Commit Graph

11 Commits (c729df3d0fdf4e82b43899cea98ab1d08a9e17ee)

Author SHA1 Message Date
Ganesh Vernekar 1c99adb9fd
Callbacks for lifecycle of series in TSDB (#7159)
* Callbacks for lifecycle of series in TSDB

Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>

* Add more comments

Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
2020-05-20 18:52:08 +05:30
Ganesh Vernekar d4b9fe801f
M-map full chunks of Head from disk (#6679)
When appending to the head and a chunk is full it is flushed to the disk and m-mapped (memory mapped) to free up memory

Prom startup now happens in these stages
 - Iterate the m-maped chunks from disk and keep a map of series reference to its slice of mmapped chunks.
- Iterate the WAL as usual. Whenever we create a new series, look for it's mmapped chunks in the map created before and add it to that series.

If a head chunk is corrupted the currpted one and all chunks after that are deleted and the data after the corruption is recovered from the existing WAL which means that a corruption in m-mapped files results in NO data loss.

[Mmaped chunks format](https://github.com/prometheus/prometheus/blob/master/tsdb/docs/format/head_chunks.md)  - main difference is that the chunk for mmaping now also includes series reference because there is no index for mapping series to chunks.
[The block chunks](https://github.com/prometheus/prometheus/blob/master/tsdb/docs/format/chunks.md) are accessed from the index which includes the offsets for the chunks in the chunks file - example - chunks of series ID have offsets 200, 500 etc in the chunk files.
In case of mmaped chunks, the offsets are stored in memory and accessed from that. During WAL replay, these offsets are restored by iterating all m-mapped chunks as stated above by matching the series id present in the chunk header and offset of that chunk in that file.

**Prombench results**

_WAL Replay_

1h Wal reply time
30% less wal reply time - 4m31 vs 3m36
2h Wal reply time
20% less wal reply time - 8m16 vs 7m

_Memory During WAL Replay_

High Churn:
10-15% less RAM -  32gb vs 28gb
20% less RAM after compaction 34gb vs 27gb
No Churn:
20-30% less RAM -  23gb vs 18gb
40% less RAM after compaction 32.5gb vs 20gb

Screenshots are in [this comment](https://github.com/prometheus/prometheus/pull/6679#issuecomment-621678932)


Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
2020-05-06 21:00:00 +05:30
Julien Pivotto 653f343547 Revert head posting optimization
This reverts commit 52630ad0c7.

Signed-off-by: Julien Pivotto <roidelapluie@inuits.eu>
2020-03-25 20:19:33 +01:00
Bartlomiej Plotka c4eefd1b3a storage: Removed SelectSorted method; Simplified interface; Added requirement for remote read to sort response.
This is technically BREAKING CHANGE, but it was like this from the beginning: I just notice that we rely in
Prometheus on remote read being sorted. This is because we use selected data from remote reads in MergeSeriesSet
which rely on sorting.

I found during work on https://github.com/prometheus/prometheus/pull/5882 that
we do so many repetitions because of this, for not good reason. I think
I found a good balance between convenience and readability with just one method.
Smaller the interface = better.

Also I don't know what TestSelectSorted was testing, but now it's testing sorting.

