Browse Source

Add instrumentation and refactor things around "rushed mode"

pull/1345/head
beorn7 9 years ago
parent
commit
87ef24cd25
  1. 205
      storage/local/storage.go

205
storage/local/storage.go

@ -41,26 +41,21 @@ const (
// Constants to control the hysteresis of entering and leaving "rushed
// mode". In rushed mode, the dirty series count is ignored for
// checkpointing, and series files are not synced if the adaptive sync
// strategy is used.
//
// If we reach 80% of -storage.local.max-chunks-to-persist, we enter
// "rushed mode".
factorChunksToPersistForEnteringRushedMode = 0.8
// To leave "rushed mode", we must be below 70% of
// -storage.local.max-chunks-to-persist.
factorChunksToPersistForLeavingRushedMode = 0.7
// To enter "rushed mode" for other reasons (see below), we must have at
// least 30% of -storage.local.max-chunks-to-persist.
factorMinChunksToPersistToAllowRushedMode = 0.3
// If the number of chunks in memory reaches 110% of
// -storage.local.memory-chunks, we will enter "rushed mode" (provided
// we have enough chunks to persist at all, see
// factorMinChunksToPersistToAllowRushedMode.)
factorMemChunksForEnteringRushedMode = 1.1
// To leave "rushed mode", we must be below 105% of
// -storage.local.memory-chunks.
factorMemChunksForLeavingRushedMode = 1.05
// checkpointing, series are maintained as frequently as possible, and
// series files are not synced if the adaptive sync strategy is used.
persintenceUrgencyScoreForEnteringRushedMode = 0.8
persintenceUrgencyScoreForLeavingRushedMode = 0.7
// This factor times -storage.local.memory-chunks is the number of
// memory chunks we tolerate before suspending ingestion (TODO!). It is
// also a basis for calculating the persistenceUrgencyScore.
toleranceFactorForMemChunks = 1.1
// This factor times -storage.local.max-chunks-to-persist is the minimum
// required number of chunks waiting for persistence before the number
// of chunks in memory may influence the persistenceUrgencyScore. (In
// other words: if there are no chunks to persist, it doesn't help chunk
// eviction if we speed up persistence.)
factorMinChunksToPersist = 0.2
)
var (
@ -155,6 +150,8 @@ type memorySeriesStorage struct {
outOfOrderSamplesCount prometheus.Counter
invalidPreloadRequestsCount prometheus.Counter
maintainSeriesDuration *prometheus.SummaryVec
persistenceUrgencyScore prometheus.Gauge
rushedMode prometheus.Gauge
}
// MemorySeriesStorageOptions contains options needed by
@ -243,6 +240,18 @@ func NewMemorySeriesStorage(o *MemorySeriesStorageOptions) Storage {
},
[]string{seriesLocationLabel},
),
persistenceUrgencyScore: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "persistence_urgency_score",
Help: "A score of urgency to persist chunks, 0 is least urgent, 1 most.",
}),
rushedMode: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "rushed_mode",
Help: "1 if the storage is in rushed mode, 0 otherwise. In rushed mode, the system behaves as if the persistence_urgency_score is 1.",
}),
}
return s
}
@ -256,7 +265,7 @@ func (s *memorySeriesStorage) Start() (err error) {
case Always:
syncStrategy = func() bool { return true }
case Adaptive:
syncStrategy = func() bool { return !s.inRushedMode() }
syncStrategy = func() bool { return s.calculatePersistenceUrgencyScore() < 1 }
default:
panic("unknown sync strategy")
}
@ -823,8 +832,8 @@ func (s *memorySeriesStorage) cycleThroughMemoryFingerprints() chan model.Finger
case <-s.loopStopping:
return
}
// Reduce the wait time by the backlog score.
s.waitForNextFP(s.fpToSeries.length(), s.persistenceBacklogScore())
// Reduce the wait time according to the urgency score.
s.waitForNextFP(s.fpToSeries.length(), 1-s.calculatePersistenceUrgencyScore())
count++
}
if count > 0 {
