Since rule evaluations work via String(), this fixes evaluation of
rules containing GROUP_x modifiers without labels. This change is the
minimal bugfix (so that we can release a fixed version without
risk). It does not intend to implement any additional features (like
allowing `GROUP_LEFT()` or `ON()` or even `ON` - see discussion in
https://github.com/prometheus/prometheus/issues/1597 ).
If the label doesn't exist on the one side, it's not copied.
All labels on the many inside are included, this is a breaking change
but likely low impact.
The labels listed in the group_ modifier will be copied from the one
side to the many side. It will be valid to specify no labels.
This is intended to replace the existing ON/GROUP_* support.,
Prometheus is Apache 2 licensed, and most source files have the
appropriate copyright license header, but some were missing it without
apparent reason. Correct that by adding it.
The `unless` set operator can be used to return all vector elements from
the LHS which do not match the elements on the RHS. A use case is to
return all metrics for nodes which do not have a specific role:
node_load1 unless on(instance) chef_role{role="app"}
The chunk encoding was hardcoded there because it mostly doesn't
matter what encoding is chosen in that test. Since type 1 is
battle-hardened enough, I'm switching to type 2 here so that we can
catch unexpected problems as a byproduct. My expectation is that the
chunk encoding doesn't matter anyway, as said, but then "unexpected
problems" contains the word "unexpected".
WIP: This needs more tests.
It now gets a from and through value, which it may opportunistically
use to optimize the retrieval. With possible future range indices,
this could be used in a very efficient way. This change merely applies
some easy checks, which should nevertheless solve the use case of
heavy rule evaluations on servers with a lot of series churn.
Idea is the following:
- Only archive series that are at least as old as the headChunkTimeout
(which was already extremely unlikely to happen).
- Then maintain a high watermark for the last archival, i.e. no
archived series has a sample more recent than that watermark.
- Any query that doesn't reach to a time before that watermark doesn't
have to touch the archive index at all. (A production server at
Soundcloud with the aforementioned series churn and heavy rule
evaluations spends 50% of its CPU time in archive index
lookups. Since rule evaluations usually only touch very recent
values, most of those lookup should disappear with this change.)
- Federation with a very broad label matcher will profit from this,
too.
As a byproduct, the un-needed MetricForFingerprint method was removed
from the Storage interface.
This requires all the panic calls upon unexpected data to be converted
into errors returned. This pollute the function signatures quite
lot. Well, this is Go...
The ideas behind this are the following:
- panic only if it's a programming error. Data corruptions happen, and
they are not programming errors.
- If we detect a data corruption, we "quarantine" the series,
essentially removing it from the database and putting its data into
a separate directory for forensics.
- Failure during writing to a series file is not considered corruption
automatically. It will call setDirty, though, so that a
crashrecovery upon the next restart will commence and check for
that.
- Series quarantining and setDirty calls are logged and counted in
metrics, but are hidden from the user of the interfaces in
interface.go, whith the notable exception of Append(). The reasoning
is that we treat corruption by removing the corrupted series, i.e. a
query for it will return no results on its next call anyway, so
return no results right now. In the case of Append(), we want to
tell the user that no data has been appended, though.
Minor side effects:
- Now consistently using filepath.* instead of path.*.
- Introduced structured logging where I touched it. This makes things
less consistent, but a complete change to structured logging would
be out of scope for this PR.
Fixes https://github.com/prometheus/prometheus/issues/1401
This remove the last (and in fact bogus) use of BoundaryValues.
Thus, a whole lot of unused (and arguably sub-optimal / ugly) code can
be removed here, too.
In a way, our instants were also ranges, just with the staleness delta
as range length. They are no treated equally, just that in one case,
the range length is set as range, in the other the staleness
delta. However, there are "real" instants where start and and time of
a query is the same. In those cases, we only want to return a single
value (the one closest before or at the equal start and end time). If
that value is the last sample in the series, odds are we have it
already in the series object. In that case, there is no need to pin or
load any chunks. A special singleSampleSeriesIterator is created for
that. This should greatly speed up instant queries as they happen
frequently for rule evaluations.
This will fix issue #1035 and will also help to make issue #1264 less
bad.
The fundamental problem in the current code:
In the preload phase, we quite accurately determine which chunks will
be used for the query being executed. However, in the subsequent step
of creating series iterators, the created iterators are referencing
_all_ in-memory chunks in their series, even the un-pinned ones. In
iterator creation, we copy a pointer to each in-memory chunk of a
series into the iterator. While this creates a certain amount of
allocation churn, the worst thing about it is that copying the chunk
pointer out of the chunkDesc requires a mutex acquisition. (Remember
that the iterator will also reference un-pinned chunks, so we need to
acquire the mutex to protect against concurrent eviction.) The worst
case happens if a series doesn't even contain any relevant samples for
the query time range. We notice that during preloading but then we
will still create a series iterator for it. But even for series that
do contain relevant samples, the overhead is quite bad for instant
queries that retrieve a single sample from each series, but still go
through all the effort of series iterator creation. All of that is
particularly bad if a series has many in-memory chunks.
This commit addresses the problem from two sides:
First, it merges preloading and iterator creation into one step,
i.e. the preload call returns an iterator for exactly the preloaded
chunks.
Second, the required mutex acquisition in chunkDesc has been greatly
reduced. That was enabled by a side effect of the first step, which is
that the iterator is only referencing pinned chunks, so there is no
risk of concurrent eviction anymore, and chunks can be accessed
without mutex acquisition.
