mirror of https://github.com/prometheus/prometheus
feat: add limitk() and limit_ratio() operators (#12503)
* rebase 2024-07-01, picks previous renaming to `limitk()` and `limit_ratio()` Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * gofumpt -d -extra Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * more lint fixes Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * more lint fixes+ Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * put limitk() and limit_ratio() behind --enable-feature=promql-experimental-functions Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * EnableExperimentalFunctions for TestConcurrentRangeQueries() also Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * use testutil.RequireEqual to fix tests, WIP equivalent thingie for require.Contains Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * lint fix Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * moar linting Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * rebase 2024-06-19 Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * re-add limit(2, metric) testing for N=2 common series subset Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * move `ratio = param` to default switch case, for better readability Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * gofumpt -d -extra util/testutil/cmp.go Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * early break when reaching k elems in limitk(), should have always been so (!) Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * small typo fix Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * no-change small break-loop rearrange for readability Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * remove IsNan(ratio) condition in switch-case, already handled as input validation Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * no-change adding some comments Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * no-change simplify fullMatrix() helper functions used for tests Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * add `limitk(-1, metric)` testcase, which is handled as any k < 1 case Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * engine_test.go: no-change create `requireCommonSeries() helper func (moving code into it) for readability Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * rebase 2024-06-21 Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * engine_test.go: HAPPY NOW about its code -> reorg, create and use simpleRangeQuery() function, less lines and more readable ftW \o/ Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * move limitk(), limit_ratio() testing to promql/promqltest/testdata/limit.test Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * remove stale leftover after moving tests from engine_test.go to testdata/ Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * fix flaky `limit_ratio(0.5, ...)` test case Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * Update promql/engine.go Co-authored-by: Julius Volz <julius.volz@gmail.com> Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * Update promql/engine.go Co-authored-by: Julius Volz <julius.volz@gmail.com> Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * Update promql/engine.go Co-authored-by: Julius Volz <julius.volz@gmail.com> Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * fix AddRatioSample() implementation to use a single conditional (instead of switch/case + fallback return) Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * docs/querying/operators.md: document r < 0 Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * add negative limit_ratio() example to docs/querying/examples.md Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * move more extensive docu examples to docs/querying/operators.md Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * typo Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * small docu fix for poor-mans-normality-check, add it to limit.test ;) Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * limit.test: expand "Poor man's normality check" to whole eval range Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * restore mistakenly removed existing small comment Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * expand poors-man-normality-check case(s) Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * Revert "expand poors-man-normality-check case(s)" This reverts commit f69e1603b2ebe69c0a100197cfbcf6f81644b564, indeed too flaky 0:) Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * remove humor from docs/querying/operators.md Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * fix signoff Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * add web/ui missing changes Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * expand limit_ratio test cases, cross-fingering they'll not be flaky Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * remove flaky test Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * add missing warnings.Merge(ws) in instant-query return shortcut Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * add missing LimitK||LimitRatio case to codemirror-promql/src/parser/parser.ts Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * fix ui-lint Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> * actually fix returned warnings :] Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> --------- Signed-off-by: JuanJo Ciarlante <juanjosec@gmail.com> Co-authored-by: Julius Volz <julius.volz@gmail.com>pull/14425/head
parent
82a8c6abe2
commit
c94c5b64c3
|
@ -95,3 +95,13 @@ Assuming this metric contains one time series per running instance, you could
|
|||
count the number of running instances per application like this:
|
||||
|
||||
count by (app) (instance_cpu_time_ns)
|
||||
|
||||
If we are exploring some metrics for their labels, to e.g. be able to aggregate
|
||||
over some of them, we could use the following:
|
||||
|
||||
limitk(10, app_foo_metric_bar)
|
||||
|
||||
Alternatively, if we wanted the returned timeseries to be more evenly sampled,
|
||||
we could use the following to get approximately 10% of them:
|
||||
|
||||
limit_ratio(0.1, app_foo_metric_bar)
|
||||
|
|
|
@ -230,6 +230,8 @@ vector of fewer elements with aggregated values:
|
|||
* `bottomk` (smallest k elements by sample value)
|
||||
* `topk` (largest k elements by sample value)
|
||||
* `quantile` (calculate φ-quantile (0 ≤ φ ≤ 1) over dimensions)
|
||||
* `limitk` (sample n elements)
|
||||
* `limit_ratio` (sample elements with approximately 𝑟 ratio if `𝑟 > 0`, and the complement of such samples if `𝑟 = -(1.0 - 𝑟)`)
|
||||
|
||||
These operators can either be used to aggregate over **all** label dimensions
|
||||
or preserve distinct dimensions by including a `without` or `by` clause. These
|
||||
|
@ -249,8 +251,8 @@ all other labels are preserved in the output. `by` does the opposite and drops
|
|||
labels that are not listed in the `by` clause, even if their label values are
|
||||
identical between all elements of the vector.
|
||||
|
||||
`parameter` is only required for `count_values`, `quantile`, `topk` and
|
||||
`bottomk`.
|
||||
`parameter` is only required for `count_values`, `quantile`, `topk`,
|
||||
`bottomk`, `limitk` and `limit_ratio`.
