Browse Source

Merge pull request #14074 from bboreham/kahan-sum-sum

[ENHANCEMENT] PromQL: use Kahan summation for sum()
pull/13434/head^2
Bryan Boreham 5 months ago committed by GitHub
parent
commit
b6aba4ff14
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 13
      promql/engine.go
  2. 12
      promql/promqltest/testdata/aggregators.test

13
promql/engine.go

@ -2740,7 +2740,7 @@ type groupedAggregation struct {
hasHistogram bool // Has at least 1 histogram sample aggregated.
floatValue float64
histogramValue *histogram.FloatHistogram
floatMean float64
floatMean float64 // Mean, or "compensating value" for Kahan summation.
groupCount int
heap vectorByValueHeap
}
@ -2768,11 +2768,13 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
*group = groupedAggregation{
seen: true,
floatValue: f,
floatMean: f,
groupCount: 1,
}
switch op {
case parser.SUM, parser.AVG:
case parser.AVG:
group.floatMean = f
fallthrough
case parser.SUM:
if h == nil {
group.hasFloat = true
} else {
@ -2780,6 +2782,7 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
group.hasHistogram = true
}
case parser.STDVAR, parser.STDDEV:
group.floatMean = f
group.floatValue = 0
case parser.QUANTILE:
group.heap = make(vectorByValueHeap, 1)
@ -2802,7 +2805,7 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
// point in copying the histogram in that case.
} else {
group.hasFloat = true
group.floatValue += f
group.floatValue, group.floatMean = kahanSumInc(f, group.floatValue, group.floatMean)
}
case parser.AVG:
@ -2913,6 +2916,8 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
}
if aggr.hasHistogram {
aggr.histogramValue.Compact(0)
} else {
aggr.floatValue += aggr.floatMean // Add Kahan summation compensating term.
}
default:
// For other aggregations, we already have the right value.

12
promql/promqltest/testdata/aggregators.test vendored

@ -503,6 +503,18 @@ eval instant at 1m avg(data{test="-big"})
eval instant at 1m avg(data{test="bigzero"})
{} 0
# Test summing extreme values.
clear
load 10s
data{test="ten",point="a"} 2
data{test="ten",point="b"} 8
data{test="ten",point="c"} 1e+100
data{test="ten",point="d"} -1e100
eval instant at 1m sum(data{test="ten"})
{} 10
clear
# Test that aggregations are deterministic.

Loading…
Cancel
Save