The test had become flaky with Go1.5.
Theory here is that with Go1.5.x, sleeping for 10ms might not be
enough to wake up another goroutine, possibly because it is used for
GC. 50ms should always be enough due to GC pause guarantees with the
new GC.
This is with `golint -min_confidence=0.5`.
I left several lint warnings untouched because they were either
incorrect or I felt it was better not to change them at the moment.
If users see the crash recovery error, the chances are
they aren't shutting down Prometheus correctly. Telling
them how to do so will help them debug and fix the problem.
Perhaps it would be even better to still warn in case the sample value has
changed but the timestamps are equal, but we don't have efficient access
to the last value.
Allow scrape_configs to have an optional proxy_url option which specifies
a proxy to be used for all connections to hosts in that config.
Internally this modifies the various client functions to take a *url.URL pointer
which currently must point to an HTTP proxy (but has been left open-ended to
allow the url format to be extended to support others, such as maybe SOCKS if
needed).
For the label matching index-based preselection phase, don't do an OR
between equality and non-equality matchers. Execute only one of the two
(with equality matchers preferred when present).
Fixes https://github.com/prometheus/prometheus/issues/924
If all samples in consecutive chunks have the same timestamp, the way
we used to load chunks will fail. With this change, the persist
watermark is used to load the right amount of chunkDescs from disk.
This bug is a possible reason for the rare storage corruption we have
observed.
Fixes https://github.com/prometheus/prometheus/issues/481
While doing so, clean up and fix a few other things:
- Fix `go vet` warnings (@fabxc to blame ;).
- Fix a racey problem with unarchiving: Whenever we unarchive a
series, we essentially want to do something with it. However, until
we have done something with it, it appears like a series that is
ready to be archived or even purged. So e.g. it would be ignored
during checkpointing. With this fix, we always load the chunkDescs
upon unarchiving. This is wasteful if we only want to add a new
sample to an archived time series, but the (presumably more common)
case where we access an archived time series in a query doesn't
become more expensive.
- The change above streamlined the getOrCreateSeries ond
newMemorySeries flow. Also, the modTime is now always set correctly.
- Fix the leveldb-backed implementation of KeyValueStore.Delete. It
had the wrong behavior of still returning true, nil if a
non-existing key has been passed in.
See https://github.com/prometheus/prometheus/issues/887, which will at
least be partially fixed by this.
From the spec https://golang.org/ref/spec#Conversions:
"In all non-constant conversions involving floating-point or complex
values, if the result type cannot represent the value the conversion
succeeds but the result value is implementation-dependent."
This ended up setting the converted values to 0 on Debian's Go 1.4.2
compiler, at least on 32-bit Debians.
This commit adds the honor_labels and params arguments to the scrape
config. This allows to specify query parameters used by the scrapers
and handling scraped labels with precedence.
Change #704 introduced a regression that started reading the queue only
after potential crash recovery. When more than the queue capacity was
indexed, Prometheus deadlocked.
This change is conceptually very simple, although the diff is large. It
switches logging from "github.com/golang/glog" to
"github.com/prometheus/log", while not actually changing any log
messages. V(1)-style logging has been changed to be log.Debug*().
This commit creates a (so far unused) package. It contains the a custom
lexer/parser for the query language.
ast.go: New AST that interacts well with the parser.
lex.go: Custom lexer (new).
lex_test.go: Lexer tests (new).
parse.go: Custom parser (new).
parse_test.go: Parser tests (new).
functions.go: Changed function type, dummies for parser testing (barely changed/dummies).
printer.go: Adapted from rules/ and adjusted to new AST (mostly unchanged, few additions).
Also, clean up some things in the code (especially introduction of the
chunkLenWithHeader constant to avoid the same expression all over the place).