@ -916,8 +925,9 @@ loop:
// would be counterproductive, as it would slow down chunk persisting even more,
// while in a situation like that, where we are clearly lacking speed of disk
// maintenance, the best we can do for crash recovery is to persist chunks as
// quickly as possible. So only checkpoint if the storage is not in "rushed mode".
if dirtySeriesCount >= s.checkpointDirtySeriesLimit && !s.inRushedMode() {
// quickly as possible. So only checkpoint if the urgency score is < 1.
if dirtySeriesCount >= s.checkpointDirtySeriesLimit &&
s.calculatePersistenceUrgencyScore() < 1 {
checkpointTimer.Reset(0)
}
}
@ -1161,78 +1171,83 @@ func (s *memorySeriesStorage) incNumChunksToPersist(by int) {
atomic.AddInt64(&s.numChunksToPersist, int64(by))
}
// inRushedMode returns whether the storage is in "rushed mode", which is the
// case if there are too many chunks waiting for persistence or there are too
// many chunks in memory. The method is not goroutine safe (but only ever called
// from the goroutine dealing with series maintenance). Changes of degradation
// mode are logged.
func (s *memorySeriesStorage) inRushedMode() bool {
chunksToPersist := float64(s.getNumChunksToPersist())
memChunks := float64(atomic.LoadInt64(&numMemChunks))
if s.rushed {
// We are already in rushed mode, so check if we can get out of
// it, using the lower hysteresis thresholds.
s.rushed = chunksToPersist > float64(s.maxChunksToPersist)*factorChunksToPersistForLeavingRushedMode ||
memChunks > float64(s.maxMemoryChunks)*factorMemChunksForLeavingRushedMode
if !s.rushed {
log.Warn("Storage has left rushed mode. Things are back to normal.")
}
return s.rushed
}
// We are not rushed yet, so check the higher hysteresis threshold if we enter it now.
// First WRT chunksToPersist...
s.rushed = chunksToPersist > float64(s.maxChunksToPersist)*factorChunksToPersistForEnteringRushedMode
if s.rushed {
log.Warnf(
"%.0f chunks waiting for persistence (%.1f%% of the allowed maximum %d). Storage is now in rushed mode. Series files are not synced anymore if following the adaptive strategy. Checkpoints are not performed more often than every %v. Series maintenance happens as frequently as possible.",
chunksToPersist,
chunksToPersist*100/float64(s.maxChunksToPersist),
s.maxChunksToPersist,
s.checkpointInterval,
)
return true
}
// ...then WRT memChunks.
s.rushed = memChunks > float64(s.maxMemoryChunks)*factorMemChunksForEnteringRushedMode &&
chunksToPersist > float64(s.maxChunksToPersist)*factorMinChunksToPersistToAllowRushedMode
if s.rushed {
log.Warnf(
"%.0f chunks in memory (%.1f%% of the allowed maximum %d). Storage is now in rushed mode. Series files are not synced anymore if following the adaptive strategy. Checkpoints are not performed more often than every %v. Series maintenance happens as frequently as possible.",
memChunks,
memChunks*100/float64(s.maxMemoryChunks),
s.maxMemoryChunks,
s.checkpointInterval,
)
}
return s.rushed
}
// persistenceBacklogScore works similar to inRushedMode, but returns a score
// about how close we are to degradation. This score is 1.0 if no chunks are
// waiting for persistence or we are not over the threshold for memory chunks,
// and 0.0 if we are at or above the thresholds. However, the score is always 0
// if the storage is currently in rushed mode. (Getting out of it has a
// hysteresis, so we might be below thresholds again but still in rushed mode.)
func (s *memorySeriesStorage) persistenceBacklogScore() float64 {
if s.inRushedMode() {
return 0
}
chunksToPersist := float64(s.getNumChunksToPersist())
score := 1 - chunksToPersist/(float64(s.maxChunksToPersist)*factorChunksToPersistForEnteringRushedMode)
if chunksToPersist > float64(s.maxChunksToPersist)*factorMinChunksToPersistToAllowRushedMode {
