|
|
@ -387,7 +387,7 @@ func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|
|
|
continue
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mean, c = kahanSummationIter(v.V/count-mean/count, mean, c)
|
|
|
|
mean, c = kahanSumInc(v.V/count-mean/count, mean, c)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if math.IsInf(mean, 0) {
|
|
|
|
if math.IsInf(mean, 0) {
|
|
|
@ -445,7 +445,7 @@ func funcSumOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
|
|
var sum, c float64
|
|
|
|
var sum, c float64
|
|
|
|
for _, v := range values {
|
|
|
|
for _, v := range values {
|
|
|
|
sum, c = kahanSummationIter(v.V, sum, c)
|
|
|
|
sum, c = kahanSumInc(v.V, sum, c)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if math.IsInf(sum, 0) {
|
|
|
|
if math.IsInf(sum, 0) {
|
|
|
|
return sum
|
|
|
|
return sum
|
|
|
@ -682,25 +682,24 @@ func funcTimestamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHe
|
|
|
|
return enh.Out
|
|
|
|
return enh.Out
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
func kahanSummation(samples []float64) float64 {
|
|
|
|
func kahanSum(samples []float64) float64 {
|
|
|
|
sum, c := 0.0, 0.0
|
|
|
|
var sum, c float64
|
|
|
|
|
|
|
|
|
|
|
|
for _, v := range samples {
|
|
|
|
for _, v := range samples {
|
|
|
|
sum, c = kahanSummationIter(v, sum, c)
|
|
|
|
sum, c = kahanSumInc(v, sum, c)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return sum + c
|
|
|
|
return sum + c
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
func kahanSummationIter(v, sum, c float64) (float64, float64) {
|
|
|
|
func kahanSumInc(inc, sum, c float64) (newSum, newC float64) {
|
|
|
|
t := sum + v
|
|
|
|
t := sum + inc
|
|
|
|
// using Neumaier improvement, swap if next term larger than sum
|
|
|
|
// Using Neumaier improvement, swap if next term larger than sum.
|
|
|
|
if math.Abs(sum) >= math.Abs(v) {
|
|
|
|
if math.Abs(sum) >= math.Abs(inc) {
|
|
|
|
c += (sum - t) + v
|
|
|
|
c += (sum - t) + inc
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
c += (v - t) + sum
|
|
|
|
c += (inc - t) + sum
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sum = t
|
|
|
|
return t, c
|
|
|
|
return sum, c
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// linearRegression performs a least-square linear regression analysis on the
|
|
|
|
// linearRegression performs a least-square linear regression analysis on the
|
|
|
@ -717,10 +716,10 @@ func linearRegression(samples []Point, interceptTime int64) (slope, intercept fl
|
|
|
|
for _, sample := range samples {
|
|
|
|
for _, sample := range samples {
|
|
|
|
n += 1.0
|
|
|
|
n += 1.0
|
|
|
|
x := float64(sample.T-interceptTime) / 1e3
|
|
|
|
x := float64(sample.T-interceptTime) / 1e3
|
|
|
|
sumX, cX = kahanSummationIter(x, sumX, cX)
|
|
|
|
sumX, cX = kahanSumInc(x, sumX, cX)
|
|
|
|
sumY, cY = kahanSummationIter(sample.V, sumY, cY)
|
|
|
|
sumY, cY = kahanSumInc(sample.V, sumY, cY)
|
|
|
|
sumXY, cXY = kahanSummationIter(x*sample.V, sumXY, cXY)
|
|
|
|
sumXY, cXY = kahanSumInc(x*sample.V, sumXY, cXY)
|
|
|
|
sumX2, cX2 = kahanSummationIter(x*x, sumX2, cX2)
|
|
|
|
sumX2, cX2 = kahanSumInc(x*x, sumX2, cX2)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
sumX = sumX + cX
|
|
|
|
sumX = sumX + cX
|
|
|
|