mirror of https://github.com/prometheus/prometheus
make matrix selection and lookback left-open and right-closed
Signed-off-by: Zhang Zhanpeng <zhangzhanpeng.zzp@alibaba-inc.com> Signed-off-by: beorn7 <beorn@grafana.com> Co-authored-by: beorn7 <beorn@grafana.com>pull/13904/head
parent
0c76210e83
commit
debbdb8608
|
@ -89,11 +89,11 @@ tests:
|
|||
|
||||
# Ensure lookback delta is respected, when a value is missing.
|
||||
- expr: timestamp(test_missing)
|
||||
eval_time: 5m
|
||||
eval_time: 4m59s
|
||||
exp_samples:
|
||||
- value: 0
|
||||
- expr: timestamp(test_missing)
|
||||
eval_time: 5m1s
|
||||
eval_time: 5m
|
||||
exp_samples: []
|
||||
|
||||
# Minimal test case to check edge case of a single sample.
|
||||
|
@ -113,7 +113,7 @@ tests:
|
|||
- expr: count_over_time(fixed_data[1h])
|
||||
eval_time: 1h
|
||||
exp_samples:
|
||||
- value: 61
|
||||
- value: 60
|
||||
- expr: timestamp(fixed_data)
|
||||
eval_time: 1h
|
||||
exp_samples:
|
||||
|
@ -183,7 +183,7 @@ tests:
|
|||
- expr: job:test:count_over_time1m
|
||||
eval_time: 1m
|
||||
exp_samples:
|
||||
- value: 61
|
||||
- value: 60
|
||||
labels: 'job:test:count_over_time1m{job="test"}'
|
||||
- expr: timestamp(job:test:count_over_time1m)
|
||||
eval_time: 1m10s
|
||||
|
@ -194,7 +194,7 @@ tests:
|
|||
- expr: job:test:count_over_time1m
|
||||
eval_time: 2m
|
||||
exp_samples:
|
||||
- value: 61
|
||||
- value: 60
|
||||
labels: 'job:test:count_over_time1m{job="test"}'
|
||||
- expr: timestamp(job:test:count_over_time1m)
|
||||
eval_time: 2m59s999ms
|
||||
|
|
|
@ -189,12 +189,12 @@ Range vector literals work like instant vector literals, except that they
|
|||
select a range of samples back from the current instant. Syntactically, a [time
|
||||
duration](#time-durations) is appended in square brackets (`[]`) at the end of
|
||||
a vector selector to specify how far back in time values should be fetched for
|
||||
each resulting range vector element. The range is a closed interval,
|
||||
i.e. samples with timestamps coinciding with either boundary of the range are
|
||||
still included in the selection.
|
||||
each resulting range vector element. The range is a left-open and right-closed interval,
|
||||
i.e. samples with timestamps coinciding with the left boundary of the range are excluded from the selection,
|
||||
while samples coinciding with the right boundary of the range are included in the selection.
|
||||
|
||||
In this example, we select all the values we have recorded within the last 5
|
||||
minutes for all time series that have the metric name `http_requests_total` and
|
||||
In this example, we select all the values recorded less than 5m ago for all time series
|
||||
that have the metric name `http_requests_total` and
|
||||
a `job` label set to `prometheus`:
|
||||
|
||||
http_requests_total{job="prometheus"}[5m]
|
||||
|
@ -335,7 +335,7 @@ independently of the actual present time series data. This is mainly to support
|
|||
cases like aggregation (`sum`, `avg`, and so on), where multiple aggregated
|
||||
time series do not precisely align in time. Because of their independence,
|
||||
Prometheus needs to assign a value at those timestamps for each relevant time
|
||||
series. It does so by taking the newest sample before this timestamp within the lookback period.
|
||||
series. It does so by taking the newest sample that is less than the lookback period ago.
|
||||
The lookback period is 5 minutes by default.
|
||||
|
||||
If a target scrape or rule evaluation no longer returns a sample for a time
|
||||
|
|
|
@ -887,11 +887,17 @@ func getTimeRangesForSelector(s *parser.EvalStmt, n *parser.VectorSelector, path
|
|||
}
|
||||
|
||||
if evalRange == 0 {
|
||||
start -= durationMilliseconds(s.LookbackDelta)
|
||||
// Reduce the start by one fewer ms than the lookback delta
|
||||
// because wo want to exclude samples that are precisely the
|
||||
// lookback delta before the eval time.
|
||||
start -= durationMilliseconds(s.LookbackDelta) - 1
|
||||
} else {
|
||||
// For all matrix queries we want to ensure that we have (end-start) + range selected
|
||||
// this way we have `range` data before the start time
|
||||
start -= durationMilliseconds(evalRange)
|
||||
// For all matrix queries we want to ensure that we have
|
||||
// (end-start) + range selected this way we have `range` data
|
||||
// before the start time. We subtract one from the range to
|
||||
// exclude samples positioned directly at the lower boundary of
|
||||
// the range.
|
||||
start -= durationMilliseconds(evalRange) - 1
|
||||
}
|
||||
|
||||
offsetMilliseconds := durationMilliseconds(n.OriginalOffset)
|
||||
|
@ -2021,7 +2027,7 @@ func (ev *evaluator) rangeEvalTimestampFunctionOverVectorSelector(vs *parser.Vec
|
|||
seriesIterators := make([]*storage.MemoizedSeriesIterator, len(vs.Series))
|
||||
for i, s := range vs.Series {
|
||||
it := s.Iterator(nil)
|
||||
seriesIterators[i] = storage.NewMemoizedIterator(it, durationMilliseconds(ev.lookbackDelta))
|
||||
seriesIterators[i] = storage.NewMemoizedIterator(it, durationMilliseconds(ev.lookbackDelta)-1)
|
||||
}
|
||||
|
||||
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
||||
|
@ -2083,7 +2089,7 @@ func (ev *evaluator) vectorSelectorSingle(it *storage.MemoizedSeriesIterator, no
|
|||
if valueType == chunkenc.ValNone || t > refTime {
|
||||
var ok bool
|
||||
t, v, h, ok = it.PeekPrev()
|
||||
if !ok || t < refTime-durationMilliseconds(ev.lookbackDelta) {
|
||||
if !ok || t <= refTime-durationMilliseconds(ev.lookbackDelta) {
|
||||
return 0, 0, nil, false
|
||||
}
|
||||
}
|
||||
|
@ -2217,20 +2223,20 @@ func (ev *evaluator) matrixIterSlice(
|
|||
mintFloats, mintHistograms := mint, mint
|
||||
|
||||
// First floats...
|
||||
if len(floats) > 0 && floats[len(floats)-1].T >= mint {
|
||||
if len(floats) > 0 && floats[len(floats)-1].T > mint {
|
||||
// There is an overlap between previous and current ranges, retain common
|
||||
// points. In most such cases:
|
||||
// (a) the overlap is significantly larger than the eval step; and/or
|
||||
// (b) the number of samples is relatively small.
|
||||
// so a linear search will be as fast as a binary search.
|
||||
var drop int
|
||||
for drop = 0; floats[drop].T < mint; drop++ {
|
||||
for drop = 0; floats[drop].T <= mint; drop++ {
|
||||
}
|
||||
ev.currentSamples -= drop
|
||||
copy(floats, floats[drop:])
|
||||
floats = floats[:len(floats)-drop]
|
||||
// Only append points with timestamps after the last timestamp we have.
|
||||
mintFloats = floats[len(floats)-1].T + 1
|
||||
mintFloats = floats[len(floats)-1].T
|
||||
} else {
|
||||
ev.currentSamples -= len(floats)
|
||||
if floats != nil {
|
||||
|
@ -2239,14 +2245,14 @@ func (ev *evaluator) matrixIterSlice(
|
|||
}
|
||||
|
||||
// ...then the same for histograms. TODO(beorn7): Use generics?
|
||||
if len(histograms) > 0 && histograms[len(histograms)-1].T >= mint {
|
||||
if len(histograms) > 0 && histograms[len(histograms)-1].T > mint {
|
||||
// There is an overlap between previous and current ranges, retain common
|
||||
// points. In most such cases:
|
||||
// (a) the overlap is significantly larger than the eval step; and/or
|
||||
// (b) the number of samples is relatively small.
|
||||
// so a linear search will be as fast as a binary search.
|
||||
var drop int
|
||||
for drop = 0; histograms[drop].T < mint; drop++ {
|
||||
for drop = 0; histograms[drop].T <= mint; drop++ {
|
||||
}
|
||||
// Rotate the buffer around the drop index so that points before mint can be
|
||||
// reused to store new histograms.
|
||||
|
@ -2257,7 +2263,7 @@ func (ev *evaluator) matrixIterSlice(
|
|||
histograms = histograms[:len(histograms)-drop]
|
||||
ev.currentSamples -= totalHPointSize(histograms)
|
||||
// Only append points with timestamps after the last timestamp we have.
|
||||
mintHistograms = histograms[len(histograms)-1].T + 1
|
||||
mintHistograms = histograms[len(histograms)-1].T
|
||||
} else {
|
||||
ev.currentSamples -= totalHPointSize(histograms)
|
||||
if histograms != nil {
|
||||
|
@ -2281,7 +2287,7 @@ loop:
|
|||
case chunkenc.ValFloatHistogram, chunkenc.ValHistogram:
|
||||
t := buf.AtT()
|
||||
// Values in the buffer are guaranteed to be smaller than maxt.
|
||||
if t >= mintHistograms {
|
||||
if t > mintHistograms {
|
||||
if histograms == nil {
|
||||
histograms = getMatrixSelectorHPoints()
|
||||
}
|
||||
|
@ -2307,7 +2313,7 @@ loop:
|
|||
continue loop
|
||||
}
|
||||
// Values in the buffer are guaranteed to be smaller than maxt.
|
||||
if t >= mintFloats {
|
||||
if t > mintFloats {
|
||||
ev.currentSamples++
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
|
|
|
@ -327,271 +327,271 @@ func TestSelectHintsSetCorrectly(t *testing.T) {
|
|||
{
|
||||
query: "foo", start: 10000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 5000, End: 10000},
|
||||
{Start: 5001, End: 10000},
|
||||
},
|
||||
}, {
|
||||
query: "foo @ 15", start: 10000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 10000, End: 15000},
|
||||
{Start: 10001, End: 15000},
|
||||
},
|
||||
}, {
|
||||
query: "foo @ 1", start: 10000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -4000, End: 1000},
|
||||
{Start: -3999, End: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "foo[2m]", start: 200000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 80000, End: 200000, Range: 120000},
|
||||
{Start: 80001, End: 200000, Range: 120000},
|
||||
},
|
||||
}, {
|
||||
query: "foo[2m] @ 180", start: 200000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 60000, End: 180000, Range: 120000},
|
||||
{Start: 60001, End: 180000, Range: 120000},
|
||||
},
|
||||
}, {
|
||||
query: "foo[2m] @ 300", start: 200000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 180000, End: 300000, Range: 120000},
|
||||
{Start: 180001, End: 300000, Range: 120000},
|
||||
},
|
||||
}, {
|
||||
query: "foo[2m] @ 60", start: 200000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -60000, End: 60000, Range: 120000},
|
||||
{Start: -59999, End: 60000, Range: 120000},
|
||||
},
|
||||
}, {
|
||||
query: "foo[2m] offset 2m", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 60000, End: 180000, Range: 120000},
|
||||
{Start: 60001, End: 180000, Range: 120000},
|
||||
},
|
||||
}, {
|
||||
query: "foo[2m] @ 200 offset 2m", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -40000, End: 80000, Range: 120000},
|
||||
{Start: -39999, End: 80000, Range: 120000},
|
||||
},
|
||||
}, {
|
||||
query: "foo[2m:1s]", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 175000, End: 300000, Step: 1000},
|
||||
{Start: 175001, End: 300000, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s])", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 175000, End: 300000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 175001, End: 300000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s] @ 300)", start: 200000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 175000, End: 300000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 175001, End: 300000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s] @ 200)", start: 200000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 75000, End: 200000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 75001, End: 200000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s] @ 100)", start: 200000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -25000, End: 100000, Func: "count_over_time", Step: 1000},
|
||||
{Start: -24999, End: 100000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s] offset 10s)", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 165000, End: 290000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 165001, End: 290000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time((foo offset 10s)[2m:1s] offset 10s)", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 155000, End: 280000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 155001, End: 280000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
// When the @ is on the vector selector, the enclosing subquery parameters
|
||||
// don't affect the hint ranges.
|
||||
query: "count_over_time((foo @ 200 offset 10s)[2m:1s] offset 10s)", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 185000, End: 190000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 185001, End: 190000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
// When the @ is on the vector selector, the enclosing subquery parameters
|
||||
// don't affect the hint ranges.
|
||||
query: "count_over_time((foo @ 200 offset 10s)[2m:1s] @ 100 offset 10s)", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 185000, End: 190000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 185001, End: 190000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time((foo offset 10s)[2m:1s] @ 100 offset 10s)", start: 300000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -45000, End: 80000, Func: "count_over_time", Step: 1000},
|
||||
{Start: -44999, End: 80000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "foo", start: 10000, end: 20000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 5000, End: 20000, Step: 1000},
|
||||
{Start: 5001, End: 20000, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "foo @ 15", start: 10000, end: 20000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 10000, End: 15000, Step: 1000},
|
||||
{Start: 10001, End: 15000, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "foo @ 1", start: 10000, end: 20000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -4000, End: 1000, Step: 1000},
|
||||
{Start: -3999, End: 1000, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2m] @ 180)", start: 200000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 60000, End: 180000, Range: 120000, Func: "rate", Step: 1000},
|
||||
{Start: 60001, End: 180000, Range: 120000, Func: "rate", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2m] @ 300)", start: 200000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 180000, End: 300000, Range: 120000, Func: "rate", Step: 1000},
|
||||
{Start: 180001, End: 300000, Range: 120000, Func: "rate", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2m] @ 60)", start: 200000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -60000, End: 60000, Range: 120000, Func: "rate", Step: 1000},
|
||||
{Start: -59999, End: 60000, Range: 120000, Func: "rate", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2m])", start: 200000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 80000, End: 500000, Range: 120000, Func: "rate", Step: 1000},
|
||||
{Start: 80001, End: 500000, Range: 120000, Func: "rate", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2m] offset 2m)", start: 300000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 60000, End: 380000, Range: 120000, Func: "rate", Step: 1000},
|
||||
{Start: 60001, End: 380000, Range: 120000, Func: "rate", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2m:1s])", start: 300000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 175000, End: 500000, Func: "rate", Step: 1000},
|
||||
{Start: 175001, End: 500000, Func: "rate", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s])", start: 300000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 175000, End: 500000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 175001, End: 500000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s] offset 10s)", start: 300000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 165000, End: 490000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 165001, End: 490000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s] @ 300)", start: 200000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 175000, End: 300000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 175001, End: 300000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s] @ 200)", start: 200000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 75000, End: 200000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 75001, End: 200000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time(foo[2m:1s] @ 100)", start: 200000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -25000, End: 100000, Func: "count_over_time", Step: 1000},
|
||||
{Start: -24999, End: 100000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time((foo offset 10s)[2m:1s] offset 10s)", start: 300000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 155000, End: 480000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 155001, End: 480000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
// When the @ is on the vector selector, the enclosing subquery parameters
|
||||
// don't affect the hint ranges.