Benchmark results:
BEFORE
BenchmarkLoadChunksSequentially 5000 283580 ns/op 152143 B/op 312 allocs/op
BenchmarkLoadChunksRandomly 20000 82936 ns/op 39310 B/op 99 allocs/op
BenchmarkLoadChunkDescs 10000 110833 ns/op 15092 B/op 345 allocs/op
AFTER
BenchmarkLoadChunksSequentially 10000 146785 ns/op 152285 B/op 315 allocs/op
BenchmarkLoadChunksRandomly 20000 67598 ns/op 39438 B/op 103 allocs/op
BenchmarkLoadChunkDescs 20000 99631 ns/op 12636 B/op 192 allocs/op
Note that everything is obviously loaded from the page cache (as the
benchmark runs thousands of times with very small series files). In a
real-world scenario, I expect a larger impact, as the disk operations
will more often actually hit the disk. To load ~50 sequential chunks,
this reduces the iops from 100 seeks and 100 reads to 1 seek and 1
read.
The one central sample ingestion channel has caused a variety of
trouble. This commit removes it. Targets and rule evaluation call an
Append method directly now. To incorporate multiple storage backends
(like OpenTSDB), storage.Tee forks the Append into two different
appenders.
Note that the tsdb queue manager had its own queue anyway. It was a
queue after a queue... Much queue, so overhead...
Targets have their own little buffer (implemented as a channel) to
avoid stalling during an http scrape. But a new scrape will only be
started once the old one is fully ingested.
The contraption of three pipelined ingesters was removed. A Target is
an ingester itself now. Despite more logic in Target, things should be
less confusing now.
Also, remove lint and vet warnings in ast.go.
A number of mostly minor things:
- Rename chunk type -> chunk encoding.
- After all, do not carry around the chunk encoding to all parts of
the system, but just have one place where the encoding for new
chunks is set based on the flag. The new approach has caveats as
well, but the polution of so many method signatures is worse.
- Use the default chunk encoding for new chunks of existing
series. (Previously, only new _series_ would get chunks with the
default encoding.)
- Use an enum for chunk encoding. (But keep the version number for the
flag, for reasons discussed previously.)
- Add encoding() to the chunk interface (so that a chunk knows its own
encoding - no need to have that in a different top-level function).
- Got rid of newFollowUpChunk (which would keep the existing encoding
for all chunks of a time series). Now only use newChunk(), which
will create a chunk encoding according to the flag.
- Simplified transcodeAndAdd.
- Reordered methods of deltaEncodedChunk and doubleDeltaEncoded chunk
to match the order in the chunk interface.
- Only transcode if the chunk is not yet half full. If more than half
full, add a new chunk instead.
This checks for the basic behaviour of GetFingerprintsForLabelMatchers, that is, whether the different matcher types filter the correct fingerprints and intersections are correct.
The capacity is basically how many persisted head chunks we will count
at most while doing other things, in particular checkpointing. To
limit the amount of already counted head chunks, keep this number low,
otherwise we will easily checkpoint too often if checkpoints take long
anyway.
In that commit, the 'maintainSeries' call was accidentally removed.
This commit refactors things a bit so that there is now a clean
'maintainMemorySeries' and a 'maintainArchivedSeries' call.
Straighten the nomenclature a bit (consistently use 'drop' for
chunks and 'purge' for series/metrics).
Remove the annoying 'Completed maintenance sweep through archived
fingerprints' message if there were no archived fingerprints to do
maintenance on.
This is done by bucketing chunks by fingerprint. If the persisting to
disk falls behind, more and more chunks are in the queue. As soon as
there are "double hits", we will now persist both chunks in one go,
doubling the disk throughput (assuming it is limited by disk
seeks). Should even more pile up so that we end wit "triple hits", we
will persist those first, and so on.
Even if we have millions of time series, this will still help,
assuming not all of them are growing with the same speed. Series that
get many samples and/or are not very compressable will accumulate
chunks faster, and they will soon get double- or triple-writes.
