|
|
|
@ -46,9 +46,12 @@ eval instant at 1m histogram_fraction(1, 2, single_histogram)
|
|
|
|
|
eval instant at 1m histogram_fraction(0, 8, single_histogram)
|
|
|
|
|
{} 1
|
|
|
|
|
|
|
|
|
|
# Median is 1.5 due to linear estimation of the midpoint of the middle bucket, whose values are within range 1 < x <= 2.
|
|
|
|
|
# Median is 1.414213562373095 (2**2**-1, or sqrt(2)) due to
|
|
|
|
|
# exponential interpolation, i.e. the "midpoint" within range 1 < x <=
|
|
|
|
|
# 2 is assumed where the bucket boundary would be if we increased the
|
|
|
|
|
# resolution of the histogram by one step.
|
|
|
|
|
eval instant at 1m histogram_quantile(0.5, single_histogram)
|
|
|
|
|
{} 1.5
|
|
|
|
|
{} 1.414213562373095
|
|
|
|
|
|
|
|
|
|
clear
|
|
|
|
|
|
|
|
|
@ -68,8 +71,9 @@ eval instant at 5m histogram_avg(multi_histogram)
|
|
|
|
|
eval instant at 5m histogram_fraction(1, 2, multi_histogram)
|
|
|
|
|
{} 0.5
|
|
|
|
|
|
|
|
|
|
# See explanation for exponential interpolation above.
|
|
|
|
|
eval instant at 5m histogram_quantile(0.5, multi_histogram)
|
|
|
|
|
{} 1.5
|
|
|
|
|
{} 1.414213562373095
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Each entry should look the same as the first.
|
|
|
|
@ -85,8 +89,9 @@ eval instant at 50m histogram_avg(multi_histogram)
|
|
|
|
|
eval instant at 50m histogram_fraction(1, 2, multi_histogram)
|
|
|
|
|
{} 0.5
|
|
|
|
|
|
|
|
|
|
# See explanation for exponential interpolation above.
|
|
|
|
|
eval instant at 50m histogram_quantile(0.5, multi_histogram)
|
|
|
|
|
{} 1.5
|
|
|
|
|
{} 1.414213562373095
|
|
|
|
|
|
|
|
|
|
clear
|
|
|
|
|
|
|
|
|
@ -109,8 +114,9 @@ eval instant at 5m histogram_avg(incr_histogram)
|
|
|
|
|
eval instant at 5m histogram_fraction(1, 2, incr_histogram)
|
|
|
|
|
{} 0.6
|
|
|
|
|
|
|
|
|
|
# See explanation for exponential interpolation above.
|
|
|
|
|
eval instant at 5m histogram_quantile(0.5, incr_histogram)
|
|
|
|
|
{} 1.5
|
|
|
|
|
{} 1.414213562373095
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eval instant at 50m incr_histogram
|
|
|
|
@ -129,16 +135,18 @@ eval instant at 50m histogram_avg(incr_histogram)
|
|
|
|
|
eval instant at 50m histogram_fraction(1, 2, incr_histogram)
|
|
|
|
|
{} 0.8571428571428571
|
|
|
|
|
|
|
|
|
|
# See explanation for exponential interpolation above.
|
|
|
|
|
eval instant at 50m histogram_quantile(0.5, incr_histogram)
|
|
|
|
|
{} 1.5
|
|
|
|
|
{} 1.414213562373095
|
|
|
|
|
|
|
|
|
|
# Per-second average rate of increase should be 1/(5*60) for count and buckets, then 2/(5*60) for sum.
|
|
|
|
|
eval instant at 50m rate(incr_histogram[10m])
|
|
|
|
|
{} {{count:0.0033333333333333335 sum:0.006666666666666667 offset:1 buckets:[0.0033333333333333335]}}
|
|
|
|
|
|
|
|
|
|
# Calculate the 50th percentile of observations over the last 10m.
|
|
|
|
|
# See explanation for exponential interpolation above.
|
|
|
|
|
eval instant at 50m histogram_quantile(0.5, rate(incr_histogram[10m]))
|
|
|
|
|
{} 1.5
|
|
|
|
|
{} 1.414213562373095
|
|
|
|
|
|
|
|
|
|
clear
|
|
|
|
|
|
|
|
|
@ -211,8 +219,9 @@ eval instant at 1m histogram_avg(negative_histogram)
|
|
|
|
|
eval instant at 1m histogram_fraction(-2, -1, negative_histogram)