|
||||
query: "count_over_time((foo @ 200 offset 10s)[2m:1s] offset 10s)", start: 300000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 185000, End: 190000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 185001, End: 190000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
// When the @ is on the vector selector, the enclosing subquery parameters
|
||||
// don't affect the hint ranges.
|
||||
query: "count_over_time((foo @ 200 offset 10s)[2m:1s] @ 100 offset 10s)", start: 300000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 185000, End: 190000, Func: "count_over_time", Step: 1000},
|
||||
{Start: 185001, End: 190000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "count_over_time((foo offset 10s)[2m:1s] @ 100 offset 10s)", start: 300000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -45000, End: 80000, Func: "count_over_time", Step: 1000},
|
||||
{Start: -44999, End: 80000, Func: "count_over_time", Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "sum by (dim1) (foo)", start: 10000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 5000, End: 10000, Func: "sum", By: true, Grouping: []string{"dim1"}},
|
||||
{Start: 5001, End: 10000, Func: "sum", By: true, Grouping: []string{"dim1"}},
|
||||
},
|
||||
}, {
|
||||
query: "sum without (dim1) (foo)", start: 10000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 5000, End: 10000, Func: "sum", Grouping: []string{"dim1"}},
|
||||
{Start: 5001, End: 10000, Func: "sum", Grouping: []string{"dim1"}},
|
||||
},
|
||||
}, {
|
||||
query: "sum by (dim1) (avg_over_time(foo[1s]))", start: 10000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 9000, End: 10000, Func: "avg_over_time", Range: 1000},
|
||||
{Start: 9001, End: 10000, Func: "avg_over_time", Range: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "sum by (dim1) (max by (dim2) (foo))", start: 10000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 5000, End: 10000, Func: "max", By: true, Grouping: []string{"dim2"}},
|
||||
{Start: 5001, End: 10000, Func: "max", By: true, Grouping: []string{"dim2"}},
|
||||
},
|
||||
}, {
|
||||
query: "(max by (dim1) (foo))[5s:1s]", start: 10000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 0, End: 10000, Func: "max", By: true, Grouping: []string{"dim1"}, Step: 1000},
|
||||
{Start: 1, End: 10000, Func: "max", By: true, Grouping: []string{"dim1"}, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "(sum(http_requests{group=~\"p.*\"})+max(http_requests{group=~\"c.*\"}))[20s:5s]", start: 120000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 95000, End: 120000, Func: "sum", By: true, Step: 5000},
|
||||
{Start: 95000, End: 120000, Func: "max", By: true, Step: 5000},
|
||||
{Start: 95001, End: 120000, Func: "sum", By: true, Step: 5000},
|
||||
{Start: 95001, End: 120000, Func: "max", By: true, Step: 5000},
|
||||
},
|
||||
}, {
|
||||
query: "foo @ 50 + bar @ 250 + baz @ 900", start: 100000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 45000, End: 50000, Step: 1000},
|
||||
{Start: 245000, End: 250000, Step: 1000},
|
||||
{Start: 895000, End: 900000, Step: 1000},
|
||||
{Start: 45001, End: 50000, Step: 1000},
|
||||
{Start: 245001, End: 250000, Step: 1000},
|
||||
{Start: 895001, End: 900000, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "foo @ 50 + bar + baz @ 900", start: 100000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 45000, End: 50000, Step: 1000},
|
||||
{Start: 95000, End: 500000, Step: 1000},
|
||||
{Start: 895000, End: 900000, Step: 1000},
|
||||
{Start: 45001, End: 50000, Step: 1000},
|
||||
{Start: 95001, End: 500000, Step: 1000},
|
||||
{Start: 895001, End: 900000, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2s] @ 50) + bar @ 250 + baz @ 900", start: 100000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 48000, End: 50000, Step: 1000, Func: "rate", Range: 2000},
|
||||
{Start: 245000, End: 250000, Step: 1000},
|
||||
{Start: 895000, End: 900000, Step: 1000},
|
||||
{Start: 48001, End: 50000, Step: 1000, Func: "rate", Range: 2000},
|
||||
{Start: 245001, End: 250000, Step: 1000},
|
||||
{Start: 895001, End: 900000, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2s:1s] @ 50) + bar + baz", start: 100000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 43000, End: 50000, Step: 1000, Func: "rate"},
|
||||
{Start: 95000, End: 500000, Step: 1000},
|
||||
{Start: 95000, End: 500000, Step: 1000},
|
||||
{Start: 43001, End: 50000, Step: 1000, Func: "rate"},
|
||||
{Start: 95001, End: 500000, Step: 1000},
|
||||
{Start: 95001, End: 500000, Step: 1000},
|
||||
},
|
||||
}, {
|
||||
query: "rate(foo[2s:1s] @ 50) + bar + rate(baz[2m:1s] @ 900 offset 2m) ", start: 100000, end: 500000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 43000, End: 50000, Step: 1000, Func: "rate"},
|
||||
{Start: 95000, End: 500000, Step: 1000},
|
||||
{Start: 655000, End: 780000, Step: 1000, Func: "rate"},
|
||||
{Start: 43001, End: 50000, Step: 1000, Func: "rate"},
|
||||
{Start: 95001, End: 500000, Step: 1000},
|
||||
{Start: 655001, End: 780000, Step: 1000, Func: "rate"},
|
||||
},
|
||||
}, { // Hints are based on the inner most subquery timestamp.
|
||||
query: `sum_over_time(sum_over_time(metric{job="1"}[100s])[100s:25s] @ 50)[3s:1s] @ 3000`, start: 100000,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: -150000, End: 50000, Range: 100000, Func: "sum_over_time", Step: 25000},
|
||||
{Start: -149999, End: 50000, Range: 100000, Func: "sum_over_time", Step: 25000},
|
||||
},
|
||||
}, { // Hints are based on the inner most subquery timestamp.
|
||||
query: `sum_over_time(sum_over_time(metric{job="1"}[100s])[100s:25s] @ 3000)[3s:1s] @ 50`,
|
||||
expected: []*storage.SelectHints{
|
||||
{Start: 2800000, End: 3000000, Range: 100000, Func: "sum_over_time", Step: 25000},
|
||||
{Start: 2800001, End: 3000000, Range: 100000, Func: "sum_over_time", Step: 25000},
|
||||
},
|
||||
},
|
||||
} {
|
||||
|
@ -941,22 +941,20 @@ load 10s
|
|||
},
|
||||
},
|
||||
{
|
||||
Query: "max_over_time(metricWith1SampleEvery10Seconds[59s])[20s:5s]",
|
||||
Query: "max_over_time(metricWith1SampleEvery10Seconds[60s])[20s:5s]",
|
||||
Start: time.Unix(201, 0),
|
||||
PeakSamples: 10,
|
||||
TotalSamples: 24, // (1 sample / 10 seconds * 60 seconds) * 20/5 (using 59s so we always return 6 samples
|
||||
// as if we run a query on 00 looking back 60 seconds we will return 7 samples;
|
||||
// see next test).
|
||||
TotalSamples: 24, // (1 sample / 10 seconds * 60 seconds) * 4
|
||||
TotalSamplesPerStep: stats.TotalSamplesPerStep{
|
||||
201000: 24,
|
||||
},
|
||||
},
|
||||
{
|
||||
Query: "max_over_time(metricWith1SampleEvery10Seconds[60s])[20s:5s]",
|
||||
Query: "max_over_time(metricWith1SampleEvery10Seconds[61s])[20s:5s]",
|
||||
Start: time.Unix(201, 0),
|
||||
PeakSamples: 11,
|
||||
TotalSamples: 26, // (1 sample / 10 seconds * 60 seconds) * 4 + 2 as
|
||||
// max_over_time(metricWith1SampleEvery10Seconds[60s]) @ 190 and 200 will return 7 samples.
|
||||
// max_over_time(metricWith1SampleEvery10Seconds[61s]) @ 190 and 200 will return 7 samples.
|
||||
TotalSamplesPerStep: stats.TotalSamplesPerStep{
|
||||
201000: 26,
|
||||
},
|
||||
|
@ -965,10 +963,9 @@ load 10s
|
|||
Query: "max_over_time(metricWith1HistogramEvery10Seconds[60s])[20s:5s]",
|
||||
Start: time.Unix(201, 0),
|
||||
PeakSamples: 72,
|
||||
TotalSamples: 312, // (1 histogram (size 12) / 10 seconds * 60 seconds) * 4 + 2 * 12 as
|
||||
// max_over_time(metricWith1SampleEvery10Seconds[60s]) @ 190 and 200 will return 7 samples.
|
||||
TotalSamples: 288, // (1 histogram (size 12) / 10 seconds * 60 seconds) * 4
|
||||
TotalSamplesPerStep: stats.TotalSamplesPerStep{
|
||||
201000: 312,
|
||||
201000: 288,
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -1433,23 +1430,23 @@ load 10s
|
|||
},
|
||||
{
|
||||
// The peak samples in memory is during the first evaluation:
|
||||
// - Subquery takes 22 samples, 11 for each bigmetric,
|
||||
// - Result is calculated per series where the series samples is buffered, hence 11 more here.
|
||||
// - Subquery takes 22 samples, 11 for each bigmetric, but samples on the left bound won't be evaluated.
|
||||
// - Result is calculated per series where the series samples is buffered, hence 10 more here.
|
||||
// - The result of two series is added before the last series buffer is discarded, so 2 more here.
|
||||
// Hence at peak it is 22 (subquery) + 11 (buffer of a series) + 2 (result from 2 series).
|
||||
// Hence at peak it is 22 (subquery) + 10 (buffer of a series) + 2 (result from 2 series).
|
||||
// The subquery samples and the buffer is discarded before duplicating.
|
||||
Query: `rate(bigmetric[10s:1s] @ 10)`,
|
||||
MaxSamples: 35,
|
||||
MaxSamples: 34,
|
||||
Start: time.Unix(0, 0),
|
||||
End: time.Unix(10, 0),
|
||||
Interval: 5 * time.Second,
|
||||
},
|
||||
{
|
||||
// Here the reasoning is same as above. But LHS and RHS are done one after another.
|
||||
// So while one of them takes 35 samples at peak, we need to hold the 2 sample
|
||||
// So while one of them takes 34 samples at peak, we need to hold the 2 sample
|
||||
// result of the other till then.
|
||||
Query: `rate(bigmetric[10s:1s] @ 10) + rate(bigmetric[10s:1s] @ 30)`,
|
||||
MaxSamples: 37,
|
||||
MaxSamples: 36,
|
||||
Start: time.Unix(0, 0),
|
||||
End: time.Unix(10, 0),
|
||||
Interval: 5 * time.Second,
|
||||
|
@ -1458,20 +1455,20 @@ load 10s
|
|||
// promql.Sample as above but with only 1 part as step invariant.
|
||||
// Here the peak is caused by the non-step invariant part as it touches more time range.
|
||||
// Hence at peak it is 2*21 (subquery from 0s to 20s)
|
||||
// + 11 (buffer of a series per evaluation)
|
||||
// + 10 (buffer of a series per evaluation)
|
||||
// + 6 (result from 2 series at 3 eval times).
|
||||
Query: `rate(bigmetric[10s:1s]) + rate(bigmetric[10s:1s] @ 30)`,
|
||||
MaxSamples: 59,
|
||||
MaxSamples: 58,
|
||||
Start: time.Unix(10, 0),
|
||||
End: time.Unix(20, 0),
|
||||
Interval: 5 * time.Second,
|
||||
},
|
||||
{
|
||||
// Nested subquery.
|
||||
// We saw that innermost rate takes 35 samples which is still the peak
|
||||
// We saw that innermost rate takes 34 samples which is still the peak
|
||||
// since the other two subqueries just duplicate the result.