To improve the chance of double writes,
-storage.local.persistence-queue-capacity could be set to a higher
value. However, that will slow down shutdown a lot (as the queue has
to be worked through). So we leave it to the user to set it to a
really high value. A more fundamental solution would be to checkpoint
not only head chunks, but also chunks still in the persist queue. That
would be quite complicated for a rather limited use-case (running many
time series with high ingestion rate on slow spinning disks).
Starting a goroutine takes 1-2µs on my laptop. From the "numbers every
Go programmer should know", I had 300ns for a channel send in my
mind. Turns out, on my laptop, it takes only 60ns. That's fast enough
to warrant the machinery of yet another channel with a fixed set of
worker goroutines feeding from it. The number chosen (8 for now) is
low enough to not really afflict a measurable overhead (a big
Prometheus server has >1000 goroutines running), but high enough to
not make sample ingestion a bottleneck.
- Parallelize AppendSamples as much as possible without breaking the
contract about temporal order.
- Allocate more fingerprint locker slots.
- Do not run early checkpoints if we are behind on chunk persistence.
- Increase fpMinWaitDuration to give the disk more time for more
important things.
Also, switch math.MaxInt64 and math.MinInt64 to the new constants.
Also, set a much higher default value.
Chunk persist requests can be quite spiky. If you collect a large
number of time series that are very similar, they will tend to finish
up a chunk at about the same time. There is no reason we need to back
up scraping just because of that. The rationale of the new default
value is "1/8 of the chunks in memory".
persistence.go is way too long anyway, and a lot of code is just crash
recovery, which is not important to understand the normal operation.
Also, remove unused `exists` function.
Previously, it would return an error instead. Now we can distinguish
the cases 'error while deleting known key' vs. 'key not in index'
without testing for leveldb-internal kinds of errors.
If queries are still running when the shutdown is initiated, they will
finish _during_ the shutdown. In that case, they might request chunk
eviction upon unpinning their pinned chunks. That might completely
fill the evict request queue _after_ draining it during storage
shutdown. If that ever happens (which is the case if there are _many_
queries still running during shutdown), the affected queries will be
stuck while keeping a fingerprint locked. The checkpointing can then
not process that fingerprint (or one that shares the same lock). And
then we are deadlocked.
- Move CONTRIBUTORS.md to the more common AUTHORS.
- Added the required NOTICE file.
- Changed "Prometheus Team" to "The Prometheus Authors".
- Reverted the erroneous changes to the Apache License.
This mimics the locking leveldb is performing anyway. Advantages of
doing it separately:
- Should we ever replace the leveldb implementation by one without
double-start protection, we are still good.
- In contrast to leveldb, the new code creates a meaningful error
message.
Usually, if you unarchive a series, it is to add something to it,
which will create a new head chunk. However, if a series in
unarchived, and before anything is added to it, it is handled by the
maintenance loop, it will be archived again. In that case, we have to
load the chunkDescs to know the lastTime of the series to be
archived. Usually, this case will happen only rarely (as a race, has
never happened so far, possibly because the locking around unarchiving
and the subsequent sample append is smart enough). However, during
crash recovery, we sometimes treat series as "freshly unarchived"
without directly appending a sample. We might add more cases of that
type later, so better deal with archiving properly and load chunkDescs
if required.
- Documented checkpoint file format.
- High-level description of series sanitation.
- Replace fp.LoadFromString panic with an error.
(Change in client_golang already submitted.)
- Introduced checks for series file size where appropriate.
- Removed two Law of Demeter violations.
Change-Id: I555d97a2c8f4769820c2fc8bf5d6f4e160222abc
- Delete unneeded file view_adapter.go.
- Assessed that we still need the fingerprints in nodes
(to create iterators).
- Turned numMemChunkDescs into a metric.
Change-Id: I29be963c795a075ec00c095f76bf26405535609d
Now only purge if there is something to purge.
Also, set savedFirstTime and archived time range appropriately.
(Which is needed for the optimization.)
Change-Id: Idcd33319a84def3ce0318d886f10c6800369e7f9
Fix the behavior if preload for non-existent series is requested.