Signed-off-by: Bartlomiej Plotka <bwplotka@gmail.com>
2020-03-20 21:14:43 +01:00
Julien Pivotto 52630ad0c7 Make head Postings only return series in time range
benchmark                                                old ns/op      new ns/op      delta
BenchmarkQuerierSelect/Head/1of1000000-8                 405805161      120436132      -70.32%
BenchmarkQuerierSelect/Head/10of1000000-8                403079620      120624292      -70.07%
BenchmarkQuerierSelect/Head/100of1000000-8               404678647      120923522      -70.12%
BenchmarkQuerierSelect/Head/1000of1000000-8              403145813      118636563      -70.57%
BenchmarkQuerierSelect/Head/10000of1000000-8             405020046      125716206      -68.96%
BenchmarkQuerierSelect/Head/100000of1000000-8            426305002      175808499      -58.76%
BenchmarkQuerierSelect/Head/1000000of1000000-8           619002108      567013003      -8.40%
BenchmarkQuerierSelect/SortedHead/1of1000000-8           1276316086     120281094      -90.58%
BenchmarkQuerierSelect/SortedHead/10of1000000-8          1282631170     121836526      -90.50%
BenchmarkQuerierSelect/SortedHead/100of1000000-8         1325824787     121174967      -90.86%
BenchmarkQuerierSelect/SortedHead/1000of1000000-8        1271386268     121025117      -90.48%
BenchmarkQuerierSelect/SortedHead/10000of1000000-8       1280223345     130838948      -89.78%
BenchmarkQuerierSelect/SortedHead/100000of1000000-8      1271401620     243635515      -80.84%
BenchmarkQuerierSelect/SortedHead/1000000of1000000-8     1360256090     1307744674     -3.86%
BenchmarkQuerierSelect/Block/1of1000000-8                748183120      707888498      -5.39%
BenchmarkQuerierSelect/Block/10of1000000-8               741084129      716317249      -3.34%
BenchmarkQuerierSelect/Block/100of1000000-8              722157273      735624256      +1.86%
BenchmarkQuerierSelect/Block/1000of1000000-8             727587744      731981838      +0.60%
BenchmarkQuerierSelect/Block/10000of1000000-8            727518578      726860308      -0.09%
BenchmarkQuerierSelect/Block/100000of1000000-8           765577046      757382386      -1.07%
BenchmarkQuerierSelect/Block/1000000of1000000-8          1126722881     1084779083     -3.72%

benchmark                                                old allocs     new allocs     delta
BenchmarkQuerierSelect/Head/1of1000000-8                 4000018        24             -100.00%
BenchmarkQuerierSelect/Head/10of1000000-8                4000036        82             -100.00%
BenchmarkQuerierSelect/Head/100of1000000-8               4000216        625            -99.98%
BenchmarkQuerierSelect/Head/1000of1000000-8              4002016        6028           -99.85%
BenchmarkQuerierSelect/Head/10000of1000000-8             4020016        60037          -98.51%
BenchmarkQuerierSelect/Head/100000of1000000-8            4200016        600047         -85.71%
BenchmarkQuerierSelect/Head/1000000of1000000-8           6000016        6000016        +0.00%
BenchmarkQuerierSelect/SortedHead/1of1000000-8           4000055        28             -100.00%
BenchmarkQuerierSelect/SortedHead/10of1000000-8          4000073        87             -100.00%
BenchmarkQuerierSelect/SortedHead/100of1000000-8         4000253        630            -99.98%
BenchmarkQuerierSelect/SortedHead/1000of1000000-8        4002053        6036           -99.85%
BenchmarkQuerierSelect/SortedHead/10000of1000000-8       4020053        60054          -98.51%
BenchmarkQuerierSelect/SortedHead/100000of1000000-8      4200053        600074         -85.71%
BenchmarkQuerierSelect/SortedHead/1000000of1000000-8     6000053        6000053        +0.00%
BenchmarkQuerierSelect/Block/1of1000000-8                6000021        6000021        +0.00%
BenchmarkQuerierSelect/Block/10of1000000-8               6000057        6000057        +0.00%
BenchmarkQuerierSelect/Block/100of1000000-8              6000417        6000417        +0.00%
BenchmarkQuerierSelect/Block/1000of1000000-8             6004017        6004017        +0.00%
BenchmarkQuerierSelect/Block/10000of1000000-8            6040017        6040017        +0.00%
BenchmarkQuerierSelect/Block/100000of1000000-8           6400017        6400017        +0.00%
BenchmarkQuerierSelect/Block/1000000of1000000-8          10000018       10000018       +0.00%