|
||||
Query: `rate(rate(bigmetric[10s:1s] @ 10)[100s:25s] @ 1000)[100s:20s] @ 2000`,
|
||||
MaxSamples: 35,
|
||||
MaxSamples: 34,
|
||||
Start: time.Unix(10, 0),
|
||||
},
|
||||
{
|
||||
|
@ -1585,11 +1582,11 @@ load 1ms
|
|||
start: 10,
|
||||
result: promql.Matrix{
|
||||
promql.Series{
|
||||
Floats: []promql.FPoint{{F: 28, T: 280000}, {F: 29, T: 290000}, {F: 30, T: 300000}},
|
||||
Floats: []promql.FPoint{{F: 29, T: 290000}, {F: 30, T: 300000}},
|
||||
Metric: lbls1,
|
||||
},
|
||||
promql.Series{
|
||||
Floats: []promql.FPoint{{F: 56, T: 280000}, {F: 58, T: 290000}, {F: 60, T: 300000}},
|
||||
Floats: []promql.FPoint{{F: 58, T: 290000}, {F: 60, T: 300000}},
|
||||
Metric: lbls2,
|
||||
},
|
||||
},
|
||||
|
@ -1598,7 +1595,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: promql.Matrix{
|
||||
promql.Series{
|
||||
Floats: []promql.FPoint{{F: 3, T: -2000}, {F: 2, T: -1000}, {F: 1, T: 0}},
|
||||
Floats: []promql.FPoint{{F: 2, T: -1000}, {F: 1, T: 0}},
|
||||
Metric: lblsneg,
|
||||
},
|
||||
},
|
||||
|
@ -1607,7 +1604,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: promql.Matrix{
|
||||
promql.Series{
|
||||
Floats: []promql.FPoint{{F: 504, T: -503000}, {F: 503, T: -502000}, {F: 502, T: -501000}, {F: 501, T: -500000}},
|
||||
Floats: []promql.FPoint{{F: 503, T: -502000}, {F: 502, T: -501000}, {F: 501, T: -500000}},
|
||||
Metric: lblsneg,
|
||||
},
|
||||
},
|
||||
|
@ -1616,7 +1613,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: promql.Matrix{
|
||||
promql.Series{
|
||||
Floats: []promql.FPoint{{F: 2342, T: 2342}, {F: 2343, T: 2343}, {F: 2344, T: 2344}, {F: 2345, T: 2345}},
|
||||
Floats: []promql.FPoint{{F: 2343, T: 2343}, {F: 2344, T: 2344}, {F: 2345, T: 2345}},
|
||||
Metric: lblsms,
|
||||
},
|
||||
},
|
||||
|
@ -3038,7 +3035,7 @@ func TestInstantQueryWithRangeVectorSelector(t *testing.T) {
|
|||
ts time.Time
|
||||
}{
|
||||
"matches series with points in range": {
|
||||
expr: "some_metric[1m]",
|
||||
expr: "some_metric[2m]",
|
||||
ts: baseT.Add(2 * time.Minute),
|
||||
expected: promql.Matrix{
|
||||
{
|
||||
|
@ -3074,7 +3071,6 @@ func TestInstantQueryWithRangeVectorSelector(t *testing.T) {
|
|||
{
|
||||
Metric: labels.FromStrings("__name__", "some_metric_with_stale_marker"),
|
||||
Floats: []promql.FPoint{
|
||||
{T: timestamp.FromTime(baseT), F: 0},
|
||||
{T: timestamp.FromTime(baseT.Add(time.Minute)), F: 1},
|
||||
{T: timestamp.FromTime(baseT.Add(3 * time.Minute)), F: 3},
|
||||
},
|
||||
|
@ -3295,11 +3291,11 @@ func TestNativeHistogram_Sum_Count_Add_AvgOperator(t *testing.T) {
|
|||
newTs := ts + offset*int64(time.Minute/time.Millisecond)
|
||||
|
||||
// sum_over_time().
|
||||
queryString = fmt.Sprintf("sum_over_time(%s[%dm:1m])", seriesNameOverTime, offset)
|
||||
queryString = fmt.Sprintf("sum_over_time(%s[%dm:1m])", seriesNameOverTime, offset+1)
|
||||
queryAndCheck(queryString, newTs, []promql.Sample{{T: newTs, H: &c.expected, Metric: labels.EmptyLabels()}})
|
||||
|
||||
// avg_over_time().
|
||||
queryString = fmt.Sprintf("avg_over_time(%s[%dm:1m])", seriesNameOverTime, offset)
|
||||
queryString = fmt.Sprintf("avg_over_time(%s[%dm:1m])", seriesNameOverTime, offset+1)
|
||||
queryAndCheck(queryString, newTs, []promql.Sample{{T: newTs, H: &c.expectedAvg, Metric: labels.EmptyLabels()}})
|
||||
})
|
||||
idx0++
|
||||
|
@ -3724,43 +3720,43 @@ metric 0 1 2
|
|||
}{
|
||||
{
|
||||
name: "default lookback delta",
|
||||
ts: lastDatapointTs.Add(defaultLookbackDelta),
|
||||
ts: lastDatapointTs.Add(defaultLookbackDelta - time.Millisecond),
|
||||
expectSamples: true,
|
||||
},
|
||||
{
|
||||
name: "outside default lookback delta",
|
||||
ts: lastDatapointTs.Add(defaultLookbackDelta + time.Millisecond),
|
||||
ts: lastDatapointTs.Add(defaultLookbackDelta),
|
||||
expectSamples: false,
|
||||
},
|
||||
{
|
||||
name: "custom engine lookback delta",
|
||||
ts: lastDatapointTs.Add(10 * time.Minute),
|
||||
ts: lastDatapointTs.Add(10*time.Minute - time.Millisecond),
|
||||
engineLookback: 10 * time.Minute,
|
||||
expectSamples: true,
|
||||
},
|
||||
{
|
||||
name: "outside custom engine lookback delta",
|
||||
ts: lastDatapointTs.Add(10*time.Minute + time.Millisecond),
|
||||
ts: lastDatapointTs.Add(10 * time.Minute),
|
||||
engineLookback: 10 * time.Minute,
|
||||
expectSamples: false,
|
||||
},
|
||||
{
|
||||
name: "custom query lookback delta",
|
||||
ts: lastDatapointTs.Add(20 * time.Minute),
|
||||
ts: lastDatapointTs.Add(20*time.Minute - time.Millisecond),
|
||||
engineLookback: 10 * time.Minute,
|
||||
queryLookback: 20 * time.Minute,
|
||||
expectSamples: true,
|
||||
},
|
||||
{
|
||||
name: "outside custom query lookback delta",
|
||||
ts: lastDatapointTs.Add(20*time.Minute + time.Millisecond),
|
||||
ts: lastDatapointTs.Add(20 * time.Minute),
|
||||
engineLookback: 10 * time.Minute,
|
||||
queryLookback: 20 * time.Minute,
|
||||
expectSamples: false,
|
||||
},
|
||||
{
|
||||
name: "negative custom query lookback delta",
|
||||
ts: lastDatapointTs.Add(20 * time.Minute),
|
||||
ts: lastDatapointTs.Add(20*time.Minute - time.Millisecond),
|
||||
engineLookback: -10 * time.Minute,
|
||||
queryLookback: 20 * time.Minute,
|
||||
expectSamples: true,
|
||||
|
|
|
@ -237,7 +237,7 @@ eval instant at 5m sum by (group) (http_requests)
|
|||
load 5m
|
||||
testmetric {{}}
|
||||
|
||||
eval instant at 5m testmetric
|
||||
eval instant at 0m testmetric
|
||||
`,
|
||||
expectedError: `error in eval testmetric (line 5): unexpected metric {__name__="testmetric"} in result, has value {count:0, sum:0}`,
|
||||
},
|
||||
|
|
|
@ -250,7 +250,7 @@ clear
|
|||
load 5m
|
||||
http_requests{job="api-server", instance="0", group="production"} 0+10x10
|
||||
http_requests{job="api-server", instance="1", group="production"} 0+20x10
|
||||
http_requests{job="api-server", instance="2", group="production"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
|
||||
http_requests{job="api-server", instance="2", group="production"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
|
||||
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
|
||||
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
|
||||
http_requests{job="app-server", instance="0", group="production"} 0+50x10
|
||||
|
@ -337,32 +337,32 @@ load 5m
|
|||
version{job="app-server", instance="0", group="canary"} 7
|
||||
version{job="app-server", instance="1", group="canary"} 7
|
||||
|
||||
eval instant at 5m count_values("version", version)
|
||||
eval instant at 1m count_values("version", version)
|
||||
{version="6"} 5
|
||||
{version="7"} 2
|
||||
{version="8"} 2
|
||||
|
||||
|
||||
eval instant at 5m count_values(((("version"))), version)
|
||||
eval instant at 1m count_values(((("version"))), version)
|
||||
{version="6"} 5
|
||||
{version="7"} 2
|
||||
{version="8"} 2
|
||||
|
||||
|
||||
eval instant at 5m count_values without (instance)("version", version)
|
||||
eval instant at 1m count_values without (instance)("version", version)
|
||||
{job="api-server", group="production", version="6"} 3
|
||||
{job="api-server", group="canary", version="8"} 2
|
||||
{job="app-server", group="production", version="6"} 2
|
||||
{job="app-server", group="canary", version="7"} 2
|
||||
|
||||
# Overwrite label with output. Don't do this.
|
||||
eval instant at 5m count_values without (instance)("job", version)
|
||||
eval instant at 1m count_values without (instance)("job", version)
|
||||
{job="6", group="production"} 5
|
||||
{job="8", group="canary"} 2
|
||||
{job="7", group="canary"} 2
|
||||
|
||||
# Overwrite label with output. Don't do this.
|
||||
eval instant at 5m count_values by (job, group)("job", version)
|
||||
eval instant at 1m count_values by (job, group)("job", version)
|
||||
{job="6", group="production"} 5
|
||||
{job="8", group="canary"} 2
|
||||
{job="7", group="canary"} 2
|
||||
|
|
|
@ -76,45 +76,43 @@ eval instant at 25s sum_over_time(metric{job="1"}[100s:1s] offset 20s @ 100)
|
|||
|
||||
# Since vector selector has timestamp, the result value does not depend on the timestamp of subqueries.
|
||||
# Inner most sum=1+2+...+10=55.
|
||||
# With [100s:25s] subquery, it's 55*5.
|
||||
# With [100s:25s] subquery, it's 55*4.
|
||||
eval instant at 100s sum_over_time(sum_over_time(metric{job="1"}[100s] @ 100)[100s:25s] @ 50)
|
||||
{job="1"} 275
|
||||
{job="1"} 220
|
||||
|
||||
# Nested subqueries with different timestamps on both.
|
||||
|
||||
# Since vector selector has timestamp, the result value does not depend on the timestamp of subqueries.
|
||||
# Sum of innermost subquery is 275 as above. The outer subquery repeats it 4 times.
|
||||
# Sum of innermost subquery is 220 as above. The outer subquery repeats it 3 times.
|
||||
eval instant at 0s sum_over_time(sum_over_time(sum_over_time(metric{job="1"}[100s] @ 100)[100s:25s] @ 50)[3s:1s] @ 3000)
|
||||
{job="1"} 1100
|
||||
{job="1"} 660
|
||||
|
||||
# Testing the inner subquery timestamp since vector selector does not have @.
|
||||
|
||||
# Inner sum for subquery [100s:25s] @ 50 are
|
||||
# at -50 nothing, at -25 nothing, at 0=0, at 25=2, at 50=4+5=9.
|
||||
# This sum of 11 is repeated 4 times by outer subquery.
|
||||
# at -50 nothing, at -25 nothing, at 0=0, at 25=2, at 50=5.
|
||||
# This sum of 7 is repeated 3 times by outer subquery.
|
||||
eval instant at 0s sum_over_time(sum_over_time(sum_over_time(metric{job="1"}[10s])[100s:25s] @ 50)[3s:1s] @ 200)
|
||||
{job="1"} 44
|
||||
{job="1"} 21
|
||||
|
||||
# Inner sum for subquery [100s:25s] @ 200 are
|
||||
# at 100=9+10, at 125=12, at 150=14+15, at 175=17, at 200=19+20.
|
||||
# This sum of 116 is repeated 4 times by outer subquery.
|
||||
# at 125=12, at 150=15, at 175=17, at 200=20.
|
||||
# This sum of 64 is repeated 3 times by outer subquery.
|
||||
eval instant at 0s sum_over_time(sum_over_time(sum_over_time(metric{job="1"}[10s])[100s:25s] @ 200)[3s:1s] @ 50)
|
||||
{job="1"} 464
|
||||
{job="1"} 192
|
||||
|
||||
# Nested subqueries with timestamp only on outer subquery.
|
||||
# Outer most subquery:
|
||||
# at 900=783
|
||||
# inner subquery: at 870=87+86+85, at 880=88+87+86, at 890=89+88+87
|
||||
# at 925=537
|
||||
# inner subquery: at 895=89+88, at 905=90+89, at 915=90+91
|
||||
# at 950=828
|
||||
# inner subquery: at 920=92+91+90, at 930=93+92+91, at 940=94+93+92
|
||||
# at 975=567
|
||||
# inner subquery: at 945=94+93, at 955=95+94, at 965=96+95
|
||||
# at 1000=873
|
||||
# inner subquery: at 970=97+96+95, at 980=98+97+96, at 990=99+98+97
|
||||
# at 925=360
|
||||
# inner subquery: at 905=90+89, at 915=91+90
|
||||
# at 950=372
|
||||
# inner subquery: at 930=93+92, at 940=94+93
|
||||
# at 975=380
|
||||
# inner subquery: at 955=95+94, at 965=96+95
|
||||
# at 1000=392
|
||||
# inner subquery: at 980=98+97, at 990=99+98
|
||||
eval instant at 0s sum_over_time(sum_over_time(sum_over_time(metric{job="1"}[20s])[20s:10s] offset 10s)[100s:25s] @ 1000)
|
||||
{job="1"} 3588
|
||||
{job="1"} 1504
|
||||
|
||||
# minute is counted on the value of the sample.
|
||||
eval instant at 10s minute(metric @ 1500)
|
||||
|
@ -137,32 +135,32 @@ eval instant at 15m timestamp(timestamp(metric{job="1"} @ 10))
|
|||
|
||||
# minute is counted on the value of the sample.
|
||||
eval instant at 0s sum_over_time(minute(metric @ 1500)[100s:10s])
|
||||
{job="1"} 22
|
||||
{job="2"} 55
|
||||
{job="1"} 20
|
||||
{job="2"} 50
|
||||
|
||||
# If nothing passed, minute() takes eval time.
|
||||
# Here the eval time is determined by the subquery.
|
||||
# [50m:1m] at 6000, i.e. 100m, is 50m to 100m.
|
||||
# sum=50+51+52+...+59+0+1+2+...+40.
|
||||
# sum=51+52+...+59+0+1+2+...+40.
|
||||
eval instant at 0s sum_over_time(minute()[50m:1m] @ 6000)