Instead of returning an error (which triggers a panic further up),
simply count those incidents. They can happen regularly, we just want
to know if they happen too frequently because that would mean the
indexing is behind or broken.
Change-Id: I4b2d1b93c4146eeea897d188063cb9574a270f8b
The root cause was that after chunkDesc eviction, the offset between
memory representation of chunk layout (via chunkDescs in memory) was
shiftet against chunks as layed out on disk. Keeping the offset up to
date is by no means trivial, so this commit is pretty involved.
Also, found a race that for some reason didn't bite us so far:
Persisting chunks was completel unlocked, so if chunks were purged on
disk at the same time, disaster would strike. However, locking the
persisting of chunk revealed interesting dead locks. Basically, never
queue under the fp lock.
Change-Id: I1ea9e4e71024cabbc1f9601b28e74db0c5c55db8
Checkpointing interval is now a command line flag.
Along the way, several things were refactored.
- Restructure the way the storage is started and stopped..
- Number of series in checkpoint is now a uint64, not a varint.
(Breaks old checkpoints, needs wipe!)
- More consistent naming and order of methods.
Change-Id: I883d9170c9a608ee716bb0ab3d0ded8ca03760d9
Add gauge for chunks and chunkdescs in memory (backed by a global
variable to be used later not only for instrumentation but also for
memory management).
Refactored instrumentation code once more (instrumentation.go is back :).
Change-Id: Ife39947e22a48cac4982db7369c231947f446e17
- Staleness delta is no a proper function parameter and not replicated
from package ast.
- Named type 'chunks' replaced by explicit '[]chunk' to avoid confusion.
- For the same reason, replaced 'chunkDescs' by '[]*chunkDescs'.
- Verified that math.Modf is not a speed enhancement over conversion
(actually 5x slower).
- Renamed firstTimeField, lastTimeField into chunkFirstTime and
chunkLastTime.
- Verified unpin() is sufficiently goroutine-safe.
- Decided not to update archivedFingerprintToTimeRange upon series
truncation and added a rationale why.
Change-Id: I863b8d785e5ad9f71eb63e229845eacf1bed8534
- Head chunk persisting only happens in evictOlderThan, so do it
there. (With the previous code, it would never happen.)
- Raw accesses to chunkDesc.chunk are now done via isEvicted (with
locking).
Change-Id: I48b07b56dfea4899b50df159b4ea566954396fcd
Also, fix problems in shutdown.
Starting serving and shutdown still has to be cleaned up properly.
It's a mess.
Change-Id: I51061db12064e434066446e6fceac32741c4f84c
Some other improvements on the way, in particular codec -> codable
renaming and addition of LookupSet methods.
Change-Id: I978f8f3f84ca8e4d39a9d9f152ae0ad274bbf4e2
Most important, the heads file will now persist all the chunk descs,
too. Implicitly, it will serve as the persisted form of the
fp-to-series map.
Change-Id: Ic867e78f2714d54c3b5733939cc5aef43f7bd08d
BinaryMarshaler instead of encodable.
BinaryUnmarshaler instead of decodable.
Left 'codable' in place for lack of a better word.
Change-Id: I8a104be7d6db916e8dbc47ff95e6ff73b845ac22
Large delta values often imply a difference between a large base value
and the large delta value, potentially resulting in small numbers with
a huge precision error. Since large delta values need 8 bytes anyway,
we are not even saving memory.
As a solution, always save the absoluto value rather than a delta once
8 bytes would be needed for the delta. Timestamps are then saved as 8
byte integers, while values are always saved as float64 in that case.
Change-Id: I01100d600515e16df58ce508b50982ffd762cc49
Go downloads moved to a different URL and require following redirects
(curl's '-L' option) now.
Go 1.3 deliberately randomizes ranges over maps, which uncovered some
bugs in our tests. These are fixed too.