|
||||
|
||||
`count_values` outputs one time series per unique sample value. Each series has
|
||||
an additional label. The name of that label is given by the aggregation
|
||||
|
@ -261,11 +263,16 @@ time series is the number of times that sample value was present.
|
|||
the input samples, including the original labels, are returned in the result
|
||||
vector. `by` and `without` are only used to bucket the input vector.
|
||||
|
||||
`limitk` and `limit_ratio` also return a subset of the input samples,
|
||||
including the original labels in the result vector, these are experimental
|
||||
operators that must be enabled with `--enable-feature=promql-experimental-functions`.
|
||||
|
||||
`quantile` calculates the φ-quantile, the value that ranks at number φ*N among
|
||||
the N metric values of the dimensions aggregated over. φ is provided as the
|
||||
aggregation parameter. For example, `quantile(0.5, ...)` calculates the median,
|
||||
`quantile(0.95, ...)` the 95th percentile. For φ = `NaN`, `NaN` is returned. For φ < 0, `-Inf` is returned. For φ > 1, `+Inf` is returned.
|
||||
|
||||
|
||||
Example:
|
||||
|
||||
If the metric `http_requests_total` had time series that fan out by
|
||||
|
@ -291,6 +298,33 @@ To get the 5 largest HTTP requests counts across all instances we could write:
|
|||
|
||||
topk(5, http_requests_total)
|
||||
|
||||
To sample 10 timeseries, for example to inspect labels and their values, we
|
||||
could write:
|
||||
|
||||
limitk(10, http_requests_total)
|
||||
|
||||
To deterministically sample approximately 10% of timeseries we could write:
|
||||
|
||||
limit_ratio(0.1, http_requests_total)
|
||||
|
||||
Given that `limit_ratio()` implements a deterministic sampling algorithm (based
|
||||
on labels' hash), you can get the _complement_ of the above samples, i.e.
|
||||
approximately 90%, but precisely those not returned by `limit_ratio(0.1, ...)`
|
||||
with:
|
||||
|
||||
limit_ratio(-0.9, http_requests_total)
|
||||
|
||||
You can also use this feature to e.g. verify that `avg()` is a representative
|
||||
aggregation for your samples' values, by checking that the difference between
|
||||
averaging two samples' subsets is "small" when compared to the standard
|
||||
deviation.
|
||||
|
||||
abs(
|
||||
avg(limit_ratio(0.5, http_requests_total))
|
||||
-
|
||||
avg(limit_ratio(-0.5, http_requests_total))
|
||||
) <= bool stddev(http_requests_total)
|
||||
|
||||
## Binary operator precedence
|
||||
|
||||
The following list shows the precedence of binary operators in Prometheus, from
|
||||
|
|
|
@ -187,6 +187,21 @@ func rangeQueryCases() []benchCase {
|
|||
{
|
||||
expr: "topk(5, a_X)",
|
||||
},
|
||||
{
|
||||
expr: "limitk(1, a_X)",
|
||||
},
|
||||
{
|
||||
expr: "limitk(5, a_X)",
|
||||
},
|
||||
{
|
||||
expr: "limit_ratio(0.1, a_X)",
|
||||
},
|
||||
{
|
||||
expr: "limit_ratio(0.5, a_X)",
|
||||
},
|
||||
{
|
||||
expr: "limit_ratio(-0.5, a_X)",
|
||||
},
|
||||
// Combinations.
|
||||
{
|
||||
expr: "rate(a_X[1m]) + rate(b_X[1m])",
|
||||
|
|
152
promql/engine.go
152
promql/engine.go
|
@ -1318,7 +1318,7 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
index, ok := groupToResultIndex[groupingKey]
|
||||
// Add a new group if it doesn't exist.
|
||||
if !ok {
|
||||
if aggExpr.Op != parser.TOPK && aggExpr.Op != parser.BOTTOMK {
|
||||
if aggExpr.Op != parser.TOPK && aggExpr.Op != parser.BOTTOMK && aggExpr.Op != parser.LIMITK && aggExpr.Op != parser.LIMIT_RATIO {
|
||||
m := generateGroupingLabels(enh, series.Metric, aggExpr.Without, sortedGrouping)
|
||||
result = append(result, Series{Metric: m})
|
||||
}
|
||||
|
@ -1331,9 +1331,10 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
groups := make([]groupedAggregation, groupCount)
|
||||
|
||||
var k int
|
||||
var ratio float64
|
||||
var seriess map[uint64]Series
|
||||
switch aggExpr.Op {
|
||||
case parser.TOPK, parser.BOTTOMK:
|
||||
case parser.TOPK, parser.BOTTOMK, parser.LIMITK:
|
||||
if !convertibleToInt64(param) {
|
||||
ev.errorf("Scalar value %v overflows int64", param)
|
||||
}
|
||||
|
@ -1345,6 +1346,23 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
return nil, warnings
|
||||
}
|
||||
seriess = make(map[uint64]Series, len(inputMatrix)) // Output series by series hash.