|
||||
{} 1315
|
||||
|
||||
# sum=46+47+...+59+0+1+2+...+35.
|
||||
eval instant at 0s sum_over_time(minute()[50m:1m] @ 6000 offset 5m)
|
||||
{} 1365
|
||||
|
||||
# sum=45+46+47+...+59+0+1+2+...+35.
|
||||
eval instant at 0s sum_over_time(minute()[50m:1m] @ 6000 offset 5m)
|
||||
{} 1410
|
||||
|
||||
# time() is the eval time which is determined by subquery here.
|
||||
# 2900+2901+...+3000 = (3000*3001 - 2899*2900)/2.
|
||||
# 2901+...+3000 = (3000*3001 - 2899*2900)/2.
|
||||
eval instant at 0s sum_over_time(vector(time())[100s:1s] @ 3000)
|
||||
{} 297950
|
||||
{} 295050
|
||||
|
||||
# 2300+2301+...+2400 = (2400*2401 - 2299*2300)/2.
|
||||
# 2301+...+2400 = (2400*2401 - 2299*2300)/2.
|
||||
eval instant at 0s sum_over_time(vector(time())[100s:1s] @ 3000 offset 600s)
|
||||
{} 237350
|
||||
{} 235050
|
||||
|
||||
# timestamp() takes the time of the sample and not the evaluation time.
|
||||
eval instant at 0s sum_over_time(timestamp(metric{job="1"} @ 10)[100s:10s] @ 3000)
|
||||
{job="1"} 110
|
||||
{job="1"} 100
|
||||
|
||||
# The result of inner timestamp() will have the timestamp as the
|
||||
# eval time, hence entire expression is not step invariant and depends on eval time.
|
||||
|
|
|
@ -6,6 +6,8 @@ load 5m
|
|||
|
||||
# Tests for resets().
|
||||
eval instant at 50m resets(http_requests[5m])
|
||||
|
||||
eval instant at 50m resets(http_requests[10m])
|
||||
{path="/foo"} 0
|
||||
{path="/bar"} 0
|
||||
{path="/biz"} 0
|
||||
|
@ -16,6 +18,11 @@ eval instant at 50m resets(http_requests[20m])
|
|||
{path="/biz"} 0
|
||||
|
||||
eval instant at 50m resets(http_requests[30m])
|
||||
{path="/foo"} 1
|
||||
{path="/bar"} 0
|
||||
{path="/biz"} 0
|
||||
|
||||
eval instant at 50m resets(http_requests[32m])
|
||||
{path="/foo"} 2
|
||||
{path="/bar"} 1
|
||||
{path="/biz"} 0
|
||||
|
@ -29,28 +36,30 @@ eval instant at 50m resets(nonexistent_metric[50m])
|
|||
|
||||
# Tests for changes().
|
||||
eval instant at 50m changes(http_requests[5m])
|
||||
|
||||
eval instant at 50m changes(http_requests[6m])
|
||||
{path="/foo"} 0
|
||||
{path="/bar"} 0
|
||||
{path="/biz"} 0
|
||||
|
||||
eval instant at 50m changes(http_requests[20m])
|
||||
{path="/foo"} 3
|
||||
{path="/bar"} 3
|
||||
{path="/foo"} 2
|
||||
{path="/bar"} 2
|
||||
{path="/biz"} 0
|
||||
|
||||
eval instant at 50m changes(http_requests[30m])
|
||||
{path="/foo"} 4
|
||||
{path="/bar"} 5
|
||||
{path="/biz"} 1
|
||||
{path="/foo"} 3
|
||||
{path="/bar"} 4
|
||||
{path="/biz"} 0
|
||||
|
||||
eval instant at 50m changes(http_requests[50m])
|
||||
{path="/foo"} 8
|
||||
{path="/bar"} 9
|
||||
{path="/foo"} 7
|
||||
{path="/bar"} 8
|
||||
{path="/biz"} 1
|
||||
|
||||
eval instant at 50m changes((http_requests[50m]))
|
||||
{path="/foo"} 8
|
||||
{path="/bar"} 9
|
||||
{path="/foo"} 7
|
||||
{path="/bar"} 8
|
||||
{path="/biz"} 1
|
||||
|
||||
eval instant at 50m changes(nonexistent_metric[50m])
|
||||
|
@ -61,7 +70,7 @@ load 5m
|
|||
x{a="b"} NaN NaN NaN
|
||||
x{a="c"} 0 NaN 0
|
||||
|
||||
eval instant at 15m changes(x[15m])
|
||||
eval instant at 15m changes(x[20m])
|
||||
{a="b"} 0
|
||||
{a="c"} 2
|
||||
|
||||
|
@ -70,14 +79,14 @@ clear
|
|||
# Tests for increase().
|
||||
load 5m
|
||||
http_requests{path="/foo"} 0+10x10
|
||||
http_requests{path="/bar"} 0+10x5 0+10x5
|
||||
http_requests{path="/bar"} 0+18x5 0+18x5
|
||||
http_requests{path="/dings"} 10+10x10
|
||||
http_requests{path="/bumms"} 1+10x10
|
||||
|
||||
# Tests for increase().
|
||||
eval instant at 50m increase(http_requests[50m])
|
||||
{path="/foo"} 100
|
||||
{path="/bar"} 90
|
||||
{path="/bar"} 160
|
||||
{path="/dings"} 100
|
||||
{path="/bumms"} 100
|
||||
|
||||
|
@ -90,7 +99,7 @@ eval instant at 50m increase(http_requests[50m])
|
|||
# value, and therefore the extrapolation happens only by 30s.
|
||||
eval instant at 50m increase(http_requests[100m])
|
||||
{path="/foo"} 100
|
||||
{path="/bar"} 90
|
||||
{path="/bar"} 162
|
||||
{path="/dings"} 105
|
||||
{path="/bumms"} 101
|
||||
|
||||
|
@ -110,15 +119,17 @@ clear
|
|||
|
||||
# Tests for rate().
|
||||
load 5m
|
||||
testcounter_reset_middle 0+10x4 0+10x5
|
||||
testcounter_reset_middle 0+27x4 0+27x5
|
||||
testcounter_reset_end 0+10x9 0 10
|
||||
|
||||
# Counter resets at in the middle of range are handled correctly by rate().
|
||||
eval instant at 50m rate(testcounter_reset_middle[50m])
|
||||
{} 0.03
|
||||
{} 0.08
|
||||
|
||||
# Counter resets at end of range are ignored by rate().
|
||||
eval instant at 50m rate(testcounter_reset_end[5m])
|
||||
|
||||
eval instant at 50m rate(testcounter_reset_end[6m])
|
||||
{} 0
|
||||
|
||||
clear
|
||||
|
@ -237,18 +248,18 @@ eval instant at 50m deriv(testcounter_reset_middle[100m])
|
|||
# intercept at t=3000: 38.63636363636364
|
||||
# intercept at t=3000+3600: 76.81818181818181
|
||||
eval instant at 50m predict_linear(testcounter_reset_middle[50m], 3600)
|
||||
{} 76.81818181818181
|
||||
{} 70
|
||||
|
||||
# intercept at t = 3000+3600 = 6600
|
||||
eval instant at 50m predict_linear(testcounter_reset_middle[50m] @ 3000, 3600)
|
||||
eval instant at 50m predict_linear(testcounter_reset_middle[55m] @ 3000, 3600)
|
||||
{} 76.81818181818181
|
||||
|
||||
# intercept at t = 600+3600 = 4200
|
||||
eval instant at 10m predict_linear(testcounter_reset_middle[50m] @ 3000, 3600)
|
||||
eval instant at 10m predict_linear(testcounter_reset_middle[55m] @ 3000, 3600)
|
||||
{} 51.36363636363637
|
||||
|
||||
# intercept at t = 4200+3600 = 7800
|
||||
eval instant at 70m predict_linear(testcounter_reset_middle[50m] @ 3000, 3600)
|
||||
eval instant at 70m predict_linear(testcounter_reset_middle[55m] @ 3000, 3600)
|
||||
{} 89.54545454545455
|
||||
|
||||
# With http_requests, there is a sample value exactly at the end of
|
||||
|
@ -456,7 +467,7 @@ load 5m
|
|||
http_requests{job="api-server", instance="1", group="production"} 0+20x10
|
||||
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
|
||||
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
|
||||
http_requests{job="api-server", instance="2", group="canary"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
|
||||
http_requests{job="api-server", instance="2", group="canary"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
|
||||
http_requests{job="app-server", instance="0", group="production"} 0+50x10
|
||||
http_requests{job="app-server", instance="1", group="production"} 0+60x10
|
||||
http_requests{job="app-server", instance="0", group="canary"} 0+70x10
|
||||
|
@ -491,7 +502,7 @@ load 5m
|
|||
http_requests{job="api-server", instance="1", group="production"} 0+20x10
|
||||
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
|
||||
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
|
||||
http_requests{job="api-server", instance="2", group="canary"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
|
||||
http_requests{job="api-server", instance="2", group="canary"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
|
||||
http_requests{job="app-server", instance="0", group="production"} 0+50x10
|
||||
http_requests{job="app-server", instance="1", group="production"} 0+60x10
|
||||
http_requests{job="app-server", instance="0", group="canary"} 0+70x10
|
||||
|
@ -677,10 +688,10 @@ load 10s
|
|||
metric9 -9.988465674311579e+307 -9.988465674311579e+307 -9.988465674311579e+307
|
||||
metric10 -9.988465674311579e+307 9.988465674311579e+307
|
||||
|
||||
eval instant at 1m avg_over_time(metric[1m])
|
||||
eval instant at 55s avg_over_time(metric[1m])
|
||||
{} 3
|
||||
|
||||
eval instant at 1m sum_over_time(metric[1m])/count_over_time(metric[1m])
|
||||
eval instant at 55s sum_over_time(metric[1m])/count_over_time(metric[1m])
|
||||
{} 3
|
||||
|
||||
eval instant at 1m avg_over_time(metric2[1m])
|
||||
|
@ -748,8 +759,8 @@ eval instant at 1m avg_over_time(metric8[1m])
|
|||
{} 9.988465674311579e+307
|
||||
|
||||
# This overflows float64.
|
||||
eval instant at 1m sum_over_time(metric8[1m])/count_over_time(metric8[1m])
|
||||
{} Inf
|
||||
eval instant at 1m sum_over_time(metric8[2m])/count_over_time(metric8[2m])
|
||||
{} +Inf
|
||||
|
||||
eval instant at 1m avg_over_time(metric9[1m])
|
||||
{} -9.988465674311579e+307
|
||||
|
@ -758,10 +769,16 @@ eval instant at 1m avg_over_time(metric9[1m])
|
|||
eval instant at 1m sum_over_time(metric9[1m])/count_over_time(metric9[1m])
|
||||
{} -Inf
|
||||
|
||||
eval instant at 1m avg_over_time(metric10[1m])
|
||||
eval instant at 45s avg_over_time(metric10[1m])
|
||||
{} 0
|
||||
|
||||
eval instant at 1m sum_over_time(metric10[1m])/count_over_time(metric10[1m])
|
||||
eval instant at 1m avg_over_time(metric10[2m])
|
||||
{} 0
|
||||
|
||||
eval instant at 45s sum_over_time(metric10[1m])/count_over_time(metric10[1m])
|
||||
{} 0
|
||||
|
||||
eval instant at 1m sum_over_time(metric10[2m])/count_over_time(metric10[2m])
|
||||
{} 0
|
||||
|
||||
# Test if very big intermediate values cause loss of detail.
|
||||
|
@ -769,7 +786,7 @@ clear
|
|||
load 10s
|
||||
metric 1 1e100 1 -1e100
|
||||
|
||||
eval instant at 1m sum_over_time(metric[1m])
|
||||
eval instant at 1m sum_over_time(metric[2m])
|
||||
{} 2
|
||||
|
||||
# Tests for stddev_over_time and stdvar_over_time.
|
||||
|
@ -777,13 +794,13 @@ clear
|
|||
load 10s
|
||||
metric 0 8 8 2 3
|
||||
|
||||
eval instant at 1m stdvar_over_time(metric[1m])
|
||||
eval instant at 1m stdvar_over_time(metric[2m])
|
||||
{} 10.56
|
||||
|
||||
eval instant at 1m stddev_over_time(metric[1m])
|
||||
eval instant at 1m stddev_over_time(metric[2m])
|
||||
{} 3.249615
|
||||
|
||||
eval instant at 1m stddev_over_time((metric[1m]))
|
||||
eval instant at 1m stddev_over_time((metric[2m]))