benchmark                                                old bytes     new bytes     delta
BenchmarkQuerierSelect/Head/1of1000000-8                 176001177     1392          -100.00%
BenchmarkQuerierSelect/Head/10of1000000-8                176002329     4368          -100.00%
BenchmarkQuerierSelect/Head/100of1000000-8               176013849     33520         -99.98%
BenchmarkQuerierSelect/Head/1000of1000000-8              176129056     321456        -99.82%
BenchmarkQuerierSelect/Head/10000of1000000-8             177281049     3427376       -98.07%
BenchmarkQuerierSelect/Head/100000of1000000-8            188801049     35055408      -81.43%
BenchmarkQuerierSelect/Head/1000000of1000000-8           304001059     304001049     -0.00%
BenchmarkQuerierSelect/SortedHead/1of1000000-8           229192188     2488          -100.00%
BenchmarkQuerierSelect/SortedHead/10of1000000-8          229193340     5568          -100.00%
BenchmarkQuerierSelect/SortedHead/100of1000000-8         229204860     35536         -99.98%
BenchmarkQuerierSelect/SortedHead/1000of1000000-8        229320060     345104        -99.85%
BenchmarkQuerierSelect/SortedHead/10000of1000000-8       230472060     3894672       -98.31%
BenchmarkQuerierSelect/SortedHead/100000of1000000-8      241992060     40511632      -83.26%
BenchmarkQuerierSelect/SortedHead/1000000of1000000-8     357192060     357192060     +0.00%
BenchmarkQuerierSelect/Block/1of1000000-8                227201516     227201506     -0.00%
BenchmarkQuerierSelect/Block/10of1000000-8               227203057     227203041     -0.00%
BenchmarkQuerierSelect/Block/100of1000000-8              227217161     227217165     +0.00%
BenchmarkQuerierSelect/Block/1000of1000000-8             227358279     227358289     +0.00%
BenchmarkQuerierSelect/Block/10000of1000000-8            228769485     228769475     -0.00%
BenchmarkQuerierSelect/Block/100000of1000000-8           242881487     242881477     -0.00%
BenchmarkQuerierSelect/Block/1000000of1000000-8          384001705     384001705     +0.00%

Signed-off-by: Julien Pivotto <roidelapluie@inuits.eu>
2020-02-20 22:41:46 +01:00
Bartlomiej Plotka 34426766d8 Unify Iterator interfaces. All point to storage now.
This is part of https://github.com/prometheus/prometheus/pull/5882 that can be done to simplify things.
All todos I added will be fixed in follow up PRs.

* querier.Querier, querier.Appender, querier.SeriesSet, and querier.Series interfaces merged
with storage interface.go. All imports that.
* querier.SeriesIterator replaced by chunkenc.Iterator
* Added chunkenc.Iterator.Seek method and tests for xor implementation (?)
* Since we properly handle SelectParams for Select methods I adjusted min max
based on that. This should help in terms of performance for queries with functions like offset.
* added Seek to deletedIterator and test.
* storage/tsdb was removed as it was only a unnecessary glue with incompatible structs.

No logic was changed, only different source of abstractions, so no need for benchmarks.

Signed-off-by: Bartlomiej Plotka <bwplotka@gmail.com>
2020-02-17 18:03:54 +00:00
Thor 17d8c49919
made stripe size configurable (#6644)
Signed-off-by: Thor <thansen@digitalocean.com>
2020-01-30 12:42:43 +05:30
Brian Brazil 61262159c4 Simplify benchmark given the new API
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2020-01-28 14:38:09 +00:00
Brian Brazil d682731efc Extend BenchmarkQuerierSelect to use multiple blocks.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2020-01-28 09:14:56 +00:00
Brian Brazil 1d1732bc25 Add benchmark for Querier.Select over blocks and head.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-17 18:56:58 +00:00
Brian Brazil aff9f7a9e8 Extend PostingsForMatchers benchmark to cover Blocks too.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-11 19:59:31 +00:00