memChunks := float64(atomic.LoadInt64(&numMemChunks))
score = math.Min(
// calculatePersistenceUrgencyScore calculates and returns an urgency score for
// the speed of persisting chunks. The score is between 0 and 1, where 0 means
// no urgency at all and 1 means highest urgency.
//
// The score is the maximum of the two following sub-scores:
//
// (1) The first sub-score is the number of chunks waiting for persistence
// divided by the maximum number of chunks allowed to be waiting for
// persistence.
//
// (2) If there are more chunks in memory than allowed AND there are more chunks
// waiting for persistence than factorMinChunksToPersist times
// -storage.local.max-chunks-to-persist, then the second sub-score is the
// fraction the number of memory chunks has reached between
// -storage.local.memory-chunks and toleranceFactorForMemChunks times
// -storage.local.memory-chunks.
//
// Should the score ever hit persintenceUrgencyScoreForEnteringRushedMode, the
// storage locks into "rushed mode", in which the returned score is always
// bumped up to 1 until the non-bumped score is below
// persintenceUrgencyScoreForLeavingRushedMode.
//
// This method is not goroutine-safe, but it is only ever called by the single
// goroutine that is in charge of series maintenance. According to the returned
// score, series maintenence should be sped up. If a score of 1 is returned,
// checkpointing based on dirty-series count should be disabled, and series
// files should not by synced anymore provided the user has specified the
// adaptive sync strategy.
func (s *memorySeriesStorage) calculatePersistenceUrgencyScore() float64 {
var (
chunksToPersist = float64(s.getNumChunksToPersist())
maxChunksToPersist = float64(s.maxChunksToPersist)
memChunks = float64(atomic.LoadInt64(&numMemChunks))
maxMemChunks = float64(s.maxMemoryChunks)
)
score := chunksToPersist / maxChunksToPersist
if chunksToPersist > maxChunksToPersist*factorMinChunksToPersist {
score = math.Max(
score,
1-(memChunks/float64(s.maxMemoryChunks)-1)/(factorMemChunksForEnteringRushedMode-1),
(memChunks/maxMemChunks-1)/(toleranceFactorForMemChunks-1),
)
}
if score < 0 {
return 0
}
if score > 1 {
score = 1
}
s.persistenceUrgencyScore.Set(score)
if s.rushed {
// We are already in rushed mode. If the score is still above
// persintenceUrgencyScoreForLeavingRushedMode, return 1 and
// leave things as they are.
if score > persintenceUrgencyScoreForLeavingRushedMode {
return 1
}
// We are out of rushed mode!
s.rushed = false
s.rushedMode.Set(0)
log.
With("urgencyScore", score).
With("chunksToPersist", chunksToPersist).
With("maxChunksToPersist", maxChunksToPersist).
With("memoryChunks", memChunks).
With("maxMemoryChunks", maxMemChunks).
Warn("Storage has left rushed mode.")
return score
}
if score > persintenceUrgencyScoreForEnteringRushedMode {
// Enter rushed mode.
s.rushed = true
s.rushedMode.Set(1)
log.
With("urgencyScore", score).
With("chunksToPersist", chunksToPersist).
With("maxChunksToPersist", maxChunksToPersist).
With("memoryChunks", memChunks).
With("maxMemoryChunks", maxMemChunks).
Warn("Storage has entered rushed mode.")
return 1
}
return score
@ -1253,6 +1268,8 @@ func (s *memorySeriesStorage) Describe(ch chan<- *prometheus.Desc) {
ch <- s.invalidPreloadRequestsCount.Desc()
ch <- numMemChunksDesc
s.maintainSeriesDuration.Describe(ch)
ch <- s.persistenceUrgencyScore.Desc()
ch <- s.rushedMode.Desc()
}
// Collect implements prometheus.Collector.
@ -1282,4 +1299,6 @@ func (s *memorySeriesStorage) Collect(ch chan<- prometheus.Metric) {
float64(atomic.LoadInt64(&numMemChunks)),
)
s.maintainSeriesDuration.Collect(ch)
ch <- s.persistenceUrgencyScore
ch <- s.rushedMode
}

Loading…
Cancel
Save