|
||||
{} 3.249615
|
||||
|
||||
# Tests for stddev_over_time and stdvar_over_time #4927.
|
||||
|
@ -813,42 +830,42 @@ load 10s
|
|||
data{test="three samples"} 0 1 2
|
||||
data{test="uneven samples"} 0 1 4
|
||||
|
||||
eval instant at 1m quantile_over_time(0, data[1m])
|
||||
eval instant at 1m quantile_over_time(0, data[2m])
|
||||
{test="two samples"} 0
|
||||
{test="three samples"} 0
|
||||
{test="uneven samples"} 0
|
||||
|
||||
eval instant at 1m quantile_over_time(0.5, data[1m])
|
||||
eval instant at 1m quantile_over_time(0.5, data[2m])
|
||||
{test="two samples"} 0.5
|
||||
{test="three samples"} 1
|
||||
{test="uneven samples"} 1
|
||||
|
||||
eval instant at 1m quantile_over_time(0.75, data[1m])
|
||||
eval instant at 1m quantile_over_time(0.75, data[2m])
|
||||
{test="two samples"} 0.75
|
||||
{test="three samples"} 1.5
|
||||
{test="uneven samples"} 2.5
|
||||
|
||||
eval instant at 1m quantile_over_time(0.8, data[1m])
|
||||
eval instant at 1m quantile_over_time(0.8, data[2m])
|
||||
{test="two samples"} 0.8
|
||||
{test="three samples"} 1.6
|
||||
{test="uneven samples"} 2.8
|
||||
|
||||
eval instant at 1m quantile_over_time(1, data[1m])
|
||||
eval instant at 1m quantile_over_time(1, data[2m])
|
||||
{test="two samples"} 1
|
||||
{test="three samples"} 2
|
||||
{test="uneven samples"} 4
|
||||
|
||||
eval instant at 1m quantile_over_time(-1, data[1m])
|
||||
eval instant at 1m quantile_over_time(-1, data[2m])
|
||||
{test="two samples"} -Inf
|
||||
{test="three samples"} -Inf
|
||||
{test="uneven samples"} -Inf
|
||||
|
||||
eval instant at 1m quantile_over_time(2, data[1m])
|
||||
eval instant at 1m quantile_over_time(2, data[2m])
|
||||
{test="two samples"} +Inf
|
||||
{test="three samples"} +Inf
|
||||
{test="uneven samples"} +Inf
|
||||
|
||||
eval instant at 1m (quantile_over_time(2, (data[1m])))
|
||||
eval instant at 1m (quantile_over_time(2, (data[2m])))
|
||||
{test="two samples"} +Inf
|
||||
{test="three samples"} +Inf
|
||||
{test="uneven samples"} +Inf
|
||||
|
@ -956,21 +973,21 @@ load 10s
|
|||
data{type="some_nan3"} NaN 0 1
|
||||
data{type="only_nan"} NaN NaN NaN
|
||||
|
||||
eval instant at 1m min_over_time(data[1m])
|
||||
eval instant at 1m min_over_time(data[2m])
|
||||
{type="numbers"} 0
|
||||
{type="some_nan"} 0
|
||||
{type="some_nan2"} 1
|
||||
{type="some_nan3"} 0
|
||||
{type="only_nan"} NaN
|
||||
|
||||
eval instant at 1m max_over_time(data[1m])
|
||||
eval instant at 1m max_over_time(data[2m])
|
||||
{type="numbers"} 3
|
||||
{type="some_nan"} 2
|
||||
{type="some_nan2"} 2
|
||||
{type="some_nan3"} 1
|
||||
{type="only_nan"} NaN
|
||||
|
||||
eval instant at 1m last_over_time(data[1m])
|
||||
eval instant at 1m last_over_time(data[2m])
|
||||
data{type="numbers"} 3
|
||||
data{type="some_nan"} NaN
|
||||
data{type="some_nan2"} 1
|
||||
|
@ -1063,13 +1080,19 @@ eval instant at 1m absent_over_time(httpd_log_lines_total[30s])
|
|||
{} 1
|
||||
|
||||
eval instant at 15m absent_over_time(http_requests[5m])
|
||||
|
||||
eval instant at 16m absent_over_time(http_requests[5m])
|
||||
{} 1
|
||||
|
||||
eval instant at 15m absent_over_time(http_requests[10m])
|
||||
|
||||
eval instant at 16m absent_over_time(http_requests[6m])
|
||||
{} 1
|
||||
|
||||
eval instant at 16m absent_over_time(http_requests[16m])
|
||||
|
||||
eval instant at 16m absent_over_time(httpd_handshake_failures_total[1m])
|
||||
{} 1
|
||||
|
||||
eval instant at 16m absent_over_time(httpd_handshake_failures_total[2m])
|
||||
|
||||
eval instant at 16m absent_over_time({instance="127.0.0.1"}[5m])
|
||||
|
||||
|
@ -1125,17 +1148,18 @@ eval instant at 0m present_over_time(httpd_log_lines_total[30s])
|
|||
eval instant at 1m present_over_time(httpd_log_lines_total[30s])
|
||||
|
||||
eval instant at 15m present_over_time(http_requests[5m])
|
||||
|
||||
eval instant at 15m present_over_time(http_requests[10m])
|
||||
{instance="127.0.0.1", job="httpd", path="/bar"} 1
|
||||
{instance="127.0.0.1", job="httpd", path="/foo"} 1
|
||||
|
||||
eval instant at 16m present_over_time(http_requests[5m])
|
||||
|
||||
eval instant at 16m present_over_time(http_requests[6m])
|
||||
|
||||
eval instant at 16m present_over_time(http_requests[16m])
|
||||
{instance="127.0.0.1", job="httpd", path="/bar"} 1
|
||||
{instance="127.0.0.1", job="httpd", path="/foo"} 1
|
||||
|
||||
eval instant at 16m present_over_time(httpd_handshake_failures_total[1m])
|
||||
{instance="127.0.0.1", job="node"} 1
|
||||
|
||||
eval instant at 16m present_over_time({instance="127.0.0.1"}[5m])
|
||||
{instance="127.0.0.1",job="node"} 1
|
||||
|
@ -1156,59 +1180,59 @@ load 5m
|
|||
exp_root_log{l="x"} 10
|
||||
exp_root_log{l="y"} 20
|
||||
|
||||
eval instant at 5m exp(exp_root_log)
|
||||
eval instant at 1m exp(exp_root_log)
|
||||
{l="x"} 22026.465794806718
|
||||
{l="y"} 485165195.4097903
|
||||
|
||||
eval instant at 5m exp(exp_root_log - 10)
|
||||
eval instant at 1m exp(exp_root_log - 10)
|
||||
{l="y"} 22026.465794806718
|
||||
{l="x"} 1
|
||||
|
||||
eval instant at 5m exp(exp_root_log - 20)
|
||||
eval instant at 1m exp(exp_root_log - 20)
|
||||
{l="x"} 4.5399929762484854e-05
|
||||
{l="y"} 1
|
||||
|
||||
eval instant at 5m ln(exp_root_log)
|
||||
eval instant at 1m ln(exp_root_log)
|
||||
{l="x"} 2.302585092994046
|
||||
{l="y"} 2.995732273553991
|
||||
|
||||
eval instant at 5m ln(exp_root_log - 10)
|
||||
eval instant at 1m ln(exp_root_log - 10)
|
||||
{l="y"} 2.302585092994046
|
||||
{l="x"} -Inf
|
||||
|
||||
eval instant at 5m ln(exp_root_log - 20)
|
||||
eval instant at 1m ln(exp_root_log - 20)
|
||||
{l="y"} -Inf
|
||||
{l="x"} NaN
|
||||
|
||||
eval instant at 5m exp(ln(exp_root_log))
|
||||
eval instant at 1m exp(ln(exp_root_log))
|
||||
{l="y"} 20
|
||||
{l="x"} 10
|
||||
|
||||
eval instant at 5m sqrt(exp_root_log)
|
||||
eval instant at 1m sqrt(exp_root_log)
|
||||
{l="x"} 3.1622776601683795
|
||||
{l="y"} 4.47213595499958
|
||||
|
||||
eval instant at 5m log2(exp_root_log)
|
||||
eval instant at 1m log2(exp_root_log)
|
||||
{l="x"} 3.3219280948873626
|
||||
{l="y"} 4.321928094887363
|
||||
|
||||
eval instant at 5m log2(exp_root_log - 10)
|
||||
eval instant at 1m log2(exp_root_log - 10)
|
||||
{l="y"} 3.3219280948873626
|
||||
{l="x"} -Inf
|
||||
|
||||
eval instant at 5m log2(exp_root_log - 20)
|
||||
eval instant at 1m log2(exp_root_log - 20)
|
||||
{l="x"} NaN
|
||||
{l="y"} -Inf
|
||||
|
||||
eval instant at 5m log10(exp_root_log)
|
||||
eval instant at 1m log10(exp_root_log)
|
||||
{l="x"} 1
|
||||
{l="y"} 1.301029995663981
|
||||
|
||||
eval instant at 5m log10(exp_root_log - 10)
|
||||
eval instant at 1m log10(exp_root_log - 10)
|
||||
{l="y"} 1
|
||||
{l="x"} -Inf
|
||||
|
||||
eval instant at 5m log10(exp_root_log - 20)
|
||||
eval instant at 1m log10(exp_root_log - 20)
|
||||
{l="x"} NaN
|
||||
{l="y"} -Inf
|
||||
|
||||
|
|
|
@ -93,15 +93,15 @@ eval instant at 50m histogram_quantile(0.8, testhistogram_bucket)
|
|||
{start="negative"} 0.3
|
||||
|
||||
# More realistic with rates.
|
||||
eval instant at 50m histogram_quantile(0.2, rate(testhistogram_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(0.2, rate(testhistogram_bucket[10m]))
|
||||
{start="positive"} 0.048
|
||||
{start="negative"} -0.2
|
||||
|
||||
eval instant at 50m histogram_quantile(0.5, rate(testhistogram_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(0.5, rate(testhistogram_bucket[10m]))
|
||||
{start="positive"} 0.15
|
||||
{start="negative"} -0.15
|
||||
|
||||
eval instant at 50m histogram_quantile(0.8, rate(testhistogram_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(0.8, rate(testhistogram_bucket[10m]))
|
||||
{start="positive"} 0.72
|
||||
{start="negative"} 0.3
|
||||
|
||||
|
@ -125,58 +125,58 @@ eval instant at 47m histogram_quantile(5./6., rate(testhistogram2_bucket[15m]))
|
|||
{} 5
|
||||
|
||||
# Aggregated histogram: Everything in one.
|
||||
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le))
|
||||
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[10m])) by (le))
|
||||
{} 0.075
|
||||
|
||||
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le))
|
||||
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[10m])) by (le))
|
||||
{} 0.1277777777777778
|
||||
|
||||
# Aggregated histogram: Everything in one. Now with avg, which does not change anything.
|
||||
eval instant at 50m histogram_quantile(0.3, avg(rate(request_duration_seconds_bucket[5m])) by (le))
|
||||
eval instant at 50m histogram_quantile(0.3, avg(rate(request_duration_seconds_bucket[10m])) by (le))
|
||||
{} 0.075
|
||||
|
||||
eval instant at 50m histogram_quantile(0.5, avg(rate(request_duration_seconds_bucket[5m])) by (le))
|
||||
eval instant at 50m histogram_quantile(0.5, avg(rate(request_duration_seconds_bucket[10m])) by (le))
|
||||
{} 0.12777777777777778
|
||||
|
||||
# Aggregated histogram: By instance.
|
||||
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, instance))
|
||||
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[10m])) by (le, instance))
|
||||
{instance="ins1"} 0.075
|
||||
{instance="ins2"} 0.075
|
||||
|
||||
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, instance))
|
||||
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[10m])) by (le, instance))
|
||||
{instance="ins1"} 0.1333333333
|
||||
{instance="ins2"} 0.125
|
||||
|
||||
# Aggregated histogram: By job.
|
||||
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, job))
|
||||
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[10m])) by (le, job))
|
||||
{job="job1"} 0.1
|
||||
{job="job2"} 0.0642857142857143
|
||||
|
||||
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, job))
|
||||
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[10m])) by (le, job))
|
||||
{job="job1"} 0.14
|
||||
{job="job2"} 0.1125
|
||||
|
||||
# Aggregated histogram: By job and instance.
|
||||
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, job, instance))
|
||||
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[10m])) by (le, job, instance))
|
||||
{instance="ins1", job="job1"} 0.11
|
||||
{instance="ins2", job="job1"} 0.09
|
||||
{instance="ins1", job="job2"} 0.06
|
||||
{instance="ins2", job="job2"} 0.0675
|
||||
|
||||
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, job, instance))
|
||||
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[10m])) by (le, job, instance))
|
||||
{instance="ins1", job="job1"} 0.15
|
||||
{instance="ins2", job="job1"} 0.1333333333333333
|
||||
{instance="ins1", job="job2"} 0.1
|
||||
{instance="ins2", job="job2"} 0.1166666666666667
|
||||
|
||||
# The unaggregated histogram for comparison. Same result as the previous one.
|
||||
eval instant at 50m histogram_quantile(0.3, rate(request_duration_seconds_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(0.3, rate(request_duration_seconds_bucket[10m]))
|
||||
{instance="ins1", job="job1"} 0.11
|
||||
{instance="ins2", job="job1"} 0.09
|
||||
{instance="ins1", job="job2"} 0.06
|
||||
{instance="ins2", job="job2"} 0.0675
|
||||
|
||||
eval instant at 50m histogram_quantile(0.5, rate(request_duration_seconds_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(0.5, rate(request_duration_seconds_bucket[10m]))
|
||||
{instance="ins1", job="job1"} 0.15
|
||||
{instance="ins2", job="job1"} 0.13333333333333333
|
||||
{instance="ins1", job="job2"} 0.1
|
||||
|
@ -205,15 +205,15 @@ eval instant at 50m histogram_quantile(0.99, nonmonotonic_bucket)
|
|||
{} 979.75
|
||||
|
||||
# Buckets with different representations of the same upper bound.
|
||||
eval instant at 50m histogram_quantile(0.5, rate(mixed_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(0.5, rate(mixed_bucket[10m]))
|
||||
{instance="ins1", job="job1"} 0.15
|
||||
{instance="ins2", job="job1"} NaN
|
||||
|
||||
eval instant at 50m histogram_quantile(0.75, rate(mixed_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(0.75, rate(mixed_bucket[10m]))
|
||||
{instance="ins1", job="job1"} 0.2
|
||||
{instance="ins2", job="job1"} NaN
|
||||
|
||||
eval instant at 50m histogram_quantile(1, rate(mixed_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(1, rate(mixed_bucket[10m]))
|
||||
{instance="ins1", job="job1"} 0.2
|
||||
{instance="ins2", job="job1"} NaN
|
||||
|
||||
|
@ -222,7 +222,7 @@ load 5m
|
|||
empty_bucket{le="0.2", job="job1", instance="ins1"} 0x10
|
||||
empty_bucket{le="+Inf", job="job1", instance="ins1"} 0x10
|
||||
|
||||
eval instant at 50m histogram_quantile(0.2, rate(empty_bucket[5m]))
|
||||
eval instant at 50m histogram_quantile(0.2, rate(empty_bucket[10m]))
|
||||
{instance="ins1", job="job1"} NaN
|
||||
|
||||
# Load a duplicate histogram with a different name to test failure scenario on multiple histograms with the same label set
|
||||
|
|
|
@ -2,55 +2,55 @@
|
|||
load 5m
|
||||
empty_histogram {{}}
|
||||
|
||||
eval instant at 5m empty_histogram
|
||||
eval instant at 1m empty_histogram
|
||||
{__name__="empty_histogram"} {{}}
|
||||
|
||||
eval instant at 5m histogram_count(empty_histogram)
|
||||
eval instant at 1m histogram_count(empty_histogram)
|
||||
{} 0
|
||||
|
||||
eval instant at 5m histogram_sum(empty_histogram)
|
||||
eval instant at 1m histogram_sum(empty_histogram)
|
||||
{} 0
|
||||
|
||||
eval instant at 5m histogram_avg(empty_histogram)
|
||||
eval instant at 1m histogram_avg(empty_histogram)
|
||||
{} NaN
|
||||
|
||||
eval instant at 5m histogram_fraction(-Inf, +Inf, empty_histogram)
|
||||
eval instant at 1m histogram_fraction(-Inf, +Inf, empty_histogram)
|
||||
{} NaN
|
||||
|
||||
eval instant at 5m histogram_fraction(0, 8, empty_histogram)
|
||||
eval instant at 1m histogram_fraction(0, 8, empty_histogram)
|
||||
{} NaN
|
||||
|
||||
|
||||
clear
|
||||
|
||||
# buckets:[1 2 1] means 1 observation in the 1st bucket, 2 observations in the 2nd and 1 observation in the 3rd (total 4).