|
|
|
|
|
{} 0.5
|
|
|
|
|
|
|
|
|
|
# Exponential interpolation works the same as for positive buckets, just mirrored.
|
|
|
|
|
eval instant at 1m histogram_quantile(0.5, negative_histogram)
|
|
|
|
|
{} -1.5
|
|
|
|
|
{} -1.414213562373095
|
|
|
|
|
|
|
|
|
|
clear
|
|
|
|
|
|
|
|
|
@ -233,8 +242,9 @@ eval instant at 5m histogram_avg(two_samples_histogram)
|
|
|
|
|
eval instant at 5m histogram_fraction(-2, -1, two_samples_histogram)
|
|
|
|
|
{} 0.5
|
|
|
|
|
|
|
|
|
|
# See explanation for exponential interpolation above.
|
|
|
|
|
eval instant at 5m histogram_quantile(0.5, two_samples_histogram)
|
|
|
|
|
{} -1.5
|
|
|
|
|
{} -1.414213562373095
|
|
|
|
|
|
|
|
|
|
clear
|
|
|
|
|
|
|
|
|
@ -392,20 +402,24 @@ eval_warn instant at 10m histogram_quantile(1.001, histogram_quantile_1)
|
|
|
|
|
eval instant at 10m histogram_quantile(1, histogram_quantile_1)
|
|
|
|
|
{} 16
|
|
|
|
|
|
|
|
|
|
# The following quantiles are within a bucket. Exponential
|
|
|
|
|
# interpolation is applied (rather than linear, as it is done for
|
|
|
|
|
# classic histograms), leading to slightly different quantile values.
|
|
|
|
|
eval instant at 10m histogram_quantile(0.99, histogram_quantile_1)
|
|
|
|
|
{} 15.759999999999998
|
|
|
|
|
{} 15.67072476139083
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.9, histogram_quantile_1)
|
|
|
|
|
{} 13.600000000000001
|
|
|
|
|
{} 12.99603834169977
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.6, histogram_quantile_1)
|
|
|
|
|
{} 4.799999999999997
|
|
|
|
|
{} 4.594793419988138
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.5, histogram_quantile_1)
|
|
|
|
|
{} 1.6666666666666665
|
|
|
|
|
{} 1.5874010519681994
|
|
|
|
|
|
|
|
|
|
# Linear interpolation within the zero bucket after all.
|
|
|
|
|
eval instant at 10m histogram_quantile(0.1, histogram_quantile_1)
|
|
|
|
|
{} 0.0006000000000000001
|
|
|
|
|
{} 0.0006
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0, histogram_quantile_1)
|
|
|
|
|
{} 0
|
|
|
|
@ -425,17 +439,20 @@ eval_warn instant at 10m histogram_quantile(1.001, histogram_quantile_2)
|
|
|
|
|
eval instant at 10m histogram_quantile(1, histogram_quantile_2)
|
|
|
|
|
{} 0
|
|
|
|
|
|
|
|
|
|
# Again, the quantile values here are slightly different from what
|
|
|
|
|
# they would be with linear interpolation. Note that quantiles
|
|
|
|
|
# ending up in the zero bucket are linearly interpolated after all.
|
|
|
|
|
eval instant at 10m histogram_quantile(0.99, histogram_quantile_2)
|
|
|
|
|
{} -6.000000000000048e-05
|
|
|
|
|
{} -0.00006
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.9, histogram_quantile_2)
|
|
|
|
|
{} -0.0005999999999999996
|
|
|
|
|
{} -0.0006
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.5, histogram_quantile_2)
|
|
|
|
|
{} -1.6666666666666667
|
|
|
|
|
{} -1.5874010519681996
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.1, histogram_quantile_2)
|
|
|
|
|
{} -13.6
|
|
|
|
|
{} -12.996038341699768
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0, histogram_quantile_2)
|
|
|
|
|
{} -16
|
|
|
|
@ -445,7 +462,9 @@ eval_warn instant at 10m histogram_quantile(-1, histogram_quantile_2)
