promql: make avg aggregation more precise and less expensive

The basic idea here is that the previous code was always doing
incremental calculation of the mean value, which is more costly and
can be less precise. It protects against overflows, but in most cases,
an overflow doesn't happen anyway.

The other idea applied here is to expand on #14074, where Kahan
summation was applied to sum().

With this commit, the average is calculated in a conventional way
(adding everything up and divide in the end) as long as the sum isn't
overflowing float64. This is combined with Kahan summation so that the
avg aggregation, in most cases, is really equivalent to the sum
aggregation with a following division (which is the user's expectation
as avg is supposed to be syntactic sugar for sum with a following
divison).

If the sum hits ±Inf, the calculation reverts to incremental
calculation of the mean value. Kahan summation is also applied here,
although it cannot fully compensate for the numerical errors
introduced by the incremental mean calculation. (The tests added in
this commit would fail if incremental mean calculation was always
used.)

Signed-off-by: beorn7 <beorn@grafana.com>
pull/14413/head
beorn7 2024-07-04 15:13:35 +02:00
parent b5b04ddbe3
commit c46074f4dd
2 changed files with 61 additions and 18 deletions

View File

@ -2773,15 +2773,19 @@ func vectorElemBinop(op parser.ItemType, lhs, rhs float64, hlhs, hrhs *histogram
}
type groupedAggregation struct {
floatValue float64
histogramValue *histogram.FloatHistogram
floatMean float64
floatKahanC float64 // "Compensating value" for Kahan summation.
groupCount float64
heap vectorByValueHeap
// All bools together for better packing within the struct.
seen bool // Was this output groups seen in the input at this timestamp.
hasFloat bool // Has at least 1 float64 sample aggregated.
hasHistogram bool // Has at least 1 histogram sample aggregated.
floatValue float64
histogramValue *histogram.FloatHistogram
floatMean float64 // Mean, or "compensating value" for Kahan summation.
groupCount float64
groupAggrComplete bool // Used by LIMITK to short-cut series loop when we've reached K elem on every group.
heap vectorByValueHeap
incrementalMean bool // True after reverting to incremental calculation of the mean value.
}
// aggregation evaluates sum, avg, count, stdvar, stddev or quantile at one timestep on inputMatrix.
@ -2807,13 +2811,11 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
*group = groupedAggregation{
seen: true,
floatValue: f,
floatMean: f,
groupCount: 1,
}
switch op {
case parser.AVG:
group.floatMean = f
fallthrough
case parser.SUM:
case parser.AVG, parser.SUM:
if h == nil {
group.hasFloat = true
} else {
@ -2821,7 +2823,6 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
group.hasHistogram = true
}
case parser.STDVAR, parser.STDDEV:
group.floatMean = f
group.floatValue = 0
case parser.QUANTILE:
group.heap = make(vectorByValueHeap, 1)
@ -2847,7 +2848,7 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
// point in copying the histogram in that case.
} else {
group.hasFloat = true
group.floatValue, group.floatMean = kahanSumInc(f, group.floatValue, group.floatMean)
group.floatValue, group.floatKahanC = kahanSumInc(f, group.floatValue, group.floatKahanC)
}
case parser.AVG:
@ -2871,6 +2872,22 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
// point in copying the histogram in that case.
} else {
group.hasFloat = true
if !group.incrementalMean {
newV, newC := kahanSumInc(f, group.floatValue, group.floatKahanC)
if !math.IsInf(newV, 0) {
// The sum doesn't overflow, so we propagate it to the
// group struct and continue with the regular
// calculation of the mean value.
group.floatValue, group.floatKahanC = newV, newC
break
}
// If we are here, we know that the sum _would_ overflow. So
// instead of continue to sum up, we revert to incremental
// calculation of the mean value from here on.
group.incrementalMean = true
group.floatMean = group.floatValue / (group.groupCount - 1)
group.floatKahanC /= group.groupCount - 1
}
if math.IsInf(group.floatMean, 0) {
if math.IsInf(f, 0) && (group.floatMean > 0) == (f > 0) {
// The `floatMean` and `s.F` values are `Inf` of the same sign. They
@ -2888,8 +2905,13 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
break
}
}
// Divide each side of the `-` by `group.groupCount` to avoid float64 overflows.
group.floatMean += f/group.groupCount - group.floatMean/group.groupCount
currentMean := group.floatMean + group.floatKahanC
group.floatMean, group.floatKahanC = kahanSumInc(
// Divide each side of the `-` by `group.groupCount` to avoid float64 overflows.
f/group.groupCount-currentMean/group.groupCount,
group.floatMean,
group.floatKahanC,
)
}
case parser.GROUP:
@ -2938,10 +2960,13 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
annos.Add(annotations.NewMixedFloatsHistogramsAggWarning(e.Expr.PositionRange()))
continue
}
if aggr.hasHistogram {
switch {
case aggr.hasHistogram:
aggr.histogramValue = aggr.histogramValue.Compact(0)
} else {
aggr.floatValue = aggr.floatMean
case aggr.incrementalMean:
aggr.floatValue = aggr.floatMean + aggr.floatKahanC
default:
aggr.floatValue = (aggr.floatValue + aggr.floatKahanC) / aggr.groupCount
}
case parser.COUNT:
@ -2965,7 +2990,7 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
if aggr.hasHistogram {
aggr.histogramValue.Compact(0)
} else {
aggr.floatValue += aggr.floatMean // Add Kahan summation compensating term.
aggr.floatValue += aggr.floatKahanC
}
default:
// For other aggregations, we already have the right value.

View File

@ -503,7 +503,7 @@ eval instant at 1m avg(data{test="-big"})
eval instant at 1m avg(data{test="bigzero"})
{} 0
# Test summing extreme values.
# Test summing and averaging extreme values.
clear
load 10s
@ -529,21 +529,39 @@ load 10s
eval instant at 1m sum(data{test="ten"})
{} 10
eval instant at 1m avg(data{test="ten"})
{} 2.5
eval instant at 1m sum by (group) (data{test="pos_inf"})
{group="1"} Inf
{group="2"} Inf
eval instant at 1m avg by (group) (data{test="pos_inf"})
{group="1"} Inf
{group="2"} Inf
eval instant at 1m sum by (group) (data{test="neg_inf"})
{group="1"} -Inf
{group="2"} -Inf
eval instant at 1m avg by (group) (data{test="neg_inf"})
{group="1"} -Inf
{group="2"} -Inf
eval instant at 1m sum(data{test="inf_inf"})
{} NaN
eval instant at 1m avg(data{test="inf_inf"})
{} NaN
eval instant at 1m sum by (group) (data{test="nan"})
{group="1"} NaN
{group="2"} NaN
eval instant at 1m avg by (group) (data{test="nan"})
{group="1"} NaN
{group="2"} NaN
clear
# Test that aggregations are deterministic.