To simplify the code changes for the above, the long-planned change of
ValueAtTime to ValueAtOrBefore time was performed at the same
time. (It should have been done first, but it kind of accidentally
happened while I was in the middle of writing the series iterator
changes. Sorry for that.) So far, we actively filtered the up to two
values that were returned by ValueAtTime, i.e. we invested work to
retrieve up to two values, and then we invested more work to throw one
of them away.
The SeriesIterator.BoundaryValues method can be removed once #1401 is
fixed. But I really didn't want to load even more changes into this
PR.
Benchmarks:
The BenchmarkFuzz.* benchmarks run 83% faster (i.e. about six times
faster) and allocate 95% fewer bytes. The reason for that is that the
benchmark reads one sample after another from the time series and
creates a new series iterator for each sample read.
To find out how much these improvements matter in practice, I have
mirrored a beefy Prometheus server at SoundCloud that suffers from
both issues #1035 and #1264. To reach steady state that would be
comparable, the server needs to run for 15d. So far, it has run for
1d. The test server currently has only half as many memory time series
and 60% of the memory chunks the main server has. The 90th percentile
rule evaluation cycle time is ~11s on the main server and only ~3s on
the test server. However, these numbers might get much closer over
time.
In addition to performance improvements, this commit removes about 150
LOC.
This has the advantage that the user doesn't need
to list all labels they want to keep (as with "by")
but without having to worry about inconsistent labels
as when there's only one time series (as with "keeping_common").
Almost all aggregation should use this rather than the existing
two options as it's much less error prone and easier to maintain
due to not having to always add in "job" plus whatever other common
job-level labels you have like "region".
It's actually happening in several places (and for flags, we use the
standard Go time.Duration...). This at least reduces all our
home-grown parsing to one place (in model).
The documentation speaks about range vectors and range vector selectors.
This change does not fix all issues, we might still expose the term
"Matrix" in error messages using %T.
The new implementation detects the start and end of a series by
looking at the average sample interval within the range. If the first
(last) sample in the range is more than 1.1*interval distant from the
beginning (end) of the range, it is considered the first (last) sample
of the series as a whole, and extrapolation is limited to half the
interval (rather than all the way to the beginning (end) of the
range). In addition, if the extrapolated starting point of a counter
(where it is zero) is within the range, it is used as the starting
point of the series.
Fixes#581
This change is breaking, use the 'bool' modifier for such comprisons.
After this change all comparisons without 'bool' will filter, and all
comparisons with 'bool' will return 0/1. This makes the language more
consistent and orthogonal, and ultimately easier to learn and use.
If we ever figure out sane semantics for filtering scalar/scalar
comparisons we can add them in, which will most likely come out of how
the new vector() function is used.
This change is breaking, use increase() instead.
I'm not cleaning up the function in this PR, as my solution to #581 will
rewrite and simplify increase/rate/delta.
irate is a rate function that only looks at the most
recent two data points, and calucaltes a per-second value
from that. This produces much more granular graphs for
fast moving data, and works sanely across many scrape intervals.
It doesn't do so well for slowly moving data.
This adapts some functionality from the Go standard library for string
literal lexing and unquoting/unescaping.
The following string types are now supported:
Double- or single-quoted strings:
These support all escape sequences that Go supports in double-quoted
string literals. The difference is that Prometheus also has
single-quoted strings (instead of single-quoted runes in Go). Raw
newlines are not allowed.
Backtick-quoted raw strings:
Strings quoted in backticks are treated as raw strings just like in Go
and may contain raw newlines and other special characters directly.
Fixes https://github.com/prometheus/prometheus/issues/1122
Fixes https://github.com/prometheus/prometheus/issues/1121
Currently the only way to convert a scalar to a vector is to
use absent(), which isn't very clean. This adds a vector()
function that's the inverse of scalar() and lets your optionally
set labels.
Example usage would be
vector(time() % 86400) < 3600
to filter to only the first hour of the day.
When doing comparison operations on vectors, filtering
sometimes gets in the way and you have to go to a fair bit of
effort to workaround it in order to always return a result.
The 'bool' modifier instead of filtering returns 0/1 depending
on the result of the compairson.
This is also a prerequisite to removing plain scalar/scalar comparisons,
as it maintains the current behaviour under a new syntax.
This is with `golint -min_confidence=0.5`.
I left several lint warnings untouched because they were either
incorrect or I felt it was better not to change them at the moment.
The current behaviour produces values that are not
from rules or scrapes. So if for example I have
a boolean 0/1 it can be returned as 0.2344589. This
prevents a number of advanced use cases, introduces
race conditions and can produce misleading graphs.
This commit removes the possibility to have multi-statement queries
which had no full support anyway. This makes the caller responsible
for multi-statement semantics.
Multiple tests are no longer timing-dependent.
`keep_common` is more in line with the function name
`drop_common_labels()` terminology-wise, and also more in line with
`group_left`/`group_right` (no `...ing` verb suffix).
We could also go the full way and call it `keep_common_labels`. That
would have the benefit of being even more consistent with the function
`drop_common_labels()` and would be more explanatory, but it also seems
quite long.
These changes allow to do range queries over scalar expressions.
Errors on bad types for range queries are now raised on query creation
rather than evaluation.
This calculates how much a counter increases over
a given period of time, which is the area under the curve
of it's rate.
increase(x[5m]) is equivilent to rate(x[5m]) * 300.