|
||||
case parser.LIMIT_RATIO:
|
||||
if math.IsNaN(param) {
|
||||
ev.errorf("Ratio value %v is NaN", param)
|
||||
}
|
||||
switch {
|
||||
case param == 0:
|
||||
return nil, warnings
|
||||
case param < -1.0:
|
||||
ratio = -1.0
|
||||
warnings.Add(annotations.NewInvalidRatioWarning(param, ratio, aggExpr.Param.PositionRange()))
|
||||
case param > 1.0:
|
||||
ratio = 1.0
|
||||
warnings.Add(annotations.NewInvalidRatioWarning(param, ratio, aggExpr.Param.PositionRange()))
|
||||
default:
|
||||
ratio = param
|
||||
}
|
||||
seriess = make(map[uint64]Series, len(inputMatrix)) // Output series by series hash.
|
||||
case parser.QUANTILE:
|
||||
if math.IsNaN(param) || param < 0 || param > 1 {
|
||||
warnings.Add(annotations.NewInvalidQuantileWarning(param, aggExpr.Param.PositionRange()))
|
||||
|
@ -1362,11 +1380,12 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
enh.Ts = ts
|
||||
var ws annotations.Annotations
|
||||
switch aggExpr.Op {
|
||||
case parser.TOPK, parser.BOTTOMK:
|
||||
result, ws = ev.aggregationK(aggExpr, k, inputMatrix, seriesToResult, groups, enh, seriess)
|
||||
case parser.TOPK, parser.BOTTOMK, parser.LIMITK, parser.LIMIT_RATIO:
|
||||
result, ws = ev.aggregationK(aggExpr, k, ratio, inputMatrix, seriesToResult, groups, enh, seriess)
|
||||
// If this could be an instant query, shortcut so as not to change sort order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
return result, ws
|
||||
warnings.Merge(ws)
|
||||
return result, warnings
|
||||
}
|
||||
default:
|
||||
ws = ev.aggregation(aggExpr, param, inputMatrix, result, seriesToResult, groups, enh)
|
||||
|
@ -1381,7 +1400,7 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
|
||||
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
||||
switch aggExpr.Op {
|
||||
case parser.TOPK, parser.BOTTOMK:
|
||||
case parser.TOPK, parser.BOTTOMK, parser.LIMITK, parser.LIMIT_RATIO:
|
||||
result = make(Matrix, 0, len(seriess))
|
||||
for _, ss := range seriess {
|
||||
result = append(result, ss)
|
||||
|
@ -2754,14 +2773,15 @@ func vectorElemBinop(op parser.ItemType, lhs, rhs float64, hlhs, hrhs *histogram
|
|||
}
|
||||
|
||||
type groupedAggregation struct {
|
||||
seen bool // Was this output groups seen in the input at this timestamp.
|
||||
hasFloat bool // Has at least 1 float64 sample aggregated.
|
||||
hasHistogram bool // Has at least 1 histogram sample aggregated.
|
||||
floatValue float64
|
||||
histogramValue *histogram.FloatHistogram
|
||||
floatMean float64 // Mean, or "compensating value" for Kahan summation.
|
||||
groupCount int
|
||||
heap vectorByValueHeap
|
||||
seen bool // Was this output groups seen in the input at this timestamp.
|
||||
hasFloat bool // Has at least 1 float64 sample aggregated.
|
||||
hasHistogram bool // Has at least 1 histogram sample aggregated.
|
||||
floatValue float64
|
||||
histogramValue *histogram.FloatHistogram
|
||||
floatMean float64 // Mean, or "compensating value" for Kahan summation.
|
||||
groupCount int
|
||||
groupAggrComplete bool // Used by LIMITK to short-cut series loop when we've reached K elem on every group
|
||||
heap vectorByValueHeap
|
||||
}
|
||||
|
||||
// aggregation evaluates sum, avg, count, stdvar, stddev or quantile at one timestep on inputMatrix.
|
||||
|
@ -2958,19 +2978,22 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
|
|||
return annos
|
||||
}
|
||||
|
||||
// aggregationK evaluates topk or bottomk at one timestep on inputMatrix.
|
||||
// aggregationK evaluates topk, bottomk, limitk, or limit_ratio at one timestep on inputMatrix.
|
||||
// Output that has the same labels as the input, but just k of them per group.
|
||||
// seriesToResult maps inputMatrix indexes to groups indexes.
|
||||
// For an instant query, returns a Matrix in descending order for topk or ascending for bottomk.
|
||||
// For an instant query, returns a Matrix in descending order for topk or ascending for bottomk, or without any order for limitk / limit_ratio.
|
||||
// For a range query, aggregates output in the seriess map.