Change-Id: Id2d9e185d8d2379a9b7b8ad5ba680024565d15f4
- Always spell out the time unit (e.g. milliseconds instead of ms).
- Remove "_total" from the names of metrics that are not counters.
- Make use of the "Namespace" and "Subsystem" fields in the options.
- Removed the "capacity" facet from all metrics about channels/queues.
These are all fixed via command line flags and will never change
during the runtime of a process. Also, they should not be part of
the same metric family. I have added separate metrics for the
capacity of queues as convenience. (They will never change and are
only set once.)
- I left "metric_disk_latency_microseconds" unchanged, although that
metric measures the latency of the storage device, even if it is not
a spinning disk. "SSD" is read by many as "solid state disk", so
it's not too far off. (It should be "solid state drive", of course,
but "metric_drive_latency_microseconds" is probably confusing.)
- Brian suggested to not mix "failure" and "success" outcome in the
same metric family (distinguished by labels). For now, I left it as
it is. We are touching some bigger issue here, especially as other
parts in the Prometheus ecosystem are following the same
principle. We still need to come to terms here and then change
things consistently everywhere.
Change-Id: If799458b450d18f78500f05990301c12525197d3
The first sort in groupByFingerprint already ensures that all resulting sample
lists contain only one fingerprint. We also already assume that all
samples passed into AppendSamples (and thus groupByFingerprint) are
chronologically sorted within each fingerprint.
The extra chronological sort is thus superfluous. Furthermore, this
second sort didn't only sort chronologically, but also compared all
metric fingerprints again (although we already know that we're only
sorting within samples for the same fingerprint). This caused a huge
memory and runtime overhead.
In a heavily loaded real Prometheus, this brought down disk flush times
from ~9 minutes to ~1 minute.
OLD:
BenchmarkLevelDBAppendRepeatingValues 5 331391808 ns/op 44542953 B/op 597788 allocs/op
BenchmarkLevelDBAppendsRepeatingValues 5 329893512 ns/op 46968288 B/op 3104373 allocs/op
NEW:
BenchmarkLevelDBAppendRepeatingValues 5 299298635 ns/op 43329497 B/op 567616 allocs/op
BenchmarkLevelDBAppendsRepeatingValues 20 92204601 ns/op 1779454 B/op 70975 allocs/op
Change-Id: Ie2d8db3569b0102a18010f9e106e391fda7f7883
This fixes the problem where samples become temporarily unavailable for
queries while they are being flushed to disk. Although the entire
flushing code could use some major refactoring, I'm explicitly trying to
do the minimal change to fix the problem since there's a whole new
storage implementation in the pipeline.
Change-Id: I0f5393a30b88654c73567456aeaea62f8b3756d9
Move rulemanager to it's own package to break cicrular dependency.
Make NewTestTieredStorage available to tests, remove duplication.
Change-Id: I33b321245a44aa727bfc3614a7c9ae5005b34e03
This optimizes the runtime and memory allocation behavior for label matchers
other than type "Equal". Instead of creating a new set for every union of
fingerprints, this simply adds new fingerprints to the existing set to achieve
the same effect.
The current behavior made a production Prometheus unresponsive when running a
NotEqual match against the "instance" label (a label with high value
cardinality).
BEFORE:
BenchmarkGetFingerprintsForNotEqualMatcher 10 170430297 ns/op 39229944 B/op 40709 allocs/op
AFTER:
BenchmarkGetFingerprintsForNotEqualMatcher 5000 706260 ns/op 217717 B/op 1116 allocs/op
Change-Id: Ifd78e81e7dfbf5d7249e50ad1903a5d9c42c347a
This fixes https://github.com/prometheus/prometheus/issues/390
The cause for the deadlock was a lock semantic in Go that wasn't
obvious to me when introducing this bug:
http://golang.org/pkg/sync/#RWMutex.Lock
Key phrase: "To ensure that the lock eventually becomes available, a
blocked Lock call excludes new readers from acquiring the lock."