|
|
|
|
|
|
|
|
|
|
clear
|
|
|
|
|
|
|
|
|
|
# Apply quantile function to histogram with both positive and negative buckets with zero bucket.
|
|
|
|
|
# Apply quantile function to histogram with both positive and negative
|
|
|
|
|
# buckets with zero bucket.
|
|
|
|
|
# First positive buckets with exponential interpolation.
|
|
|
|
|
load 10m
|
|
|
|
|
histogram_quantile_3 {{schema:0 count:24 sum:100 z_bucket:4 z_bucket_w:0.001 buckets:[2 3 0 1 4] n_buckets:[2 3 0 1 4]}}x1
|
|
|
|
|
|
|
|
|
@ -456,31 +475,34 @@ eval instant at 10m histogram_quantile(1, histogram_quantile_3)
|
|
|
|
|
{} 16
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.99, histogram_quantile_3)
|
|
|
|
|
{} 15.519999999999996
|
|
|
|
|
{} 15.34822590920423
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.9, histogram_quantile_3)
|
|
|
|
|
{} 11.200000000000003
|
|
|
|
|
{} 10.556063286183155
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.7, histogram_quantile_3)
|
|
|
|
|
{} 1.2666666666666657
|
|
|
|
|
{} 1.2030250360821164
|
|
|
|
|
|
|
|
|
|
# Linear interpolation in the zero bucket, symmetrically centered around
|
|
|
|
|
# the zero point.
|
|
|
|
|
eval instant at 10m histogram_quantile(0.55, histogram_quantile_3)
|
|
|
|
|
{} 0.0006000000000000005
|
|
|
|
|
{} 0.0006
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.5, histogram_quantile_3)
|
|
|
|
|
{} 0
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.45, histogram_quantile_3)
|
|
|
|
|
{} -0.0005999999999999996
|
|
|
|
|
{} -0.0006
|
|
|
|
|
|
|
|
|
|
# Finally negative buckets with mirrored exponential interpolation.
|
|
|
|
|
eval instant at 10m histogram_quantile(0.3, histogram_quantile_3)
|
|
|
|
|
{} -1.266666666666667
|
|
|
|
|
{} -1.2030250360821169
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.1, histogram_quantile_3)
|
|
|
|
|
{} -11.2
|
|
|
|
|
{} -10.556063286183155
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.01, histogram_quantile_3)
|
|
|
|
|
{} -15.52
|
|
|
|
|
{} -15.34822590920423
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0, histogram_quantile_3)
|
|
|
|
|
{} -16
|
|
|
|
@ -490,6 +512,90 @@ eval_warn instant at 10m histogram_quantile(-1, histogram_quantile_3)
|
|
|
|
|
|
|
|
|
|
clear
|
|
|
|
|
|
|
|
|
|
# Try different schemas. (The interpolation logic must not depend on the schema.)
|
|
|
|
|
clear
|
|
|
|
|
load 1m
|
|
|
|
|
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 buckets:[0 5]}}
|
|
|
|
|
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 buckets:[0 5]}}
|
|
|
|
|
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 buckets:[0 5]}}
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
|
|
|
|
|
{schema="-1"} 2.0
|
|
|
|
|
{schema="0"} 1.4142135623730951
|
|
|
|
|
{schema="+1"} 1.189207
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(0, 2, var_res_histogram{schema="-1"})
|
|
|
|
|
{schema="-1"} 0.5
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(0, 1.4142135623730951, var_res_histogram{schema="0"})
|
|
|
|
|
{schema="0"} 0.5
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(0, 1.189207, var_res_histogram{schema="+1"})
|
|
|
|
|
{schema="+1"} 0.5
|
|
|
|
|
|
|
|
|
|
# The same as above, but one bucket "further to the right".
|
|
|
|
|
clear
|
|
|
|
|
load 1m
|
|
|
|
|
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 buckets:[0 0 5]}}
|
|
|
|
|
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 buckets:[0 0 5]}}
|
|
|
|
|
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 buckets:[0 0 5]}}
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
|
|
|
|
|
{schema="-1"} 8.0
|
|
|
|
|
{schema="0"} 2.82842712474619
|
|
|
|
|
{schema="+1"} 1.6817928305074292
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(0, 8, var_res_histogram{schema="-1"})
|
|
|
|
|
{schema="-1"} 0.5
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(0, 2.82842712474619, var_res_histogram{schema="0"})
|
|
|
|
|
{schema="0"} 0.5
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(0, 1.6817928305074292, var_res_histogram{schema="+1"})
