymbols = make(map[string]struct{}, 1<<16) ) for i, b := range blocks { symbols, err := b.Index().Symbols() if err != nil { return errors.Wrap(err, "read symbols") } for s := range symbols { allSymbols[s] = struct{}{} } indexr := b.Index() all, err := indexr.Postings("", "") if err != nil { return err } all = indexr.SortedPostings(all) s := newCompactionSeriesSet(indexr, b.Chunks(), b.Tombstones(), all) if i == 0 { set = s continue } set, err = newCompactionMerger(set, s) if err != nil { return err } } // We fully rebuild the postings list index from merged series. var ( postings = &memPostings{m: make(map[term][]uint32, 512)} values = map[string]stringset{} i = uint32(0) ) if err := indexw.AddSymbols(allSymbols); err != nil { return errors.Wrap(err, "add symbols") } for set.Next() { lset, chks, dranges := set.At() // The chunks here are not fully deleted. // Skip the series with all deleted chunks. if len(chks) == 0 { continue } if len(dranges) > 0 { // Re-encode the chunk to not have deleted values. for _, chk := range chks { if intervalOverlap(dranges[0].Mint, dranges[len(dranges)-1].Maxt, chk.MinTime, chk.MaxTime) { newChunk := chunks.NewXORChunk() app, err := newChunk.Appender() if err != nil { return err } it := &deletedIterator{it: chk.Chunk.Iterator(), intervals: dranges} for it.Next() { ts, v := it.At() app.Append(ts, v) } chk.Chunk = newChunk } } } if err := chunkw.WriteChunks(chks...); err != nil { return errors.Wrap(err, "write chunks") } if err := indexw.AddSeries(i, lset, chks...); err != nil { return errors.Wrap(err, "add series") } meta.Stats.NumChunks += uint64(len(chks)) meta.Stats.NumSeries++ for _, chk := range chks { meta.Stats.NumSamples += uint64(chk.Chunk.NumSamples()) } for _, chk := range chks { c.chunkPool.Put(chk.Chunk) } for _, l := range lset { valset, ok := values[l.Name] if !ok { valset = stringset{} values[l.Name] = valset } valset.set(l.Value) t := term{name: l.Name, value: l.Value} postings.add(i, t) } i++ } if set.Err() != nil { return errors.Wrap(set.Err(), "iterate compaction set") } s := make([]string, 0, 256) for n, v := range values { s = s[:0] for x := range v { s = append(s, x) } if err := indexw.WriteLabelIndex([]string{n}, s); err != nil { return errors.Wrap(err, "write label index") } } for t := range postings.m { if err := indexw.WritePostings(t.name, t.value, postings.get(t)); err != nil { return errors.Wrap(err, "write postings") } } // Write a postings list containing all series. all := make([]uint32, i) for i := range all { all[i] = uint32(i) } if err := indexw.WritePostings("", "", newListPostings(all)); err != nil { return errors.Wrap(err, "write 'all' postings") } return nil } type compactionSet interface { Next() bool At() (labels.Labels, []ChunkMeta, Intervals) Err() error } type compactionSeriesSet struct { p Postings index IndexReader chunks ChunkReader tombstones TombstoneReader series SeriesSet l labels.Labels c []ChunkMeta intervals Intervals err error } func newCompactionSeriesSet(i IndexReader, c ChunkReader, t TombstoneReader, p Postings) *compactionSeriesSet { return &compactionSeriesSet{ index: i, chunks: c, tombstones: t, p: p, } } func (c *compactionSeriesSet) Next() bool { if !c.p.Next() { return false } var err error c.intervals = c.tombstones.Get(c.p.At()) if err = c.index.Series(c.p.At(), &c.l, &c.c); err != nil { c.err = errors.Wrapf(err, "get series %d", c.p.At()) return false } // Remove completely deleted chunks. if len(c.intervals) > 0 { chks := make([]ChunkMeta, 0, len(c.c)) for _, chk := range c.c { if !(Interval{chk.MinTime, chk.MaxTime}.isSubrange(c.intervals)) { chks = append(chks, chk) } } c.c = chks } for i := range c.c { chk := &c.c[i] chk.Chunk, err = c.chunks.Chunk(chk.Ref) if err != nil { c.err = errors.Wrapf(err, "chunk %d not found", chk.Ref) return false } } return true } func (c *compactionSeriesSet) Err() error { if c.err != nil { return c.err } return c.p.Err() } func (c *compactionSeriesSet) At() (labels.Labels, []ChunkMeta, Intervals) { return c.l, c.c, c.intervals } type compactionMerger struct { a, b compactionSet aok, bok bool l labels.Labels c []ChunkMeta intervals Intervals } type compactionSeries struct { labels labels.Labels chunks []*ChunkMeta } func newCompactionMerger(a, b compactionSet) (*compactionMerger, error) { c := &compactionMerger{ a: a, b: b, } // Initialize first elements of both sets as Next() needs // one element look-ahead. c.aok = c.a.Next() c.bok = c.b.Next() return c, c.Err() } func (c *compactionMerger) compare() int { if !c.aok { return 1 } if !c.bok { return -1 } a, _, _ := c.a.At() b, _, _ := c.b.At() return labels.Compare(a, b) } func (c *compactionMerger) Next() bool { if !c.aok && !c.bok || c.Err() != nil { return false } // While advancing child iterators the memory used for labels and chunks // may be reused. When picking a series we have to store the result. var lset labels.Labels var chks []ChunkMeta d := c.compare() // Both sets contain the current series. Chain them into a single one. if d > 0 { lset, chks, c.intervals = c.b.At() c.l = append(c.l[:0], lset...) c.c = append(c.c[:0], chks...) c.bok = c.b.Next() } else if d < 0 { lset, chks, c.intervals = c.a.At() c.l = append(c.l[:0], lset...) c.c = append(c.c[:0], chks...) c.aok = c.a.Next() } else { l, ca, ra := c.a.At() _, cb, rb := c.b.At() for _, r := range rb { ra = ra.add(r) } c.l = append(c.l[:0], l...) c.c = append(append(c.c[:0], ca...), cb...) c.intervals = ra c.aok = c.a.Next() c.bok = c.b.Next() } return true } func (c *compactionMerger) Err() error { if c.a.Err() != nil { return c.a.Err() } return c.b.Err() } func (c *compactionMerger) At() (labels.Labels, []ChunkMeta, Intervals) { return c.l, c.c, c.intervals } func renameFile(from, to string) error { if err := os.RemoveAll(to); err != nil { return err } if err := os.Rename(from, to); err != nil { return err } // Directory was renamed; sync parent dir to persist rename. pdir, err := fileutil.OpenDir(filepath.Dir(to)) if err != nil { return err } defer pdir.Close() if err = fileutil.Fsync(pdir); err != nil { return err } if err = pdir.Close(); err != nil { return err } return nil }