In the memory series storage, we have one function
(GetFingerprintsForLabelMatchers) acquiring an RLock(), which calls
another function also acquiring the same RLock()
(GetLabelValuesForLabelName). That normally doesn't deadlock, unless a
Lock() call from another goroutine happens right in between the two
RLock() calls, blocking both the Lock() and the second RLock() call from
ever completing.
GoRoutine 1 GoRoutine 2
======================================
RLock()
... Lock() [DEADLOCK]
RLock() [DEADLOCK] Unlock()
RUnlock()
RUnlock()
Testing deadlocks is tricky, but the regression test I added does
reliably detect the deadlock in the original code on my machine within a
normal concurrent reader/writer run duration of 250ms.
Change-Id: Ib34c2bb8df1a80af44550cc2bf5007055cdef413
This was initially motivated by wanting to distribute the rule checker
tool under `tools/rule_checker`. However, this was not possible without
also distributing the LevelDB dynamic libraries because the tool
transitively depended on Levigo:
rule checker -> query layer -> tiered storage layer -> leveldb
This change separates external storage interfaces from the
implementation (tiered storage, leveldb storage, memory storage) by
putting them into separate packages:
- storage/metric: public, implementation-agnostic interfaces
- storage/metric/tiered: tiered storage implementation, including memory
and LevelDB storage.
I initially also considered splitting up the implementation into
separate packages for tiered storage, memory storage, and LevelDB
storage, but these are currently so intertwined that it would be another
major project in itself.
The query layers and most other parts of Prometheus now have notion of
the storage implementation anymore and just use whatever implementation
they get passed in via interfaces.
The rule_checker is now a static binary :)
Change-Id: I793bbf631a8648ca31790e7e772ecf9c2b92f7a0
We are not reusing buffers yet. This could introduce problems,
so the behavior is disabled for now.
Cursory benchmark data:
- Marshal for 10,000 samples: -30% overhead.
- Unmarshal for 10,000 samples: -15% overhead.
Change-Id: Ib006bdc656af45dca2b92de08a8f905d8d728cac
The format header size is not deducted from the size of the byte
stream when calculating the output buffer size for samples. I have
yet to notice problems directly as a result of this, but it is good
to fix.
Change-Id: Icb07a0718366c04ddac975d738a6305687773af0
The idiomatic pattern for signalling a one-time message to multiple
consumers from a single producer is as follows:
```
c := make(chan struct{})
w := new(sync.WaitGroup) // Boilerplate to ensure synchronization.
for i := 0; i < 1000; i++ {
w.Add(1)
go func() {
defer w.Done()
for {
select {
case _, ok := <- c:
if !ok {
return
}
default:
// Do something here.
}
}
}()
}
close(c) // Signal the one-to-many single-use message.
w.Wait()
```
Change-Id: I755f73ba4c70a923afd342a4dea63365bdf2144b
There are four label-matching ops for selecting timeseries now:
- Equal: =
- NotEqual: !=
- RegexMatch: =~
- RegexNoMatch: !~
Instead of looking up labels by a simple clientmodel.LabelSet (basically
an equals op for every key/value pair in the set), timeseries
fingerprint selection is now done via a list of metric.LabelMatchers.
Change-Id: I510a83f761198e80946146770ebb64e4abc3bb96
In the case that a getValuesAtIntervalOp's ExtractSamples() is called
with a current time after the last chunk time, we return without
extracting any further values beyond the last one in the chunk
(correct), but also without advancing the op's time (incorrect). This
leads to an infinite loop in renderView(), since the op is called
repeatedly without ever being advanced and consumed.
This adds handling for this special case. When detecting this case, we
immediately set the op to be consumed, since we would always get a value
after the current time passed in if there was one.
Change-Id: Id99149e07b5188d655331382b8b6a461b677005c
This fixes a bug where an interval op might advance too far past the end
of the currently extracted chunk, effectively skipping over relevant
(to-be-extracted) values in the subsequent chunk. The result: missing
samples at chunk boundaries in the resulting view.
