Prometheus restores alert state between restarts and updates. For each rule, it looks at the alerts that are meant to be active and then queries the `ALERTS_FOR_STATE` series for _each_ alert within the rules.
If the alert rule has 120 instances (or series) it'll execute the same query with slightly different labels.
This PR changes the approach so that we only query once per alert rule and then match the corresponding alert that we're about to restore against the series-set. While the approach might use a bit more memory at start-up (if even?) the restore proccess is only ran once per restart so I'd consider this a big win.
This builds on top of #13974
Signed-off-by: gotjosh <josue.abreu@gmail.com>
When a rule group changes or prometheus is restarted we need to ensure we restore the active alerts that were firing for a corresponding rule, for that Prometheus uses the `ALERTS_FOR_STATE` series to query the previous state and restore it. If a given rule has high cardinality (think 100s of 1000s for series) this proccess can take a bit of time - this is the first of a series of PRs to improve this problem and I'd like to start with exposing the time it takes to restore a rule group as a gauge.
Signed-off-by: gotjosh <josue.abreu@gmail.com>
Rule warnings are logged with numDropped=N while every other component uses num_dropped=N:
```
notifier/notifier.go: level.Warn(n.logger).Log("msg", "Alert batch larger than queue capacity, dropping alerts", "num_dropped", d)
notifier/notifier.go: level.Warn(n.logger).Log("msg", "Alert notification queue full, dropping alerts", "num_dropped", d)
storage/remote/write_handler.go: _ = level.Warn(h.logger).Log("msg", "Error on ingesting out-of-order exemplars", "num_dropped", outOfOrderExemplarErrs)
rules/group.go: level.Warn(logger).Log("msg", "Error on ingesting out-of-order result from rule evaluation", "num_dropped", numOutOfOrder)
rules/group.go: level.Warn(logger).Log("msg", "Error on ingesting too old result from rule evaluation", "num_dropped", numTooOld)
rules/group.go: level.Warn(logger).Log("msg", "Error on ingesting results from rule evaluation with different value but same timestamp", "num_dropped", numDuplicates)
scrape/scrape.go: level.Warn(sl.l).Log("msg", "Error on ingesting out-of-order samples", "num_dropped", appErrs.numOutOfOrder)
scrape/scrape.go: level.Warn(sl.l).Log("msg", "Error on ingesting samples with different value but same timestamp", "num_dropped", appErrs.numDuplicates)
scrape/scrape.go: level.Warn(sl.l).Log("msg", "Error on ingesting samples that are too old or are too far into the future", "num_dropped", appErrs.numOutOfBounds)
scrape/scrape.go: level.Warn(sl.l).Log("msg", "Error on ingesting out-of-order exemplars", "num_dropped", appErrs.numExemplarOutOfOrder)
```
Rename numDropped to num_dropped for consistency.
Signed-off-by: Łukasz Mierzwa <l.mierzwa@gmail.com>
* add custom buckets to native histogram model
* simple copy for custom bounds
* return errors for unsupported add/sub operations
* add test cases for string and update appendhistogram in scrape to account for new schema
* check fields which are supposed to be unused but may affect results in equals
* allow appending custom buckets histograms regardless of max schema
Signed-off-by: Jeanette Tan <jeanette.tan@grafana.com>
Updated & added tests
Review feedback nits
Return empty map if not indeterminate
Use highWatermark to track inflight requests counter
Appease the linter
Clarify feature flag
Signed-off-by: Danny Kopping <danny.kopping@grafana.com>
Optimize histogram iterators
Histogram iterators allocate new objects in the AtHistogram and
AtFloatHistogram methods, which makes calculating rates over long
ranges expensive.
In #13215 we allowed an existing object to be reused
when converting an integer histogram to a float histogram. This commit follows
the same idea and allows injecting an existing object in the AtHistogram and
AtFloatHistogram methods. When the injected value is nil, iterators allocate
new histograms, otherwise they populate and return the injected object.