|
||||
func (ev *evaluator) aggregationK(e *parser.AggregateExpr, k int, inputMatrix Matrix, seriesToResult []int, groups []groupedAggregation, enh *EvalNodeHelper, seriess map[uint64]Series) (Matrix, annotations.Annotations) {
|
||||
func (ev *evaluator) aggregationK(e *parser.AggregateExpr, k int, r float64, inputMatrix Matrix, seriesToResult []int, groups []groupedAggregation, enh *EvalNodeHelper, seriess map[uint64]Series) (Matrix, annotations.Annotations) {
|
||||
op := e.Op
|
||||
var s Sample
|
||||
var annos annotations.Annotations
|
||||
// Used to short-cut the loop for LIMITK if we already collected k elements for every group
|
||||
groupsRemaining := len(groups)
|
||||
for i := range groups {
|
||||
groups[i].seen = false
|
||||
}
|
||||
|
||||
seriesLoop:
|
||||
for si := range inputMatrix {
|
||||
f, _, ok := ev.nextValues(enh.Ts, &inputMatrix[si])
|
||||
if !ok {
|
||||
|
@ -2981,11 +3004,23 @@ func (ev *evaluator) aggregationK(e *parser.AggregateExpr, k int, inputMatrix Ma
|
|||
group := &groups[seriesToResult[si]]
|
||||
// Initialize this group if it's the first time we've seen it.
|
||||
if !group.seen {
|
||||
*group = groupedAggregation{
|
||||
seen: true,
|
||||
heap: make(vectorByValueHeap, 1, k),
|
||||
// LIMIT_RATIO is a special case, as we may not add this very sample to the heap,
|
||||
// while we also don't know the final size of it.
|
||||
if op == parser.LIMIT_RATIO {
|
||||
*group = groupedAggregation{
|
||||
seen: true,
|
||||
heap: make(vectorByValueHeap, 0),
|
||||
}
|
||||
if ratiosampler.AddRatioSample(r, &s) {
|
||||
heap.Push(&group.heap, &s)
|
||||
}
|
||||
} else {
|
||||
*group = groupedAggregation{
|
||||
seen: true,
|
||||
heap: make(vectorByValueHeap, 1, k),
|
||||
}
|
||||
group.heap[0] = s
|
||||
}
|
||||
group.heap[0] = s
|
||||
continue
|
||||
}
|
||||
|
||||
|
@ -3016,6 +3051,26 @@ func (ev *evaluator) aggregationK(e *parser.AggregateExpr, k int, inputMatrix Ma
|
|||
}
|
||||
}
|
||||
|
||||
case parser.LIMITK:
|
||||
if len(group.heap) < k {
|
||||
heap.Push(&group.heap, &s)
|
||||
}
|
||||
// LIMITK optimization: early break if we've added K elem to _every_ group,
|
||||
// especially useful for large timeseries where the user is exploring labels via e.g.
|
||||
// limitk(10, my_metric)
|
||||
if !group.groupAggrComplete && len(group.heap) == k {
|
||||
group.groupAggrComplete = true
|
||||
groupsRemaining--
|
||||
if groupsRemaining == 0 {
|
||||
break seriesLoop
|
||||
}
|
||||
}
|
||||
|
||||
case parser.LIMIT_RATIO:
|
||||
if ratiosampler.AddRatioSample(r, &s) {
|
||||
heap.Push(&group.heap, &s)
|
||||
}
|
||||
|
||||
default:
|
||||
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
||||
}
|
||||
|
@ -3065,6 +3120,11 @@ func (ev *evaluator) aggregationK(e *parser.AggregateExpr, k int, inputMatrix Ma
|
|||
for _, v := range aggr.heap {
|
||||
add(v.Metric, v.F)
|
||||
}
|
||||
|
||||
case parser.LIMITK, parser.LIMIT_RATIO:
|
||||
for _, v := range aggr.heap {
|
||||
add(v.Metric, v.F)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3419,6 +3479,56 @@ func makeInt64Pointer(val int64) *int64 {
|
|||
return valp
|
||||
}
|
||||
|
||||
// Add RatioSampler interface to allow unit-testing (previously: Randomizer).
|
||||
type RatioSampler interface {
|
||||
// Return this sample "offset" between [0.0, 1.0]
|
||||
sampleOffset(ts int64, sample *Sample) float64
|
||||
AddRatioSample(r float64, sample *Sample) bool
|
||||
}
|
||||
|
||||
// Use Hash(labels.String()) / maxUint64 as a "deterministic"
|
||||
// value in [0.0, 1.0].
|
||||
type HashRatioSampler struct{}
|
||||
|
||||
var ratiosampler RatioSampler = NewHashRatioSampler()
|
||||
|
||||
func NewHashRatioSampler() *HashRatioSampler {
|
||||
return &HashRatioSampler{}
|
||||
}
|
||||
|
||||
func (s *HashRatioSampler) sampleOffset(ts int64, sample *Sample) float64 {
|
||||
const (
|
||||
float64MaxUint64 = float64(math.MaxUint64)
|
||||
)
|
||||
return float64(sample.Metric.Hash()) / float64MaxUint64
|
||||
}
|
||||
|
||||
func (s *HashRatioSampler) AddRatioSample(ratioLimit float64, sample *Sample) bool {
|
||||
// If ratioLimit >= 0: add sample if sampleOffset is lesser than ratioLimit
|
||||
//
|
||||
// 0.0 ratioLimit 1.0
|
||||
// [---------|--------------------------]
|
||||
// [#########...........................]