|
|
|
|
|
{schema="+1"} 0.5
|
|
|
|
|
|
|
|
|
|
# And everything again but for negative buckets.
|
|
|
|
|
clear
|
|
|
|
|
load 1m
|
|
|
|
|
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 n_buckets:[0 5]}}
|
|
|
|
|
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 n_buckets:[0 5]}}
|
|
|
|
|
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 n_buckets:[0 5]}}
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
|
|
|
|
|
{schema="-1"} -2.0
|
|
|
|
|
{schema="0"} -1.4142135623730951
|
|
|
|
|
{schema="+1"} -1.189207
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(-2, 0, var_res_histogram{schema="-1"})
|
|
|
|
|
{schema="-1"} 0.5
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(-1.4142135623730951, 0, var_res_histogram{schema="0"})
|
|
|
|
|
{schema="0"} 0.5
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(-1.189207, 0, var_res_histogram{schema="+1"})
|
|
|
|
|
{schema="+1"} 0.5
|
|
|
|
|
|
|
|
|
|
clear
|
|
|
|
|
load 1m
|
|
|
|
|
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 n_buckets:[0 0 5]}}
|
|
|
|
|
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 n_buckets:[0 0 5]}}
|
|
|
|
|
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 n_buckets:[0 0 5]}}
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
|
|
|
|
|
{schema="-1"} -8.0
|
|
|
|
|
{schema="0"} -2.82842712474619
|
|
|
|
|
{schema="+1"} -1.6817928305074292
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(-8, 0, var_res_histogram{schema="-1"})
|
|
|
|
|
{schema="-1"} 0.5
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(-2.82842712474619, 0, var_res_histogram{schema="0"})
|
|
|
|
|
{schema="0"} 0.5
|
|
|
|
|
|
|
|
|
|
eval instant at 1m histogram_fraction(-1.6817928305074292, 0, var_res_histogram{schema="+1"})
|
|
|
|
|
{schema="+1"} 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Apply fraction function to empty histogram.
|
|
|
|
|
load 10m
|
|
|
|
|
histogram_fraction_1 {{}}x1
|
|
|
|
@ -515,11 +621,18 @@ eval instant at 10m histogram_fraction(-0.001, 0, histogram_fraction_2)
|
|
|
|
|
eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_2)
|
|
|
|
|
{} 0.16666666666666666
|
|
|
|
|
|
|
|
|
|
# Note that this result and the one above add up to 1.
|
|
|
|
|
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_2)
|
|
|
|
|
{} 0.8333333333333334
|
|
|
|
|
|
|
|
|
|
# We are in the zero bucket, resulting in linear interpolation
|
|
|
|
|
eval instant at 10m histogram_fraction(0, 0.0005, histogram_fraction_2)
|
|
|
|
|
{} 0.08333333333333333
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_2)
|
|
|
|
|
{} 0.8333333333333334
|
|
|
|
|
# Demonstrate that the inverse operation with histogram_quantile yields
|
|
|
|
|
# the original value with the non-trivial result above.
|
|
|
|
|
eval instant at 10m histogram_quantile(0.08333333333333333, histogram_fraction_2)
|
|
|
|
|
{} 0.0005
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-inf, -0.001, histogram_fraction_2)
|
|
|
|
|
{} 0
|
|
|
|
@ -527,17 +640,30 @@ eval instant at 10m histogram_fraction(-inf, -0.001, histogram_fraction_2)
|
|
|
|
|
eval instant at 10m histogram_fraction(1, 2, histogram_fraction_2)