|
||||
load 5m
|
||||
single_histogram {{schema:0 sum:5 count:4 buckets:[1 2 1]}}
|
||||
|
||||
# histogram_count extracts the count property from the histogram.
|
||||
eval instant at 5m histogram_count(single_histogram)
|
||||
eval instant at 1m histogram_count(single_histogram)
|
||||
{} 4
|
||||
|
||||
# histogram_sum extracts the sum property from the histogram.
|
||||
eval instant at 5m histogram_sum(single_histogram)
|
||||
eval instant at 1m histogram_sum(single_histogram)
|
||||
{} 5
|
||||
|
||||
# histogram_avg calculates the average from sum and count properties.
|
||||
eval instant at 5m histogram_avg(single_histogram)
|
||||
eval instant at 1m histogram_avg(single_histogram)
|
||||
{} 1.25
|
||||
|
||||
# We expect half of the values to fall in the range 1 < x <= 2.
|
||||
eval instant at 5m histogram_fraction(1, 2, single_histogram)
|
||||
eval instant at 1m histogram_fraction(1, 2, single_histogram)
|
||||
{} 0.5
|
||||
|
||||
# We expect all values to fall in the range 0 < x <= 8.
|
||||
eval instant at 5m histogram_fraction(0, 8, single_histogram)
|
||||
eval instant at 1m histogram_fraction(0, 8, single_histogram)
|
||||
{} 1
|
||||
|
||||
# Median is 1.5 due to linear estimation of the midpoint of the middle bucket, whose values are within range 1 < x <= 2.
|
||||
eval instant at 5m histogram_quantile(0.5, single_histogram)
|
||||
eval instant at 1m histogram_quantile(0.5, single_histogram)
|
||||
{} 1.5
|
||||
|
||||
|
||||
clear
|
||||
|
||||
# Repeat the same histogram 10 times.
|
||||
load 5m
|
||||
|
@ -88,7 +88,7 @@ eval instant at 50m histogram_fraction(1, 2, multi_histogram)
|
|||
eval instant at 50m histogram_quantile(0.5, multi_histogram)
|
||||
{} 1.5
|
||||
|
||||
|
||||
clear
|
||||
|
||||
# Accumulate the histogram addition for 10 iterations, offset is a bucket position where offset:0 is always the bucket
|
||||
# with an upper limit of 1 and offset:1 is the bucket which follows to the right. Negative offsets represent bucket
|
||||
|
@ -133,14 +133,14 @@ eval instant at 50m histogram_quantile(0.5, incr_histogram)
|
|||
{} 1.5
|
||||
|
||||
# Per-second average rate of increase should be 1/(5*60) for count and buckets, then 2/(5*60) for sum.
|
||||
eval instant at 50m rate(incr_histogram[5m])
|
||||
{} {{count:0.0033333333333333335 sum:0.006666666666666667 offset:1 buckets:[0.0033333333333333335]}}
|
||||
eval instant at 50m rate(incr_histogram[10m])
|
||||
{} {{count:0.0033333333333333335 sum:0.006666666666666667 offset:1 buckets:[0.0033333333333333335]}}
|
||||
|
||||
# Calculate the 50th percentile of observations over the last 10m.
|
||||
eval instant at 50m histogram_quantile(0.5, rate(incr_histogram[10m]))
|
||||
{} 1.5
|
||||
|
||||
|
||||
clear
|
||||
|
||||
# Schema represents the histogram resolution, different schema have compatible bucket boundaries, e.g.:
|
||||
# 0: 1 2 4 8 16 32 64 (higher resolution)
|
||||
|
@ -166,77 +166,77 @@ eval instant at 5m histogram_avg(low_res_histogram)
|
|||
eval instant at 5m histogram_fraction(1, 4, low_res_histogram)
|
||||
{} 1
|
||||
|
||||
|
||||
clear
|
||||
|
||||
# z_bucket:1 means there is one observation in the zero bucket and z_bucket_w:0.5 means the zero bucket has the range
|
||||
# 0 < x <= 0.5. Sum and count are expected to represent all observations in the histogram, including those in the zero bucket.
|
||||
load 5m
|
||||
single_zero_histogram {{schema:0 z_bucket:1 z_bucket_w:0.5 sum:0.25 count:1}}
|
||||
|
||||
eval instant at 5m histogram_count(single_zero_histogram)
|
||||
eval instant at 1m histogram_count(single_zero_histogram)
|
||||
{} 1
|
||||
|
||||
eval instant at 5m histogram_sum(single_zero_histogram)
|
||||
eval instant at 1m histogram_sum(single_zero_histogram)
|
||||
{} 0.25
|
||||
|
||||
eval instant at 5m histogram_avg(single_zero_histogram)
|
||||
eval instant at 1m histogram_avg(single_zero_histogram)
|
||||
{} 0.25
|
||||
|
||||
# When only the zero bucket is populated, or there are negative buckets, the distribution is assumed to be equally
|
||||
# distributed around zero; i.e. that there are an equal number of positive and negative observations. Therefore the
|
||||
# entire distribution must lie within the full range of the zero bucket, in this case: -0.5 < x <= +0.5.
|
||||
eval instant at 5m histogram_fraction(-0.5, 0.5, single_zero_histogram)
|
||||
eval instant at 1m histogram_fraction(-0.5, 0.5, single_zero_histogram)
|
||||
{} 1
|
||||
|
||||
# Half of the observations are estimated to be zero, as this is the midpoint between -0.5 and +0.5.
|
||||
eval instant at 5m histogram_quantile(0.5, single_zero_histogram)
|
||||
eval instant at 1m histogram_quantile(0.5, single_zero_histogram)
|
||||
{} 0
|
||||
|
||||
|
||||
clear
|
||||
|
||||
# Let's turn single_histogram upside-down.
|
||||
load 5m
|
||||
negative_histogram {{schema:0 sum:-5 count:4 n_buckets:[1 2 1]}}
|
||||
|
||||
eval instant at 5m histogram_count(negative_histogram)
|
||||
eval instant at 1m histogram_count(negative_histogram)
|
||||
{} 4
|
||||
|
||||
eval instant at 5m histogram_sum(negative_histogram)
|
||||
eval instant at 1m histogram_sum(negative_histogram)
|
||||
{} -5
|
||||
|
||||
eval instant at 5m histogram_avg(negative_histogram)
|
||||
eval instant at 1m histogram_avg(negative_histogram)
|
||||
{} -1.25
|
||||
|
||||
# We expect half of the values to fall in the range -2 < x <= -1.
|
||||
eval instant at 5m histogram_fraction(-2, -1, negative_histogram)
|
||||
eval instant at 1m histogram_fraction(-2, -1, negative_histogram)
|
||||
{} 0.5
|
||||
|
||||
eval instant at 5m histogram_quantile(0.5, negative_histogram)
|
||||
eval instant at 1m histogram_quantile(0.5, negative_histogram)
|
||||
{} -1.5
|
||||
|
||||
|
||||
clear
|
||||
|
||||
# Two histogram samples.
|
||||
load 5m
|
||||
two_samples_histogram {{schema:0 sum:4 count:4 buckets:[1 2 1]}} {{schema:0 sum:-4 count:4 n_buckets:[1 2 1]}}
|
||||
|
||||
# We expect to see the newest sample.
|
||||
eval instant at 10m histogram_count(two_samples_histogram)
|
||||
eval instant at 5m histogram_count(two_samples_histogram)
|
||||
{} 4
|
||||
|
||||
eval instant at 10m histogram_sum(two_samples_histogram)
|
||||
eval instant at 5m histogram_sum(two_samples_histogram)
|
||||
{} -4
|
||||
|
||||
eval instant at 10m histogram_avg(two_samples_histogram)
|
||||
eval instant at 5m histogram_avg(two_samples_histogram)
|
||||
{} -1
|
||||
|
||||
eval instant at 10m histogram_fraction(-2, -1, two_samples_histogram)
|
||||
eval instant at 5m histogram_fraction(-2, -1, two_samples_histogram)
|
||||
{} 0.5
|
||||
|
||||
eval instant at 10m histogram_quantile(0.5, two_samples_histogram)
|
||||
eval instant at 5m histogram_quantile(0.5, two_samples_histogram)
|
||||
{} -1.5
|
||||
|
||||
|
||||
clear
|
||||
|
||||
# Add two histograms with negated data.
|
||||
load 5m
|
||||
|
@ -259,6 +259,8 @@ eval instant at 5m histogram_fraction(0, 4, balanced_histogram)
|
|||
eval instant at 5m histogram_quantile(0.5, balanced_histogram)
|
||||
{} 0.5
|
||||
|
||||
clear
|
||||
|
||||
# Add histogram to test sum(last_over_time) regression
|
||||
load 5m
|
||||
incr_sum_histogram{number="1"} {{schema:0 sum:0 count:0 buckets:[1]}}+{{schema:0 sum:1 count:1 buckets:[1]}}x10
|
||||
|
@ -270,6 +272,8 @@ eval instant at 50m histogram_sum(sum(incr_sum_histogram))
|
|||
eval instant at 50m histogram_sum(sum(last_over_time(incr_sum_histogram[5m])))
|
||||
{} 30
|
||||
|
||||
clear
|
||||
|
||||
# Apply rate function to histogram.
|
||||
load 15s
|
||||
histogram_rate {{schema:1 count:12 sum:18.4 z_bucket:2 z_bucket_w:0.001 buckets:[1 2 0 1 1] n_buckets:[1 2 0 1 1]}}+{{schema:1 count:9 sum:18.4 z_bucket:1 z_bucket_w:0.001 buckets:[1 1 0 1 1] n_buckets:[1 1 0 1 1]}}x100
|
||||
|
@ -280,6 +284,8 @@ eval instant at 5m rate(histogram_rate[45s])
|
|||
eval range from 5m to 5m30s step 30s rate(histogram_rate[45s])
|
||||
{} {{schema:1 count:0.6 sum:1.2266666666666652 z_bucket:0.06666666666666667 z_bucket_w:0.001 buckets:[0.06666666666666667 0.06666666666666667 0 0.06666666666666667 0.06666666666666667] n_buckets:[0.06666666666666667 0.06666666666666667 0 0.06666666666666667 0.06666666666666667]}}x1
|
||||
|
||||
clear
|
||||
|
||||
# Apply count and sum function to histogram.
|
||||
load 10m
|
||||
histogram_count_sum_2 {{schema:0 count:24 sum:100 z_bucket:4 z_bucket_w:0.001 buckets:[2 3 0 1 4] n_buckets:[2 3 0 1 4]}}x1
|
||||
|
@ -290,6 +296,8 @@ eval instant at 10m histogram_count(histogram_count_sum_2)
|
|||
eval instant at 10m histogram_sum(histogram_count_sum_2)
|
||||
{} 100
|
||||
|
||||
clear
|
||||
|
||||
# Apply stddev and stdvar function to histogram with {1, 2, 3, 4} (low res).
|
||||
load 10m
|
||||
histogram_stddev_stdvar_1 {{schema:2 count:4 sum:10 buckets:[1 0 0 0 1 0 0 1 1]}}x1
|
||||
|
@ -300,6 +308,8 @@ eval instant at 10m histogram_stddev(histogram_stddev_stdvar_1)
|
|||
eval instant at 10m histogram_stdvar(histogram_stddev_stdvar_1)
|
||||
{} 1.163807968526718
|
||||
|
||||
clear
|
||||
|
||||
# Apply stddev and stdvar function to histogram with {1, 1, 1, 1} (high res).
|
||||
load 10m
|
||||
histogram_stddev_stdvar_2 {{schema:8 count:10 sum:10 buckets:[1 2 3 4]}}x1
|
||||
|
@ -310,6 +320,8 @@ eval instant at 10m histogram_stddev(histogram_stddev_stdvar_2)
|
|||
eval instant at 10m histogram_stdvar(histogram_stddev_stdvar_2)
|
||||
{} 2.3971123370139447e-05
|
||||
|
||||
clear
|
||||
|
||||
# Apply stddev and stdvar function to histogram with {-50, -8, 0, 3, 8, 9}.
|
||||
load 10m
|
||||
histogram_stddev_stdvar_3 {{schema:3 count:7 sum:62 z_bucket:1 buckets:[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ] n_buckets:[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ]}}x1
|
||||
|
@ -320,6 +332,8 @@ eval instant at 10m histogram_stddev(histogram_stddev_stdvar_3)
|
|||
eval instant at 10m histogram_stdvar(histogram_stddev_stdvar_3)