|
||||
//
|
||||
// e.g.:
|
||||
// sampleOffset==0.3 && ratioLimit==0.4
|
||||
// 0.3 < 0.4 ? --> add sample
|
||||
//
|
||||
// Else if ratioLimit < 0: add sample if rand() return the "complement" of ratioLimit>=0 case
|
||||
// (loosely similar behavior to negative array index in other programming languages)
|
||||
//
|
||||
// 0.0 1+ratioLimit 1.0
|
||||
// [---------|--------------------------]
|
||||
// [.........###########################]
|
||||
//
|
||||
// e.g.:
|
||||
// sampleOffset==0.3 && ratioLimit==-0.6
|
||||
// 0.3 >= 0.4 ? --> don't add sample
|
||||
sampleOffset := s.sampleOffset(sample.T, sample)
|
||||
return (ratioLimit >= 0 && sampleOffset < ratioLimit) ||
|
||||
(ratioLimit < 0 && sampleOffset >= (1.0+ratioLimit))
|
||||
}
|
||||
|
||||
type histogramStatsSeries struct {
|
||||
storage.Series
|
||||
}
|
||||
|
|
|
@ -49,6 +49,8 @@ const (
|
|||
)
|
||||
|
||||
func TestMain(m *testing.M) {
|
||||
// Enable experimental functions testing
|
||||
parser.EnableExperimentalFunctions = true
|
||||
goleak.VerifyTestMain(m)
|
||||
}
|
||||
|
||||
|
|
|
@ -126,6 +126,8 @@ STDDEV
|
|||
STDVAR
|
||||
SUM
|
||||
TOPK
|
||||
LIMITK
|
||||
LIMIT_RATIO
|
||||
%token aggregatorsEnd
|
||||
|
||||
// Keywords.
|
||||
|
@ -609,7 +611,7 @@ metric : metric_identifier label_set
|
|||
;
|
||||
|
||||
|
||||
metric_identifier: AVG | BOTTOMK | BY | COUNT | COUNT_VALUES | GROUP | IDENTIFIER | LAND | LOR | LUNLESS | MAX | METRIC_IDENTIFIER | MIN | OFFSET | QUANTILE | STDDEV | STDVAR | SUM | TOPK | WITHOUT | START | END;
|
||||
metric_identifier: AVG | BOTTOMK | BY | COUNT | COUNT_VALUES | GROUP | IDENTIFIER | LAND | LOR | LUNLESS | MAX | METRIC_IDENTIFIER | MIN | OFFSET | QUANTILE | STDDEV | STDVAR | SUM | TOPK | WITHOUT | START | END | LIMITK | LIMIT_RATIO;
|
||||
|
||||
label_set : LEFT_BRACE label_set_list RIGHT_BRACE
|
||||
{ $$ = labels.New($2...) }
|
||||
|
@ -851,10 +853,10 @@ bucket_set_list : bucket_set_list SPACE number
|
|||
* Keyword lists.
|
||||
*/
|
||||
|
||||
aggregate_op : AVG | BOTTOMK | COUNT | COUNT_VALUES | GROUP | MAX | MIN | QUANTILE | STDDEV | STDVAR | SUM | TOPK ;
|
||||
aggregate_op : AVG | BOTTOMK | COUNT | COUNT_VALUES | GROUP | MAX | MIN | QUANTILE | STDDEV | STDVAR | SUM | TOPK | LIMITK | LIMIT_RATIO;
|
||||
|
||||
// Inside of grouping options label names can be recognized as keywords by the lexer. This is a list of keywords that could also be a label name.
|
||||
maybe_label : AVG | BOOL | BOTTOMK | BY | COUNT | COUNT_VALUES | GROUP | GROUP_LEFT | GROUP_RIGHT | IDENTIFIER | IGNORING | LAND | LOR | LUNLESS | MAX | METRIC_IDENTIFIER | MIN | OFFSET | ON | QUANTILE | STDDEV | STDVAR | SUM | TOPK | START | END | ATAN2;
|
||||
maybe_label : AVG | BOOL | BOTTOMK | BY | COUNT | COUNT_VALUES | GROUP | GROUP_LEFT | GROUP_RIGHT | IDENTIFIER | IGNORING | LAND | LOR | LUNLESS | MAX | METRIC_IDENTIFIER | MIN | OFFSET | ON | QUANTILE | STDDEV | STDVAR | SUM | TOPK | START | END | ATAN2 | LIMITK | LIMIT_RATIO;
|
||||
|
||||
unary_op : ADD | SUB;
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -65,7 +65,7 @@ func (i ItemType) IsAggregator() bool { return i > aggregatorsStart && i < aggre
|
|||
// IsAggregatorWithParam returns true if the Item is an aggregator that takes a parameter.
|
||||
// Returns false otherwise.
|
||||
func (i ItemType) IsAggregatorWithParam() bool {
|
||||
return i == TOPK || i == BOTTOMK || i == COUNT_VALUES || i == QUANTILE
|
||||
return i == TOPK || i == BOTTOMK || i == COUNT_VALUES || i == QUANTILE || i == LIMITK || i == LIMIT_RATIO
|
||||
}
|
||||
|
||||
// IsKeyword returns true if the Item corresponds to a keyword.