|
|
|
|
|
{} 0.25
|
|
|
|
|
|
|
|
|
|
# More non-trivial results with interpolation involved below, including
|
|
|
|
|
# some round-trips via histogram_quantile to prove that the inverse
|
|
|
|
|
# operation leads to the same results.
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(0, 1.5, histogram_fraction_2)
|
|
|
|
|
{} 0.4795739585136224
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(1.5, 2, histogram_fraction_2)
|
|
|
|
|
{} 0.125
|
|
|
|
|
{} 0.10375937481971091
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(1, 8, histogram_fraction_2)
|
|
|
|
|
{} 0.3333333333333333
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(0, 6, histogram_fraction_2)
|
|
|
|
|
{} 0.6320802083934297
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.6320802083934297, histogram_fraction_2)
|
|
|
|
|
{} 6
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(1, 6, histogram_fraction_2)
|
|
|
|
|
{} 0.2916666666666667
|
|
|
|
|
{} 0.29874687506009634
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(1.5, 6, histogram_fraction_2)
|
|
|
|
|
{} 0.16666666666666666
|
|
|
|
|
{} 0.15250624987980724
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_2)
|
|
|
|
|
{} 0
|
|
|
|
@ -600,6 +726,12 @@ eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_3)
|
|
|
|
|
eval instant at 10m histogram_fraction(-0.0005, 0, histogram_fraction_3)
|
|
|
|
|
{} 0.08333333333333333
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-inf, -0.0005, histogram_fraction_3)
|
|
|
|
|
{} 0.9166666666666666
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.9166666666666666, histogram_fraction_3)
|
|
|
|
|
{} -0.0005
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_3)
|
|
|
|
|
{} 0
|
|
|
|
|
|
|
|
|
@ -625,16 +757,22 @@ eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_3)
|
|
|
|
|
{} 0.25
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-2, -1.5, histogram_fraction_3)
|
|
|
|
|
{} 0.125
|
|
|
|
|
{} 0.10375937481971091
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-8, -1, histogram_fraction_3)
|
|
|
|
|
{} 0.3333333333333333
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-inf, -6, histogram_fraction_3)
|
|
|
|
|
{} 0.36791979160657035
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.36791979160657035, histogram_fraction_3)
|
|
|
|
|
{} -6
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-6, -1, histogram_fraction_3)
|
|
|
|
|
{} 0.2916666666666667
|
|
|
|
|
{} 0.29874687506009634
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-6, -1.5, histogram_fraction_3)
|
|
|
|
|
{} 0.16666666666666666
|
|
|
|
|
{} 0.15250624987980724
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(42, 3.1415, histogram_fraction_3)
|
|
|
|
|
{} 0
|
|
|
|
@ -684,6 +822,18 @@ eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_4)
|
|
|
|
|
eval instant at 10m histogram_fraction(-0.0005, 0.0005, histogram_fraction_4)
|
|
|
|
|
{} 0.08333333333333333
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-inf, 0.0005, histogram_fraction_4)
|
|
|
|
|
{} 0.5416666666666666
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.5416666666666666, histogram_fraction_4)
|
|
|
|
|
{} 0.0005
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-inf, -0.0005, histogram_fraction_4)
|
|
|
|
|
{} 0.4583333333333333
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_quantile(0.4583333333333333, histogram_fraction_4)
|
|
|
|
|
{} -0.0005
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_4)
|
|
|
|
|
{} 0.4166666666666667
|
|
|
|
|
|
|
|
|
@ -694,31 +844,31 @@ eval instant at 10m histogram_fraction(1, 2, histogram_fraction_4)
|
|
|
|
|
{} 0.125
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(1.5, 2, histogram_fraction_4)
|
|
|
|
|
{} 0.0625
|
|
|
|
|
{} 0.051879687409855414
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(1, 8, histogram_fraction_4)
|
|
|
|
|
{} 0.16666666666666666
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(1, 6, histogram_fraction_4)
|
|
|
|
|
{} 0.14583333333333334
|
|
|
|
|
{} 0.14937343753004825
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(1.5, 6, histogram_fraction_4)
|
|
|
|
|
{} 0.08333333333333333
|
|
|
|
|
{} 0.07625312493990366
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_4)
|
|
|
|
|
{} 0.125
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-2, -1.5, histogram_fraction_4)
|
|
|
|
|
{} 0.0625
|
|
|
|
|
{} 0.051879687409855456
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-8, -1, histogram_fraction_4)
|
|
|
|
|
{} 0.16666666666666666
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-6, -1, histogram_fraction_4)
|
|
|
|
|
{} 0.14583333333333334
|
|
|
|
|
{} 0.14937343753004817
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(-6, -1.5, histogram_fraction_4)
|
|
|
|
|
{} 0.08333333333333333
|
|
|
|
|
{} 0.07625312493990362
|
|
|
|
|
|
|
|
|
|
eval instant at 10m histogram_fraction(42, 3.1415, histogram_fraction_4)
|
|
|
|
|
{} 0
|
|
|
|
|