|
||||
{} 1844.4651144196398
|
||||
|
||||
clear
|
||||
|
||||
# Apply stddev and stdvar function to histogram with {-100000, -10000, -1000, -888, -888, -100, -50, -9, -8, -3}.
|
||||
load 10m
|
||||
histogram_stddev_stdvar_4 {{schema:0 count:10 sum:-112946 z_bucket:0 n_buckets:[0 0 1 1 1 0 1 1 0 0 3 0 0 0 1 0 0 1]}}x1
|
||||
|
@ -330,6 +344,8 @@ eval instant at 10m histogram_stddev(histogram_stddev_stdvar_4)
|
|||
eval instant at 10m histogram_stdvar(histogram_stddev_stdvar_4)
|
||||
{} 759352122.1939945
|
||||
|
||||
clear
|
||||
|
||||
# Apply stddev and stdvar function to histogram with {-10x10}.
|
||||
load 10m
|
||||
histogram_stddev_stdvar_5 {{schema:0 count:10 sum:-100 z_bucket:0 n_buckets:[0 0 0 0 10]}}x1
|
||||
|
@ -340,6 +356,8 @@ eval instant at 10m histogram_stddev(histogram_stddev_stdvar_5)
|
|||
eval instant at 10m histogram_stdvar(histogram_stddev_stdvar_5)
|
||||
{} 1.725830020304794
|
||||
|
||||
clear
|
||||
|
||||
# Apply stddev and stdvar function to histogram with {-50, -8, 0, 3, 8, 9, NaN}.
|
||||
load 10m
|
||||
histogram_stddev_stdvar_6 {{schema:3 count:7 sum:NaN z_bucket:1 buckets:[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ] n_buckets:[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ]}}x1
|
||||
|
@ -350,6 +368,8 @@ eval instant at 10m histogram_stddev(histogram_stddev_stdvar_6)
|
|||
eval instant at 10m histogram_stdvar(histogram_stddev_stdvar_6)
|
||||
{} NaN
|
||||
|
||||
clear
|
||||
|
||||
# Apply stddev and stdvar function to histogram with {-50, -8, 0, 3, 8, 9, Inf}.
|
||||
load 10m
|
||||
histogram_stddev_stdvar_7 {{schema:3 count:7 sum:Inf z_bucket:1 buckets:[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ] n_buckets:[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ]}}x1
|
||||
|
@ -360,6 +380,8 @@ eval instant at 10m histogram_stddev(histogram_stddev_stdvar_7)
|
|||
eval instant at 10m histogram_stdvar(histogram_stddev_stdvar_7)
|
||||
{} NaN
|
||||
|
||||
clear
|
||||
|
||||
# Apply quantile function to histogram with all positive buckets with zero bucket.
|
||||
load 10m
|
||||
histogram_quantile_1 {{schema:0 count:12 sum:100 z_bucket:2 z_bucket_w:0.001 buckets:[2 3 0 1 4]}}x1
|
||||
|
@ -391,6 +413,8 @@ eval instant at 10m histogram_quantile(0, histogram_quantile_1)
|
|||
eval instant at 10m histogram_quantile(-1, histogram_quantile_1)
|
||||
{} -Inf
|
||||
|
||||
clear
|
||||
|
||||
# Apply quantile function to histogram with all negative buckets with zero bucket.
|
||||
load 10m
|
||||
histogram_quantile_2 {{schema:0 count:12 sum:100 z_bucket:2 z_bucket_w:0.001 n_buckets:[2 3 0 1 4]}}x1
|
||||
|
@ -419,6 +443,8 @@ eval instant at 10m histogram_quantile(0, histogram_quantile_2)
|
|||
eval instant at 10m histogram_quantile(-1, histogram_quantile_2)
|
||||
{} -Inf
|
||||
|
||||
clear
|
||||
|
||||
# Apply quantile function to histogram with both positive and negative buckets with zero bucket.
|
||||
load 10m
|
||||
histogram_quantile_3 {{schema:0 count:24 sum:100 z_bucket:4 z_bucket_w:0.001 buckets:[2 3 0 1 4] n_buckets:[2 3 0 1 4]}}x1
|
||||
|
@ -462,6 +488,8 @@ eval instant at 10m histogram_quantile(0, histogram_quantile_3)
|
|||
eval instant at 10m histogram_quantile(-1, histogram_quantile_3)
|
||||
{} -Inf
|
||||
|
||||
clear
|
||||
|
||||
# Apply fraction function to empty histogram.
|
||||
load 10m
|
||||
histogram_fraction_1 {{}}x1
|
||||
|
@ -469,6 +497,8 @@ load 10m
|
|||
eval instant at 10m histogram_fraction(3.1415, 42, histogram_fraction_1)
|
||||
{} NaN
|
||||
|
||||
clear
|
||||
|
||||
# Apply fraction function to histogram with positive and zero buckets.
|
||||
load 10m
|
||||
histogram_fraction_2 {{schema:0 count:12 sum:100 z_bucket:2 z_bucket_w:0.001 buckets:[2 3 0 1 4]}}x1
|
||||
|
@ -633,6 +663,8 @@ eval instant at 10m histogram_fraction(NaN, NaN, histogram_fraction_3)
|
|||
eval instant at 10m histogram_fraction(-Inf, +Inf, histogram_fraction_3)
|
||||
{} 1
|
||||
|
||||
clear
|
||||
|
||||
# Apply fraction function to histogram with both positive, negative and zero buckets.
|
||||
load 10m
|
||||
histogram_fraction_4 {{schema:0 count:24 sum:100 z_bucket:4 z_bucket_w:0.001 buckets:[2 3 0 1 4] n_buckets:[2 3 0 1 4]}}x1
|
||||
|
|
|
@ -113,7 +113,7 @@ eval instant at 50m http_requests{job="api-server", group="canary"}
|
|||
http_requests{group="canary", instance="0", job="api-server"} 300
|
||||
http_requests{group="canary", instance="1", job="api-server"} 400
|
||||
|
||||
eval instant at 50m http_requests{job="api-server", group="canary"} + rate(http_requests{job="api-server"}[5m]) * 5 * 60
|
||||
eval instant at 50m http_requests{job="api-server", group="canary"} + rate(http_requests{job="api-server"}[10m]) * 5 * 60
|
||||
{group="canary", instance="0", job="api-server"} 330
|
||||
{group="canary", instance="1", job="api-server"} 440
|
||||
|
||||
|
@ -308,65 +308,65 @@ load 5m
|
|||
threshold{instance="abc",job="node",target="a@b.com"} 0
|
||||
|
||||
# Copy machine role to node variable.
|
||||
eval instant at 5m node_role * on (instance) group_right (role) node_var
|
||||
eval instant at 1m node_role * on (instance) group_right (role) node_var
|
||||
{instance="abc",job="node",role="prometheus"} 2
|
||||
|
||||
eval instant at 5m node_var * on (instance) group_left (role) node_role
|
||||
eval instant at 1m node_var * on (instance) group_left (role) node_role
|
||||
{instance="abc",job="node",role="prometheus"} 2
|
||||
|
||||
eval instant at 5m node_var * ignoring (role) group_left (role) node_role
|
||||
eval instant at 1m node_var * ignoring (role) group_left (role) node_role
|
||||
{instance="abc",job="node",role="prometheus"} 2
|
||||
|
||||
eval instant at 5m node_role * ignoring (role) group_right (role) node_var
|
||||
eval instant at 1m node_role * ignoring (role) group_right (role) node_var
|
||||
{instance="abc",job="node",role="prometheus"} 2
|
||||
|
||||
# Copy machine role to node variable with instrumentation labels.
|
||||
eval instant at 5m node_cpu * ignoring (role, mode) group_left (role) node_role
|
||||
eval instant at 1m node_cpu * ignoring (role, mode) group_left (role) node_role
|
||||
{instance="abc",job="node",mode="idle",role="prometheus"} 3
|
||||
{instance="abc",job="node",mode="user",role="prometheus"} 1
|
||||
|
||||
eval instant at 5m node_cpu * on (instance) group_left (role) node_role
|
||||
eval instant at 1m node_cpu * on (instance) group_left (role) node_role
|
||||
{instance="abc",job="node",mode="idle",role="prometheus"} 3
|
||||
{instance="abc",job="node",mode="user",role="prometheus"} 1
|
||||
|
||||
|
||||
# Ratio of total.
|
||||
eval instant at 5m node_cpu / on (instance) group_left sum by (instance,job)(node_cpu)
|
||||
eval instant at 1m node_cpu / on (instance) group_left sum by (instance,job)(node_cpu)
|
||||
{instance="abc",job="node",mode="idle"} .75
|
||||
{instance="abc",job="node",mode="user"} .25
|
||||
{instance="def",job="node",mode="idle"} .80
|
||||
{instance="def",job="node",mode="user"} .20
|
||||
|
||||
eval instant at 5m sum by (mode, job)(node_cpu) / on (job) group_left sum by (job)(node_cpu)
|
||||
eval instant at 1m sum by (mode, job)(node_cpu) / on (job) group_left sum by (job)(node_cpu)
|
||||
{job="node",mode="idle"} 0.7857142857142857
|
||||
{job="node",mode="user"} 0.21428571428571427
|
||||
|
||||
eval instant at 5m sum(sum by (mode, job)(node_cpu) / on (job) group_left sum by (job)(node_cpu))
|
||||
eval instant at 1m sum(sum by (mode, job)(node_cpu) / on (job) group_left sum by (job)(node_cpu))
|
||||
{} 1.0
|
||||
|
||||
|
||||
eval instant at 5m node_cpu / ignoring (mode) group_left sum without (mode)(node_cpu)
|
||||
eval instant at 1m node_cpu / ignoring (mode) group_left sum without (mode)(node_cpu)
|
||||
{instance="abc",job="node",mode="idle"} .75
|
||||
{instance="abc",job="node",mode="user"} .25
|
||||
{instance="def",job="node",mode="idle"} .80
|
||||
{instance="def",job="node",mode="user"} .20
|
||||
|
||||
eval instant at 5m node_cpu / ignoring (mode) group_left(dummy) sum without (mode)(node_cpu)
|
||||
eval instant at 1m node_cpu / ignoring (mode) group_left(dummy) sum without (mode)(node_cpu)
|
||||
{instance="abc",job="node",mode="idle"} .75
|
||||
{instance="abc",job="node",mode="user"} .25
|
||||
{instance="def",job="node",mode="idle"} .80
|
||||
{instance="def",job="node",mode="user"} .20
|
||||
|
||||
eval instant at 5m sum without (instance)(node_cpu) / ignoring (mode) group_left sum without (instance, mode)(node_cpu)
|
||||
eval instant at 1m sum without (instance)(node_cpu) / ignoring (mode) group_left sum without (instance, mode)(node_cpu)
|
||||
{job="node",mode="idle"} 0.7857142857142857
|
||||
{job="node",mode="user"} 0.21428571428571427
|
||||
|
||||
eval instant at 5m sum(sum without (instance)(node_cpu) / ignoring (mode) group_left sum without (instance, mode)(node_cpu))
|
||||
eval instant at 1m sum(sum without (instance)(node_cpu) / ignoring (mode) group_left sum without (instance, mode)(node_cpu))
|
||||
{} 1.0
|
||||
|
||||
|
||||
# Copy over label from metric with no matching labels, without having to list cross-job target labels ('job' here).
|
||||
eval instant at 5m node_cpu + on(dummy) group_left(foo) random*0
|
||||
eval instant at 1m node_cpu + on(dummy) group_left(foo) random*0
|
||||
{instance="abc",job="node",mode="idle",foo="bar"} 3
|
||||
{instance="abc",job="node",mode="user",foo="bar"} 1
|
||||
{instance="def",job="node",mode="idle",foo="bar"} 8
|
||||
|
@ -374,12 +374,12 @@ eval instant at 5m node_cpu + on(dummy) group_left(foo) random*0
|
|||
|
||||
|
||||
# Use threshold from metric, and copy over target.
|
||||
eval instant at 5m node_cpu > on(job, instance) group_left(target) threshold
|
||||
eval instant at 1m node_cpu > on(job, instance) group_left(target) threshold
|
||||
node_cpu{instance="abc",job="node",mode="idle",target="a@b.com"} 3
|
||||
node_cpu{instance="abc",job="node",mode="user",target="a@b.com"} 1
|
||||
|
||||
# Use threshold from metric, and a default (1) if it's not present.
|
||||
eval instant at 5m node_cpu > on(job, instance) group_left(target) (threshold or on (job, instance) (sum by (job, instance)(node_cpu) * 0 + 1))
|
||||
eval instant at 1m node_cpu > on(job, instance) group_left(target) (threshold or on (job, instance) (sum by (job, instance)(node_cpu) * 0 + 1))
|
||||
node_cpu{instance="abc",job="node",mode="idle",target="a@b.com"} 3
|
||||
node_cpu{instance="abc",job="node",mode="user",target="a@b.com"} 1
|
||||
node_cpu{instance="def",job="node",mode="idle"} 8
|
||||
|
@ -387,37 +387,37 @@ eval instant at 5m node_cpu > on(job, instance) group_left(target) (threshold or