|
||||
|
@ -118,6 +118,8 @@ var key = map[string]ItemType{
|
|||
"bottomk": BOTTOMK,
|
||||
"count_values": COUNT_VALUES,
|
||||
"quantile": QUANTILE,
|
||||
"limitk": LIMITK,
|
||||
"limit_ratio": LIMIT_RATIO,
|
||||
|
||||
// Keywords.
|
||||
"offset": OFFSET,
|
||||
|
|
|
@ -447,6 +447,10 @@ func (p *parser) newAggregateExpr(op Item, modifier, args Node) (ret *AggregateE
|
|||
|
||||
desiredArgs := 1
|
||||
if ret.Op.IsAggregatorWithParam() {
|
||||
if !EnableExperimentalFunctions && (ret.Op == LIMITK || ret.Op == LIMIT_RATIO) {
|
||||
p.addParseErrf(ret.PositionRange(), "limitk() and limit_ratio() are experimental and must be enabled with --enable-feature=promql-experimental-functions")
|
||||
return
|
||||
}
|
||||
desiredArgs = 2
|
||||
|
||||
ret.Param = arguments[0]
|
||||
|
@ -672,7 +676,7 @@ func (p *parser) checkAST(node Node) (typ ValueType) {
|
|||
p.addParseErrf(n.PositionRange(), "aggregation operator expected in aggregation expression but got %q", n.Op)
|
||||
}
|
||||
p.expectType(n.Expr, ValueTypeVector, "aggregation expression")
|
||||
if n.Op == TOPK || n.Op == BOTTOMK || n.Op == QUANTILE {
|
||||
if n.Op == TOPK || n.Op == BOTTOMK || n.Op == QUANTILE || n.Op == LIMITK || n.Op == LIMIT_RATIO {
|
||||
p.expectType(n.Param, ValueTypeScalar, "aggregation parameter")
|
||||
}
|
||||
if n.Op == COUNT_VALUES {
|
||||
|
|
|
@ -23,6 +23,7 @@ import (
|
|||
"golang.org/x/sync/errgroup"
|
||||
|
||||
"github.com/prometheus/prometheus/promql"
|
||||
"github.com/prometheus/prometheus/promql/parser"
|
||||
"github.com/prometheus/prometheus/promql/promqltest"
|
||||
"github.com/prometheus/prometheus/util/teststorage"
|
||||
)
|
||||
|
@ -45,6 +46,8 @@ func TestConcurrentRangeQueries(t *testing.T) {
|
|||
MaxSamples: 50000000,
|
||||
Timeout: 100 * time.Second,
|
||||
}
|
||||
// Enable experimental functions testing
|
||||
parser.EnableExperimentalFunctions = true
|
||||
engine := promql.NewEngine(opts)
|
||||
|
||||
const interval = 10000 // 10s interval.
|
||||
|
|
|
@ -0,0 +1,119 @@
|
|||
# Tests for limitk
|
||||
#
|
||||
# NB: those many `and http_requests` are to ensure that the series _are_ indeed
|
||||
# a subset of the original series.
|
||||
load 5m
|
||||
http_requests{job="api-server", instance="0", group="production"} 0+10x10
|
||||
http_requests{job="api-server", instance="1", group="production"} 0+20x10
|
||||
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
|
||||
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
|
||||
http_requests{job="api-server", instance="2", group="canary"} 0+50x10
|
||||
http_requests{job="api-server", instance="3", group="canary"} 0+60x10
|
||||
|
||||
eval instant at 50m count(limitk by (group) (0, http_requests))
|
||||
# empty
|
||||
|
||||
eval instant at 50m count(limitk by (group) (-1, http_requests))
|
||||
# empty
|
||||
|
||||
# Exercise k==1 special case (as sample is added before the main series loop
|
||||
eval instant at 50m count(limitk by (group) (1, http_requests) and http_requests)
|
||||
{} 2
|
||||
|
||||
eval instant at 50m count(limitk by (group) (2, http_requests) and http_requests)
|
||||
{} 4
|
||||
|
||||
eval instant at 50m count(limitk(100, http_requests) and http_requests)
|
||||
{} 6
|
||||
|
||||
# Exercise k==1 special case (as sample is added before the main series loop
|
||||
eval instant at 50m count(limitk by (group) (1, http_requests) and http_requests)
|
||||
{} 2
|
||||
|
||||
eval instant at 50m count(limitk by (group) (2, http_requests) and http_requests)
|
||||
{} 4
|
||||
|
||||
eval instant at 50m count(limitk(100, http_requests) and http_requests)
|
||||
{} 6
|
||||
|
||||
# limit_ratio
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.0, http_requests))
|
||||
# empty
|
||||
|
||||
# limitk(2, ...) should always return a 2-count subset of the timeseries (hence the AND'ing)
|
||||
eval range from 0 to 50m step 5m count(limitk(2, http_requests) and http_requests)