Change-Id: Iebf5d086293a277d330039c69f78e1eaf084b3c8
This also fixes the compaction test, which before worked only because
the input sample sorting was accidentally equal to the resulting on-disk
sample sorting.
Change-Id: I2a21c4b46ba562424b27058fc02eba84fa6a6006
- Most of this is the actual regression test in tiered_test.go.
- Working on that regression tests uncovered problems in
tiered_test.go that are fixed in this commit.
- The 'op.consumed = false' line added to freelist.go was actually not
fixing a bug. Instead, there was no bug at all. So this commit
removes that line again, but adds a regression test to make sure
that the assumed bug is indeed not there (cf. freelist_test.go).
- Removed more code duplication in operation.go (following the same
approach as before, i.e. embedding op type A into op type B if
everything in A is the same as in B with the exception of String()
and ExtractSample()). (This change make struct literals for ops more
clunky, but that only affects tests. No code change whatsoever was
necessary in the actual code after this refactoring.)
- Fix another op leak in tiered.go.
Change-Id: Ia165c52e33290ad4f6aba9c83d92318d4f583517
The initial impetus for this was that it made unmarshalling sample
values much faster.
Other relevant benchmark changes in ns/op:
Benchmark old new speedup
==================================================================
BenchmarkMarshal 179170 127996 1.4x
BenchmarkUnmarshal 404984 132186 3.1x
BenchmarkMemoryGetValueAtTime 57801 50050 1.2x
BenchmarkMemoryGetBoundaryValues 64496 53194 1.2x
BenchmarkMemoryGetRangeValues 66585 54065 1.2x
BenchmarkStreamAdd 45.0 75.3 0.6x
BenchmarkAppendSample1 1157 1587 0.7x
BenchmarkAppendSample10 4090 4284 0.95x
BenchmarkAppendSample100 45660 44066 1.0x
BenchmarkAppendSample1000 579084 582380 1.0x
BenchmarkMemoryAppendRepeatingValues 22796594 22005502 1.0x
Overall, this gives us good speedups in the areas where they matter
most: decoding values from disk and accessing the memory storage (which
is also used for views).
Some of the smaller append examples take minimally longer, but the cost
seems to get amortized over larger appends, so I'm not worried about
these. Also, we're currently not bottlenecked on the write path and have
plenty of other optimizations available in that area if it becomes
necessary.
Memory allocations during appends don't change measurably at all.
Change-Id: I7dc7394edea09506976765551f35b138518db9e8
This doesn't add complex discriminator logic yet, but adds a single
version byte to the beginning of each samples chunk. If we ever need to
change the disk format again, this will make it easy to do so without
having to wipe the entire database.
Change-Id: I60c39274256f790bc2da83167a1effaa174588fe
This fixes https://github.com/prometheus/prometheus/issues/381.
For any stale series we dropped from memory, this bug caused us to also drop
any other series from the labelpair->fingerprints memory index if they had any
label/value-pairs in common with the intentionally dropped series.
To fix this issue more easily, I converted the labelpair->fingerprints index
map values to a utility.Set of clientmodel.Fingerprints. This makes handling
this index much easier in general.
Change-Id: If5e81e202e8c542261bbd9797aa1257376c5c074
Currently, rendering a view is capable of handling multiple ops for
the same fingerprint efficiently. However, this capability requires a
lot of complexity in the code, which we are not using at all because
the way we assemble a viewRequest will never have more than one
operation per fingerprint.
This commit weeds out the said capability, along with all the code
needed for it. It is still possible to have more than one operation
for the same fingerprint, it will just be handled in a less efficient
way (as proven by the unit tests).
As a result, scanjob.go could be removed entirely.
This commit also contains a few related refactorings and removals of
dead code in operation.go, view,go, and freelist.go. Also, the
docstrings received some love.
Change-Id: I032b976e0880151c3f3fdb3234fb65e484f0e2e5