The commit also adds a CopyTo method to Histogram and FloatHistogram which
is used in the BufferedIterator to overwrite items in the ring instead of making
new copies.
Note that a specialized HPoint pool is needed for all of this to work
(`matrixSelectorHPool`).
---------
Signed-off-by: Filip Petkovski <filip.petkovsky@gmail.com>
Co-authored-by: George Krajcsovits <krajorama@users.noreply.github.com>
The 'ToFloat' method on integer histograms currently allocates new memory
each time it is called.
This commit adds an optional *FloatHistogram parameter that can be used
to reuse span and bucket slices. It is up to the caller to make sure the
input float histogram is not used anymore after the call.
Signed-off-by: Filip Petkovski <filip.petkovsky@gmail.com>
Wiser coders than myself have come to the conclusion that a `switch`
statement is almost always superior to a statement that includes any
`else if`.
The exceptions that I have found in our codebase are just these two:
* The `if else` is followed by an additional statement before the next
condition (separated by a `;`).
* The whole thing is within a `for` loop and `break` statements are
used. In this case, using `switch` would require tagging the `for`
loop, which probably tips the balance.
Why are `switch` statements more readable?
For one, fewer curly braces. But more importantly, the conditions all
have the same alignment, so the whole thing follows the natural flow
of going down a list of conditions. With `else if`, in contrast, all
conditions but the first are "hidden" behind `} else if `, harder to
spot and (for no good reason) presented differently from the first
condition.
I'm sure the aforemention wise coders can list even more reasons.
In any case, I like it so much that I have found myself recommending
it in code reviews. I would like to make it a habit in our code base,
without making it a hard requirement that we would test on the CI. But
for that, there has to be a role model, so this commit eliminates all
`if else` occurrences, unless it is autogenerated code or fits one of
the exceptions above.
Signed-off-by: beorn7 <beorn@grafana.com>
We haven't updated golint-ci in our CI yet, but this commit prepares
for that.
There are a lot of new warnings, and it is mostly because the "revive"
linter got updated. I agree with most of the new warnings, mostly
around not naming unused function parameters (although it is justified
in some cases for documentation purposes – while things like mocks are
a good example where not naming the parameter is clearer).
I'm pretty upset about the "empty block" warning to include `for`
loops. It's such a common pattern to do something in the head of the
`for` loop and then have an empty block. There is still an open issue
about this: https://github.com/mgechev/revive/issues/810 I have
disabled "revive" altogether in files where empty blocks are used
excessively, and I have made the effort to add individual
`// nolint:revive` where empty blocks are used just once or twice.
It's borderline noisy, though, but let's go with it for now.
I should mention that none of the "empty block" warnings for `for`
loop bodies were legitimate.
Signed-off-by: beorn7 <beorn@grafana.com>
In other words: Instead of having a “polymorphous” `Point` that can
either contain a float value or a histogram value, use an `FPoint` for
floats and an `HPoint` for histograms.
This seemingly small change has a _lot_ of repercussions throughout
the codebase.
The idea here is to avoid the increase in size of `Point` arrays that
happened after native histograms had been added.
The higher-level data structures (`Sample`, `Series`, etc.) are still
“polymorphous”. The same idea could be applied to them, but at each
step the trade-offs needed to be evaluated.
The idea with this change is to do the minimum necessary to get back
to pre-histogram performance for functions that do not touch
histograms. Here are comparisons for the `changes` function. The test
data doesn't include histograms yet. Ideally, there would be no change
in the benchmark result at all.
First runtime v2.39 compared to directly prior to this commit:
```
name old time/op new time/op delta
RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8)
RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10)
RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9)
RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10)
```
And then runtime v2.39 compared to after this commit:
```
name old time/op new time/op delta
RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8)
RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8)
RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10)
RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9)
RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9)
```
In summary, the runtime doesn't really improve with this change for
queries with just a few steps. For queries with many steps, this
commit essentially reinstates the old performance. This is good
because the many-step queries are the one that matter most (longest
absolute runtime).