|
||||
{} 2+0x10
|
||||
|
||||
# Tests for limit_ratio
|
||||
#
|
||||
# NB: below 0.5 ratio will depend on some hashing "luck" (also there's no guarantee that
|
||||
# an integer comes from: total number of series * ratio), as it depends on:
|
||||
#
|
||||
# * ratioLimit = [0.0, 1.0]:
|
||||
# float64(sample.Metric.Hash()) / float64MaxUint64 < Ratio ?
|
||||
# * ratioLimit = [-1.0, 1.0):
|
||||
# float64(sample.Metric.Hash()) / float64MaxUint64 >= (1.0 + Ratio) ?
|
||||
#
|
||||
# See `AddRatioSample()` in promql/engine.go for more details.
|
||||
|
||||
# Half~ish samples: verify we get "near" 3 (of 0.5 * 6)
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.5, http_requests) and http_requests) <= bool (3+1)
|
||||
{} 1+0x10
|
||||
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.5, http_requests) and http_requests) >= bool (3-1)
|
||||
{} 1+0x10
|
||||
|
||||
# All samples
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(1.0, http_requests) and http_requests)
|
||||
{} 6+0x10
|
||||
|
||||
# All samples
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(-1.0, http_requests) and http_requests)
|
||||
{} 6+0x10
|
||||
|
||||
# Capped to 1.0 -> all samples
|
||||
eval_warn range from 0 to 50m step 5m count(limit_ratio(1.1, http_requests) and http_requests)
|
||||
{} 6+0x10
|
||||
|
||||
# Capped to -1.0 -> all samples
|
||||
eval_warn range from 0 to 50m step 5m count(limit_ratio(-1.1, http_requests) and http_requests)
|
||||
{} 6+0x10
|
||||
|
||||
# Verify that limit_ratio(value) and limit_ratio(1.0-value) return the "complement" of each other
|
||||
# Complement below for [0.2, -0.8]
|
||||
#
|
||||
# Complement 1of2: `or` should return all samples
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.2, http_requests) or limit_ratio(-0.8, http_requests))
|
||||
{} 6+0x10
|
||||
|
||||
# Complement 2of2: `and` should return no samples
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.2, http_requests) and limit_ratio(-0.8, http_requests))
|
||||
# empty
|
||||
|
||||
# Complement below for [0.5, -0.5]
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.5, http_requests) or limit_ratio(-0.5, http_requests))
|
||||
{} 6+0x10
|
||||
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.5, http_requests) and limit_ratio(-0.5, http_requests))
|
||||
# empty
|
||||
|
||||
# Complement below for [0.8, -0.2]
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.8, http_requests) or limit_ratio(-0.2, http_requests))
|
||||
{} 6+0x10
|
||||
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(0.8, http_requests) and limit_ratio(-0.2, http_requests))
|
||||
# empty
|
||||
|
||||
# Complement below for [some_ratio, 1.0 - some_ratio], some_ratio derived from time(),
|
||||
# using a small prime number to avoid rounded ratio values, and a small set of them.
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(time() % 17/17, http_requests) or limit_ratio(1.0 - (time() % 17/17), http_requests))
|
||||
{} 6+0x10
|
||||
|
||||
eval range from 0 to 50m step 5m count(limit_ratio(time() % 17/17, http_requests) and limit_ratio(1.0 - (time() % 17/17), http_requests))
|
||||
# empty
|
||||
|
||||
# Poor man's normality check: ok (loaded samples follow a nice linearity over labels and time)
|
||||
# The check giving: 1 (i.e. true)
|
||||
eval range from 0 to 50m step 5m abs(avg(limit_ratio(0.5, http_requests)) - avg(limit_ratio(-0.5, http_requests))) <= bool stddev(http_requests)
|
||||
{} 1+0x10
|
||||
|
|
@ -116,6 +116,7 @@ var (
|
|||
PromQLInfo = errors.New("PromQL info")
|
||||
PromQLWarning = errors.New("PromQL warning")
|
||||
|
||||
InvalidRatioWarning = fmt.Errorf("%w: ratio value should be between -1 and 1", PromQLWarning)
|
||||
InvalidQuantileWarning = fmt.Errorf("%w: quantile value should be between 0 and 1", PromQLWarning)
|
||||
BadBucketLabelWarning = fmt.Errorf("%w: bucket label %q is missing or has a malformed value", PromQLWarning, model.BucketLabel)
|
||||
MixedFloatsHistogramsWarning = fmt.Errorf("%w: encountered a mix of histograms and floats for", PromQLWarning)
|
||||
|
@ -155,6 +156,15 @@ func NewInvalidQuantileWarning(q float64, pos posrange.PositionRange) error {
|
|||
}
|
||||
}
|
||||
|
||||
// NewInvalidQuantileWarning is used when the user specifies an invalid ratio
|
||||
// value, i.e. a float that is outside the range [-1, 1] or NaN.
|
||||
func NewInvalidRatioWarning(q, to float64, pos posrange.PositionRange) error {
|
||||
return annoErr{
|
||||
PositionRange: pos,
|
||||
Err: fmt.Errorf("%w, got %g, capping to %g", InvalidRatioWarning, q, to),
|
||||
}
|
||||
}
|
||||
|
||||
// NewBadBucketLabelWarning is used when there is an error parsing the bucket label
|
||||
// of a classic histogram.
