mirror of https://github.com/prometheus/prometheus
promql: aggregations: skip copying input to a Vector
We can work directly from the inputMatrix on each timestep. Signed-off-by: Bryan Boreham <bjboreham@gmail.com>pull/13744/head
parent
c9b6c4c55a
commit
b3bda7df4b
|
@ -1311,7 +1311,6 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
// Keep a copy of the original point slice so that it can be returned to the pool.
|
||||
origMatrix := inputMatrix
|
||||
|
||||
var vector Vector // Input vectors for the function.
|
||||
biggestLen := len(inputMatrix)
|
||||
enh := &EvalNodeHelper{}
|
||||
seriess := make(map[uint64]Series, biggestLen) // Output series by series hash.
|
||||
|
@ -1321,7 +1320,6 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
buf := make([]byte, 0, 1024)
|
||||
|
||||
seriesHelper := make([]EvalSeriesHelper, len(inputMatrix))
|
||||
bufHelper := make([]EvalSeriesHelper, len(inputMatrix))
|
||||
|
||||
for si, series := range inputMatrix {
|
||||
seriesHelper[si].groupingKey, buf = generateGroupingKey(series.Metric, sortedGrouping, aggExpr.Without, buf)
|
||||
|
@ -1333,36 +1331,10 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
}
|
||||
// Reset number of samples in memory after each timestamp.
|
||||
ev.currentSamples = tempNumSamples
|
||||
// Gather input vectors for this timestamp.
|
||||
{
|
||||
vector = vector[:0]
|
||||
bufHelper = bufHelper[:0]
|
||||
|
||||
for si, series := range inputMatrix {
|
||||
switch {
|
||||
case len(series.Floats) > 0 && series.Floats[0].T == ts:
|
||||
vector = append(vector, Sample{Metric: series.Metric, F: series.Floats[0].F, T: ts})
|
||||
// Move input vectors forward so we don't have to re-scan the same
|
||||
// past points at the next step.
|
||||
inputMatrix[si].Floats = series.Floats[1:]
|
||||
case len(series.Histograms) > 0 && series.Histograms[0].T == ts:
|
||||
vector = append(vector, Sample{Metric: series.Metric, H: series.Histograms[0].H, T: ts})
|
||||
inputMatrix[si].Histograms = series.Histograms[1:]
|
||||
default:
|
||||
continue
|
||||
}
|
||||
bufHelper = append(bufHelper, seriesHelper[si])
|
||||
ev.currentSamples++
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
}
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
}
|
||||
|
||||
// Make the function call.
|
||||
enh.Ts = ts
|
||||
result, ws := ev.aggregation(aggExpr, sortedGrouping, param, vector, bufHelper, enh, seriess)
|
||||
result, ws := ev.aggregation(aggExpr, sortedGrouping, param, inputMatrix, seriesHelper, enh, seriess)
|
||||
|
||||
warnings.Merge(ws)
|
||||
|
||||
|
@ -2726,7 +2698,7 @@ type groupedAggregation struct {
|
|||
|
||||
// aggregation evaluates an aggregation operation on a Vector. The provided grouping labels
|
||||
// must be sorted.
|
||||
func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, param interface{}, vec Vector, seriesHelper []EvalSeriesHelper, enh *EvalNodeHelper, seriess map[uint64]Series) (Matrix, annotations.Annotations) {
|
||||
func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, param interface{}, inputMatrix Matrix, seriesHelper []EvalSeriesHelper, enh *EvalNodeHelper, seriess map[uint64]Series) (Matrix, annotations.Annotations) {
|
||||
op := e.Op
|
||||
without := e.Without
|
||||
var annos annotations.Annotations
|
||||
|
@ -2748,7 +2720,26 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par
|
|||
q = param.(float64)
|
||||
}
|
||||
|
||||
for si, s := range vec {
|
||||
for si, series := range inputMatrix {
|
||||
var s Sample
|
||||
|
||||
switch {
|
||||
case len(series.Floats) > 0 && series.Floats[0].T == enh.Ts:
|
||||
s = Sample{Metric: series.Metric, F: series.Floats[0].F, T: enh.Ts}
|
||||
// Move input vectors forward so we don't have to re-scan the same
|
||||
// past points at the next step.
|
||||
inputMatrix[si].Floats = series.Floats[1:]
|
||||
case len(series.Histograms) > 0 && series.Histograms[0].T == enh.Ts:
|
||||
s = Sample{Metric: series.Metric, H: series.Histograms[0].H, T: enh.Ts}
|
||||
inputMatrix[si].Histograms = series.Histograms[1:]
|
||||
default:
|
||||
continue
|
||||
}
|
||||
ev.currentSamples++
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
|
||||
metric := s.Metric
|
||||
groupingKey := seriesHelper[si].groupingKey
|
||||
|
||||
|
@ -2775,7 +2766,7 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par
|
|||
newAgg.groupCount = 0
|
||||
}
|
||||
|
||||
inputVecLen := int64(len(vec))
|
||||
inputVecLen := int64(len(inputMatrix))
|
||||
resultSize := k
|
||||
switch {
|
||||
case k > inputVecLen:
|
||||
|
|
Loading…
Reference in New Issue