In terms of allocations, though, this commit doesn't make a dent at
all (numbers not shown). The reason is that most of the allocations
happen in the sampleRingIterator (in the storage package), which has
to be addressed in a separate commit.
Signed-off-by: beorn7 <beorn@grafana.com>
It took a `Labels` where the memory could be re-used, but in practice
this hardly ever benefitted. Especially after converting `relabel.Process`
to `relabel.ProcessBuilder`.
Comparing the parameter to `nil` was a bug; `EmptyLabels` is not `nil`
so the slice was reallocated multiple times by `append`.
Lastly `Builder.Labels()` now estimates that the final size will depend
on labels added and deleted.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
This commit adds a new 'keep_firing_for' field to Prometheus alerting
rules. The 'resolve_delay' field specifies the minimum amount of time
that an alert should remain firing, even if the expression does not
return any results.
This feature was discussed at a previous dev summit, and it was
determined that a feature like this would be useful in order to allow
the expression time to stabilize and prevent confusing resolved messages
from being propagated through Alertmanager.
This approach is simpler than having two PromQL queries, as was
sometimes discussed, and it should be easy to implement.
This commit does not include tests for the 'resolve_delay' field. This
is intentional, as the purpose of this commit is to gather comments on
the proposed design of the 'resolve_delay' field before implementing
tests. Once the design of the 'resolve_delay' field has been finalized,
a follow-up commit will be submitted with tests."
See https://github.com/prometheus/prometheus/issues/11570
Signed-off-by: Julien Pivotto <roidelapluie@o11y.eu>
This will allow correlation of executed rule queries with their associated rule names and type
Signed-off-by: Danny Kopping <danny.kopping@grafana.com>
Patterned after `Chunk.Iterator()`: pass the old iterator in so it
can be re-used to avoid allocating a new object.
(This commit does not do any re-use; it is just changing all the method
signatures so re-use is possible in later commits.)
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
errors.Unwrap() actually dangerously returns nil if the error does not have an
Unwrap() method, which is the case in at least one of these places where I
noticed that no error was being logged at all when it should have.
Signed-off-by: Julius Volz <julius.volz@gmail.com>
And a number of `EmptyLabels()` instead of `nil`.
Replacing code which assumes the internal structure of `Labels`.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* model/relabel: Add benchmark
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* model/relabel: re-use Builder across relabels
Saves memory allocations.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* labels.Builder: allow re-use of result slice
This reduces memory allocations where the caller has a suitable slice available.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* model/relabel: re-use source values slice
To reduce memory allocations.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* Unwind one change causing test failures
Restore original behaviour in PopulateLabels, where we must not overwrite the input set.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* relabel: simplify values optimisation
Use a stack-based array for up to 16 source labels, which will be the
vast majority of cases.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* lint
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
During shutdown TSDB is stopped before rule manager is stopped. Since TSDB shutdown can take a long time (minutes or 10s of minutes) it keeps rule manager running while parts of Prometheus are already stopped (most notebly scrape manager). This can cause false positive alerts to fire, mostly those that rely on absent() calls since new sample appends will stop while alert queries are still evaluated.
Stop rules before stopping TSDB and scrape manager to avoid this problem.
Signed-off-by: Łukasz Mierzwa <l.mierzwa@gmail.com>
* refactor: move from io/ioutil to io and os packages
* use fs.DirEntry instead of os.FileInfo after os.ReadDir
Signed-off-by: MOREL Matthieu <matthieu.morel@cnp.fr>
We always track total samples queried and add those to the standard set
of stats queries can report.
We also allow optionally tracking per-step samples queried. This must be
enabled both at the engine and query level to be tracked and rendered.
The engine flag is exposed via a Prometheus feature flag, while the
query flag is set when stats=all.
Co-authored-by: Alan Protasio <approtas@amazon.com>
Co-authored-by: Andrew Bloomgarden <blmgrdn@amazon.com>
Co-authored-by: Harkishen Singh <harkishensingh@hotmail.com>
Signed-off-by: Andrew Bloomgarden <blmgrdn@amazon.com>