|
||||
func NewBadBucketLabelWarning(metricName, label string, pos posrange.PositionRange) error {
|
||||
|
|
|
@ -544,6 +544,18 @@ export const aggregateOpTerms = [
|
|||
info: 'Group series, while setting the sample value to 1',
|
||||
type: 'keyword',
|
||||
},
|
||||
{
|
||||
label: 'limitk',
|
||||
detail: 'aggregation',
|
||||
info: 'Sample k elements',
|
||||
type: 'keyword',
|
||||
},
|
||||
{
|
||||
label: 'limit_ratio',
|
||||
detail: 'aggregation',
|
||||
info: 'Sample given ratio of elements',
|
||||
type: 'keyword',
|
||||
},
|
||||
{
|
||||
label: 'max',
|
||||
detail: 'aggregation',
|
||||
|
|
|
@ -28,6 +28,8 @@ import {
|
|||
Gtr,
|
||||
Identifier,
|
||||
LabelMatchers,
|
||||
LimitK,
|
||||
LimitRatio,
|
||||
Lss,
|
||||
Lte,
|
||||
MatrixSelector,
|
||||
|
@ -167,7 +169,13 @@ export class Parser {
|
|||
}
|
||||
this.expectType(params[params.length - 1], ValueType.vector, 'aggregation expression');
|
||||
// get the parameter of the aggregation operator
|
||||
if (aggregateOp.type.id === Topk || aggregateOp.type.id === Bottomk || aggregateOp.type.id === Quantile) {
|
||||
if (
|
||||
aggregateOp.type.id === Topk ||
|
||||
aggregateOp.type.id === Bottomk ||
|
||||
aggregateOp.type.id === LimitK ||
|
||||
aggregateOp.type.id === LimitRatio ||
|
||||
aggregateOp.type.id === Quantile
|
||||
) {
|
||||
this.expectType(params[0], ValueType.scalar, 'aggregation parameter');
|
||||
}
|
||||
if (aggregateOp.type.id === CountValues) {
|
||||
|
|
|
@ -22,7 +22,7 @@ export const promQLHighLight = styleTags({
|
|||
Identifier: tags.variableName,
|
||||
'Abs Absent AbsentOverTime Acos Acosh Asin Asinh Atan Atanh AvgOverTime Ceil Changes Clamp ClampMax ClampMin Cos Cosh CountOverTime DaysInMonth DayOfMonth DayOfWeek DayOfYear Deg Delta Deriv Exp Floor HistogramAvg HistogramCount HistogramFraction HistogramQuantile HistogramSum HoltWinters Hour Idelta Increase Irate LabelReplace LabelJoin LastOverTime Ln Log10 Log2 MaxOverTime MinOverTime Minute Month Pi PredictLinear PresentOverTime QuantileOverTime Rad Rate Resets Round Scalar Sgn Sin Sinh Sort SortDesc SortByLabel SortByLabelDesc Sqrt StddevOverTime StdvarOverTime SumOverTime Tan Tanh Time Timestamp Vector Year':
|
||||
tags.function(tags.variableName),
|
||||
'Avg Bottomk Count Count_values Group Max Min Quantile Stddev Stdvar Sum Topk': tags.operatorKeyword,
|
||||
'Avg Bottomk Count Count_values Group LimitK LimitRatio Max Min Quantile Stddev Stdvar Sum Topk': tags.operatorKeyword,
|
||||
'By Without Bool On Ignoring GroupLeft GroupRight Offset Start End': tags.modifier,
|
||||
'And Unless Or': tags.logicOperator,
|
||||
'Sub Add Mul Mod Div Atan2 Eql Neq Lte Lss Gte Gtr EqlRegex EqlSingle NeqRegex Pow At': tags.operator,
|
||||
|
|
|
@ -54,6 +54,8 @@ AggregateOp {
|
|||
Max |
|
||||
Min |
|
||||
Quantile |
|
||||
LimitK |
|
||||
LimitRatio |
|
||||
Stddev |
|
||||
Stdvar |
|
||||
Sum |
|
||||
|
@ -330,6 +332,8 @@ NumberLiteral {
|
|||
Max,
|
||||
Min,
|
||||
Quantile,
|
||||
LimitK,
|
||||
LimitRatio,
|
||||
Stddev,
|
||||
Stdvar,
|
||||
Sum,
|
||||
|
|
|
@ -33,6 +33,8 @@ import {
|
|||
On,
|
||||
Or,
|
||||
Quantile,
|
||||
LimitK,
|
||||
LimitRatio,
|
||||
Start,
|
||||
Stddev,
|
||||
Stdvar,
|
||||
|
@ -67,6 +69,8 @@ const contextualKeywordTokens = {
|
|||
max: Max,
|
||||
min: Min,
|
||||
quantile: Quantile,
|
||||
limitk: LimitK,
|
||||
limit_ratio: LimitRatio,
|
||||
stddev: Stddev,
|
||||
stdvar: Stdvar,
|
||||
sum: Sum,
|
||||
|
|
Loading…
Reference in New Issue