mirror of https://github.com/prometheus/prometheus
promql: Purge Holt-Winters from a doc comment
`funcDoubleExponentialSmoothing` did not get its doc comment updated when we renamed it from the confusing `funcHoltWinters`. Signed-off-by: beorn7 <beorn@grafana.com>pull/15635/head
parent
5cc095e227
commit
ebfa1dd822
|
@ -345,11 +345,14 @@ func calcTrendValue(i int, tf, s0, s1, b float64) float64 {
|
||||||
return x + y
|
return x + y
|
||||||
}
|
}
|
||||||
|
|
||||||
// Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data.
|
// Double exponential smoothing is similar to a weighted moving average, where
|
||||||
// Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current
|
// historical data has exponentially less influence on the current data. It also
|
||||||
// data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects
|
// accounts for trends in data. The smoothing factor (0 < sf < 1) affects how
|
||||||
// how trends in historical data will affect the current data. A higher trend factor increases the influence.
|
// historical data will affect the current data. A lower smoothing factor
|
||||||
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
|
// increases the influence of historical data. The trend factor (0 < tf < 1)
|
||||||
|
// affects how trends in historical data will affect the current data. A higher
|
||||||
|
// trend factor increases the influence. of trends. Algorithm taken from
|
||||||
|
// https://en.wikipedia.org/wiki/Exponential_smoothing .
|
||||||
func funcDoubleExponentialSmoothing(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
func funcDoubleExponentialSmoothing(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
||||||
samples := vals[0].(Matrix)[0]
|
samples := vals[0].(Matrix)[0]
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue