mirror of https://github.com/prometheus/prometheus
promql: refactor: pull fetching input data out of rangeEvalAgg
This is a cleaner split of responsibilities. We now check the sample count after calling rangeEvalAgg. Changed re-use of samples to use `Clone` and `defer`. Signed-off-by: Bryan Boreham <bjboreham@gmail.com>pull/13744/head
parent
602eb69edf
commit
74eed67ef6
|
@ -1279,29 +1279,19 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
|||
return mat, warnings
|
||||
}
|
||||
|
||||
func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping []string) (Matrix, annotations.Annotations) {
|
||||
originalNumSamples := ev.currentSamples
|
||||
func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping []string, inputMatrix Matrix, param float64) (Matrix, annotations.Annotations) {
|
||||
// Keep a copy of the original point slice so that it can be returned to the pool.
|
||||
origMatrix := slices.Clone(inputMatrix)
|
||||
defer func() {
|
||||
for _, s := range origMatrix {
|
||||
putFPointSlice(s.Floats)
|
||||
putHPointSlice(s.Histograms)
|
||||
}
|
||||
}()
|
||||
|
||||
var warnings annotations.Annotations
|
||||
|
||||
// param is the number k for topk/bottomk, or q for quantile.
|
||||
var param float64
|
||||
if aggExpr.Param != nil {
|
||||
val, ws := ev.eval(aggExpr.Param)
|
||||
warnings.Merge(ws)
|
||||
param = val.(Matrix)[0].Floats[0].F
|
||||
}
|
||||
// Now fetch the data to be aggregated.
|
||||
// ev.currentSamples will be updated to the correct value within the ev.eval call.
|
||||
val, ws := ev.eval(aggExpr.Expr)
|
||||
warnings.Merge(ws)
|
||||
inputMatrix := val.(Matrix)
|
||||
|
||||
// Keep a copy of the original point slice so that it can be returned to the pool.
|
||||
origMatrix := inputMatrix
|
||||
|
||||
biggestLen := len(inputMatrix)
|
||||
enh := &EvalNodeHelper{}
|
||||
seriess := make(map[uint64]Series, biggestLen) // Output series by series hash.
|
||||
tempNumSamples := ev.currentSamples
|
||||
|
||||
// Create a mapping from input series to output groups.
|
||||
|
@ -1325,6 +1315,8 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
seriesToResult[si] = index
|
||||
}
|
||||
|
||||
seriess := make(map[uint64]Series, len(inputMatrix)) // Output series by series hash.
|
||||
|
||||
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
||||
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
||||
ev.error(err)
|
||||
|
@ -1340,8 +1332,6 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
|
||||
// If this could be an instant query, shortcut so as not to change sort order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
ev.currentSamples = originalNumSamples + result.TotalSamples()
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
return result, warnings
|
||||
}
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
|
@ -1349,18 +1339,11 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
}
|
||||
}
|
||||
|
||||
// Reuse the original point slice.
|
||||
for _, s := range origMatrix {
|
||||
putFPointSlice(s.Floats)
|
||||
putHPointSlice(s.Histograms)
|
||||
}
|
||||
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
||||
mat := make(Matrix, 0, len(seriess))
|
||||
for _, ss := range seriess {
|
||||
mat = append(mat, ss)
|
||||
}
|
||||
ev.currentSamples = originalNumSamples + mat.TotalSamples()
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
return mat, warnings
|
||||
}
|
||||
|
||||
|
@ -1434,7 +1417,26 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, annotations.Annotatio
|
|||
}, e.Expr)
|
||||
}
|
||||
|
||||
return ev.rangeEvalAgg(e, sortedGrouping)
|
||||
var warnings annotations.Annotations
|
||||
originalNumSamples := ev.currentSamples
|
||||
// param is the number k for topk/bottomk, or q for quantile.
|
||||
var fParam float64
|
||||
if param != nil {
|
||||
val, ws := ev.eval(param)
|
||||
warnings.Merge(ws)
|
||||
fParam = val.(Matrix)[0].Floats[0].F
|
||||
}
|
||||
// Now fetch the data to be aggregated.
|
||||
val, ws := ev.eval(e.Expr)
|
||||
warnings.Merge(ws)
|
||||
inputMatrix := val.(Matrix)
|
||||
|
||||
result, ws := ev.rangeEvalAgg(e, sortedGrouping, inputMatrix, fParam)
|
||||
warnings.Merge(ws)
|
||||
ev.currentSamples = originalNumSamples + result.TotalSamples()
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
|
||||
return result, warnings
|
||||
|
||||
case *parser.Call:
|
||||
call := FunctionCalls[e.Func.Name]
|
||||
|
|
Loading…
Reference in New Issue