|
|||
|
||||
|
||||
# Check that binops drop the metric name.
|
||||
eval instant at 5m node_cpu + 2
|
||||
eval instant at 1m node_cpu + 2
|
||||
{instance="abc",job="node",mode="idle"} 5
|
||||
{instance="abc",job="node",mode="user"} 3
|
||||
{instance="def",job="node",mode="idle"} 10
|
||||
{instance="def",job="node",mode="user"} 4
|
||||
|
||||
eval instant at 5m node_cpu - 2
|
||||
eval instant at 1m node_cpu - 2
|
||||
{instance="abc",job="node",mode="idle"} 1
|
||||
{instance="abc",job="node",mode="user"} -1
|
||||
{instance="def",job="node",mode="idle"} 6
|
||||
{instance="def",job="node",mode="user"} 0
|
||||
|
||||
eval instant at 5m node_cpu / 2
|
||||
eval instant at 1m node_cpu / 2
|
||||
{instance="abc",job="node",mode="idle"} 1.5
|
||||
{instance="abc",job="node",mode="user"} 0.5
|
||||
{instance="def",job="node",mode="idle"} 4
|
||||
{instance="def",job="node",mode="user"} 1
|
||||
|
||||
eval instant at 5m node_cpu * 2
|
||||
eval instant at 1m node_cpu * 2
|
||||
{instance="abc",job="node",mode="idle"} 6
|
||||
{instance="abc",job="node",mode="user"} 2
|
||||
{instance="def",job="node",mode="idle"} 16
|
||||
{instance="def",job="node",mode="user"} 4
|
||||
|
||||
eval instant at 5m node_cpu ^ 2
|
||||
eval instant at 1m node_cpu ^ 2
|
||||
{instance="abc",job="node",mode="idle"} 9
|
||||
{instance="abc",job="node",mode="user"} 1
|
||||
{instance="def",job="node",mode="idle"} 64
|
||||
{instance="def",job="node",mode="user"} 4
|
||||
|
||||
eval instant at 5m node_cpu % 2
|
||||
eval instant at 1m node_cpu % 2
|
||||
{instance="abc",job="node",mode="idle"} 1
|
||||
{instance="abc",job="node",mode="user"} 1
|
||||
{instance="def",job="node",mode="idle"} 0
|
||||
|
@ -432,14 +432,14 @@ load 5m
|
|||
metricB{baz="meh"} 4
|
||||
|
||||
# On with no labels, for metrics with no common labels.
|
||||
eval instant at 5m random + on() metricA
|
||||
eval instant at 1m random + on() metricA
|
||||
{} 5
|
||||
|
||||
# Ignoring with no labels is the same as no ignoring.
|
||||
eval instant at 5m metricA + ignoring() metricB
|
||||
eval instant at 1m metricA + ignoring() metricB
|
||||
{baz="meh"} 7
|
||||
|
||||
eval instant at 5m metricA + metricB
|
||||
eval instant at 1m metricA + metricB
|
||||
{baz="meh"} 7
|
||||
|
||||
clear
|
||||
|
@ -457,16 +457,16 @@ load 5m
|
|||
test_total{instance="localhost"} 50
|
||||
test_smaller{instance="localhost"} 10
|
||||
|
||||
eval instant at 5m test_total > bool test_smaller
|
||||
eval instant at 1m test_total > bool test_smaller
|
||||
{instance="localhost"} 1
|
||||
|
||||
eval instant at 5m test_total > test_smaller
|
||||
eval instant at 1m test_total > test_smaller
|
||||
test_total{instance="localhost"} 50
|
||||
|
||||
eval instant at 5m test_total < bool test_smaller
|
||||
eval instant at 1m test_total < bool test_smaller
|
||||
{instance="localhost"} 0
|
||||
|
||||
eval instant at 5m test_total < test_smaller
|
||||
eval instant at 1m test_total < test_smaller
|
||||
|
||||
clear
|
||||
|
||||
|
@ -476,14 +476,14 @@ load 5m
|
|||
trigx{} 20
|
||||
trigNaN{} NaN
|
||||
|
||||
eval instant at 5m trigy atan2 trigx
|
||||
eval instant at 1m trigy atan2 trigx
|
||||
{} 0.4636476090008061
|
||||
|
||||
eval instant at 5m trigy atan2 trigNaN
|
||||
eval instant at 1m trigy atan2 trigNaN
|
||||
{} NaN
|
||||
|
||||
eval instant at 5m 10 atan2 20
|
||||
eval instant at 1m 10 atan2 20
|
||||
0.4636476090008061
|
||||
|
||||
eval instant at 5m 10 atan2 NaN
|
||||
eval instant at 1m 10 atan2 NaN
|
||||
NaN
|
||||
|
|
|
@ -1,18 +1,18 @@
|
|||
# sum_over_time with all values
|
||||
load 30s
|
||||
load 15s
|
||||
bar 0 1 10 100 1000
|
||||
|
||||
eval range from 0 to 2m step 1m sum_over_time(bar[30s])
|
||||
eval range from 0 to 1m step 30s sum_over_time(bar[30s])
|
||||
{} 0 11 1100
|
||||
|
||||
clear
|
||||
|
||||
# sum_over_time with trailing values
|
||||
load 30s
|
||||
load 15s
|
||||
bar 0 1 10 100 1000 0 0 0 0
|
||||
|
||||
eval range from 0 to 2m step 1m sum_over_time(bar[30s])
|
||||
{} 0 11 1100
|
||||
{} 0 1100 0
|
||||
|
||||
clear
|
||||
|
||||
|
@ -21,15 +21,15 @@ load 30s
|
|||
bar 0 1 10 100 1000 10000 100000 1000000 10000000
|
||||
|
||||
eval range from 0 to 4m step 1m sum_over_time(bar[30s])
|
||||
{} 0 11 1100 110000 11000000
|
||||
{} 0 10 1000 100000 10000000
|
||||
|
||||
clear
|
||||
|
||||
# sum_over_time with all values random
|
||||
load 30s
|
||||
load 15s
|
||||
bar 5 17 42 2 7 905 51
|
||||
|
||||
eval range from 0 to 3m step 1m sum_over_time(bar[30s])
|
||||
eval range from 0 to 90s step 30s sum_over_time(bar[30s])
|
||||
{} 5 59 9 956
|
||||
|
||||
clear
|
||||
|
|
|
@ -14,10 +14,10 @@ eval instant at 40s metric
|
|||
{__name__="metric"} 2
|
||||
|
||||
# It goes stale 5 minutes after the last sample.
|
||||
eval instant at 330s metric
|
||||
eval instant at 329s metric
|
||||
{__name__="metric"} 2
|
||||
|
||||
eval instant at 331s metric
|
||||
eval instant at 330s metric
|
||||
|
||||
|
||||
# Range vector ignores stale sample.
|
||||
|
@ -30,6 +30,8 @@ eval instant at 10s count_over_time(metric[1s])
|
|||
eval instant at 20s count_over_time(metric[1s])
|
||||
|
||||
eval instant at 20s count_over_time(metric[10s])
|
||||
|
||||
eval instant at 20s count_over_time(metric[20s])
|
||||
{} 1
|
||||
|
||||
|
||||
|
@ -45,7 +47,7 @@ eval instant at 0s metric
|
|||
eval instant at 150s metric
|
||||
{__name__="metric"} 0
|
||||
|
||||
eval instant at 300s metric
|
||||
eval instant at 299s metric
|
||||
{__name__="metric"} 0
|
||||
|
||||
eval instant at 301s metric
|
||||
eval instant at 300s metric
|
||||
|
|
|
@ -10,18 +10,18 @@ eval instant at 10s sum_over_time(metric[50s:5s])
|
|||
|
||||
# Every evaluation yields the last value, i.e. 2
|
||||
eval instant at 5m sum_over_time(metric[50s:10s])
|
||||
{} 12
|
||||
{} 10
|
||||
|
||||
# Series becomes stale at 5m10s (5m after last sample)
|
||||
# Hence subquery gets a single sample at 6m-50s=5m10s.
|
||||
eval instant at 6m sum_over_time(metric[50s:10s])
|
||||
# Hence subquery gets a single sample at 5m10s.
|
||||
eval instant at 5m59s sum_over_time(metric[60s:10s])
|
||||
{} 2
|
||||
|
||||
eval instant at 10s rate(metric[20s:10s])
|
||||
{} 0.1
|
||||
|
||||
eval instant at 20s rate(metric[20s:5s])
|
||||
{} 0.05
|
||||
{} 0.06666666666666667
|
||||
|
||||
clear
|
||||
|
||||
|
@ -49,16 +49,16 @@ load 10s
|
|||
metric3 0+3x1000
|
||||
|
||||
eval instant at 1000s sum_over_time(metric1[30s:10s])
|
||||
{} 394
|
||||
{} 297
|
||||
|
||||
# This is (394*2 - 100), because other than the last 100 at 1000s,
|
||||
# This is (97 + 98*2 + 99*2 + 100), because other than 97@975s and 100@1000s,
|
||||
# everything else is repeated with the 5s step.
|
||||
eval instant at 1000s sum_over_time(metric1[30s:5s])
|
||||
{} 688
|
||||
{} 591
|
||||
|
||||
# Offset is aligned with the step.
|
||||
# Offset is aligned with the step, so this is from [98@980s, 99@990s, 100@1000s].
|
||||
eval instant at 1010s sum_over_time(metric1[30s:10s] offset 10s)
|
||||
{} 394
|
||||
{} 297
|
||||
|
||||
# Same result for different offsets due to step alignment.
|
||||
eval instant at 1010s sum_over_time(metric1[30s:10s] offset 9s)
|
||||
|
@ -78,16 +78,16 @@ eval instant at 1010s sum_over_time((metric1)[30s:10s] offset 3s)
|
|||
|
||||
# Nested subqueries
|
||||
eval instant at 1000s rate(sum_over_time(metric1[30s:10s])[50s:10s])
|
||||
{} 0.4
|
||||
{} 0.30000000000000004
|
||||
|
||||
eval instant at 1000s rate(sum_over_time(metric2[30s:10s])[50s:10s])
|
||||
{} 0.8
|
||||
{} 0.6000000000000001
|
||||
|
||||
eval instant at 1000s rate(sum_over_time(metric3[30s:10s])[50s:10s])
|
||||
{} 1.2
|
||||
{} 0.9
|
||||
|
||||
eval instant at 1000s rate(sum_over_time((metric1+metric2+metric3)[30s:10s])[30s:10s])
|
||||
{} 2.4
|
||||
{} 1.8
|
||||
|
||||
clear
|
||||
|
||||
|
@ -100,16 +100,20 @@ load 7s
|
|||
eval instant at 80s rate(metric[1m])
|
||||
{} 2.517857143
|
||||
|
||||
# No extrapolation, [2@20, 144@80]: (144 - 2) / 60
|
||||
eval instant at 80s rate(metric[1m:10s])
|
||||
{} 2.366666667
|
||||
# Extrapolated to range start for counter, [2@20, 144@80]: (144 - 2) / (80 - 20)
|
||||
eval instant at 80s rate(metric[1m500ms:10s])
|
||||
{} 2.3666666666666667
|
||||
|
||||
# Extrapolated to zero value for counter, [2@20, 144@80]: (144 - 0) / 61
|
||||
eval instant at 80s rate(metric[1m1s:10s])
|
||||
{} 2.360655737704918
|
||||
|
||||
# Only one value between 10s and 20s, 2@14
|
||||
eval instant at 20s min_over_time(metric[10s])
|
||||
{} 2
|
||||
|
||||
# min(1@10, 2@20)
|
||||
eval instant at 20s min_over_time(metric[10s:10s])
|
||||
# min(2@20)
|
||||
eval instant at 20s min_over_time(metric[15s:10s])
|
||||
{} 1
|
||||
|
||||
eval instant at 20m min_over_time(rate(metric[5m])[20m:1m])
|
||||
|
|
|
@ -5,92 +5,92 @@ load 5m
|
|||
trig{l="y"} 20
|
||||
trig{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m sin(trig)
|
||||
eval instant at 1m sin(trig)
|
||||
{l="x"} -0.5440211108893699
|
||||
{l="y"} 0.9129452507276277
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m cos(trig)
|
||||
eval instant at 1m cos(trig)
|
||||
{l="x"} -0.8390715290764524
|
||||
{l="y"} 0.40808206181339196
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m tan(trig)
|
||||
eval instant at 1m tan(trig)
|
||||
{l="x"} 0.6483608274590867
|
||||
{l="y"} 2.2371609442247427
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m asin(trig - 10.1)
|
||||
eval instant at 1m asin(trig - 10.1)
|
||||
{l="x"} -0.10016742116155944
|
||||
{l="y"} NaN
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m acos(trig - 10.1)
|
||||
eval instant at 1m acos(trig - 10.1)
|
||||
{l="x"} 1.670963747956456
|
||||
{l="y"} NaN
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m atan(trig)
|
||||
eval instant at 1m atan(trig)
|
||||
{l="x"} 1.4711276743037345
|
||||
{l="y"} 1.5208379310729538
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m sinh(trig)
|
||||
eval instant at 1m sinh(trig)
|
||||
{l="x"} 11013.232920103324
|
||||
{l="y"} 2.4258259770489514e+08
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m cosh(trig)
|
||||
eval instant at 1m cosh(trig)
|
||||
{l="x"} 11013.232920103324
|
||||
{l="y"} 2.4258259770489514e+08
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m tanh(trig)
|
||||
eval instant at 1m tanh(trig)
|
||||
{l="x"} 0.9999999958776927
|
||||
{l="y"} 1
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m asinh(trig)
|
||||
eval instant at 1m asinh(trig)
|
||||
{l="x"} 2.99822295029797
|
||||
{l="y"} 3.6895038689889055
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m acosh(trig)
|
||||
eval instant at 1m acosh(trig)
|
||||
{l="x"} 2.993222846126381
|
||||
{l="y"} 3.6882538673612966
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m atanh(trig - 10.1)
|
||||
eval instant at 1m atanh(trig - 10.1)
|
||||
{l="x"} -0.10033534773107522
|
||||
{l="y"} NaN
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m rad(trig)
|
||||
eval instant at 1m rad(trig)
|
||||
{l="x"} 0.17453292519943295
|
||||
{l="y"} 0.3490658503988659
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m rad(trig - 10)
|
||||
eval instant at 1m rad(trig - 10)
|
||||
{l="x"} 0
|
||||
{l="y"} 0.17453292519943295
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m rad(trig - 20)
|
||||
eval instant at 1m rad(trig - 20)
|
||||
{l="x"} -0.17453292519943295
|
||||
{l="y"} 0
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m deg(trig)
|
||||
eval instant at 1m deg(trig)
|
||||
{l="x"} 572.9577951308232
|
||||
{l="y"} 1145.9155902616465
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m deg(trig - 10)
|
||||
eval instant at 1m deg(trig - 10)
|
||||
{l="x"} 0
|
||||
{l="y"} 572.9577951308232
|
||||
{l="NaN"} NaN
|
||||
|
||||
eval instant at 5m deg(trig - 20)
|
||||
eval instant at 1m deg(trig - 20)
|
||||
{l="x"} -572.9577951308232
|
||||
{l="y"} 0
|
||||
{l="NaN"} NaN
|
||||
|
|
Loading…
Reference in New Issue