mirror of https://github.com/prometheus/prometheus
promql: refactor: move collection of results into aggregation()
We don't need to check for duplicates as aggregation cannot generate them. Signed-off-by: Bryan Boreham <bjboreham@gmail.com>pull/13744/head
parent
bd9bdccb22
commit
59548b8a0b
|
@ -1292,7 +1292,6 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
|||
}
|
||||
|
||||
func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping []string) (Matrix, annotations.Annotations) {
|
||||
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
||||
originalNumSamples := ev.currentSamples
|
||||
var warnings annotations.Annotations
|
||||
|
||||
|
@ -1315,11 +1314,7 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
var vector Vector // Input vectors for the function.
|
||||
biggestLen := len(inputMatrix)
|
||||
enh := &EvalNodeHelper{Out: make(Vector, 0, biggestLen)}
|
||||
type seriesAndTimestamp struct {
|
||||
Series
|
||||
ts int64
|
||||
}
|
||||
seriess := make(map[uint64]seriesAndTimestamp, biggestLen) // Output series by series hash.
|
||||
seriess := make(map[uint64]Series, biggestLen) // Output series by series hash.
|
||||
tempNumSamples := ev.currentSamples
|
||||
|
||||
// Initialise series helpers with the grouping key.
|
||||
|
@ -1367,7 +1362,7 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
|
||||
// Make the function call.
|
||||
enh.Ts = ts
|
||||
result, ws := ev.aggregation(aggExpr, sortedGrouping, param, vector, bufHelper, enh)
|
||||
result, ws := ev.aggregation(aggExpr, sortedGrouping, param, vector, bufHelper, enh, seriess)
|
||||
|
||||
enh.Out = result[:0] // Reuse result vector.
|
||||
warnings.Merge(ws)
|
||||
|
@ -1386,9 +1381,6 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
|
||||
// If this could be an instant query, shortcut so as not to change sort order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
if result.ContainsSameLabelset() {
|
||||
ev.errorf("vector cannot contain metrics with the same labelset")
|
||||
}
|
||||
mat := make(Matrix, len(result))
|
||||
for i, s := range result {
|
||||
if s.H == nil {
|
||||
|
@ -1401,32 +1393,6 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
return mat, warnings
|
||||
}
|
||||
|
||||
// Add samples in output vector to output series.
|
||||
for _, sample := range result {
|
||||
h := sample.Metric.Hash()
|
||||
ss, ok := seriess[h]
|
||||
if ok {
|
||||
if ss.ts == ts { // If we've seen this output series before at this timestamp, it's a duplicate.
|
||||
ev.errorf("vector cannot contain metrics with the same labelset")
|
||||
}
|
||||
ss.ts = ts
|
||||
} else {
|
||||
ss = seriesAndTimestamp{Series{Metric: sample.Metric}, ts}
|
||||
}
|
||||
if sample.H == nil {
|
||||
if ss.Floats == nil {
|
||||
ss.Floats = getFPointSlice(numSteps)
|
||||
}
|
||||
ss.Floats = append(ss.Floats, FPoint{T: ts, F: sample.F})
|
||||
} else {
|
||||
if ss.Histograms == nil {
|
||||
ss.Histograms = getHPointSlice(numSteps)
|
||||
}
|
||||
ss.Histograms = append(ss.Histograms, HPoint{T: ts, H: sample.H})
|
||||
}
|
||||
seriess[h] = ss
|
||||
}
|
||||
}
|
||||
|
||||
// Reuse the original point slice.
|
||||
|
@ -1437,7 +1403,7 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
||||
mat := make(Matrix, 0, len(seriess))
|
||||
for _, ss := range seriess {
|
||||
mat = append(mat, ss.Series)
|
||||
mat = append(mat, ss)
|
||||
}
|
||||
ev.currentSamples = originalNumSamples + mat.TotalSamples()
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
|
@ -2778,7 +2744,7 @@ type groupedAggregation struct {
|
|||
|
||||
// aggregation evaluates an aggregation operation on a Vector. The provided grouping labels
|
||||
// must be sorted.
|
||||
func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, param interface{}, vec Vector, seriesHelper []EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
||||
func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, param interface{}, vec Vector, seriesHelper []EvalSeriesHelper, enh *EvalNodeHelper, seriess map[uint64]Series) (Vector, annotations.Annotations) {
|
||||
op := e.Op
|
||||
without := e.Without
|
||||
var annos annotations.Annotations
|
||||
|
@ -3055,7 +3021,36 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par
|
|||
H: aggr.histogramValue,
|
||||
})
|
||||
}
|
||||
return enh.Out, annos
|
||||
|
||||
ts := enh.Ts
|
||||
// If this could be an instant query, shortcut so as not to change sort order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
return enh.Out, annos
|
||||
}
|
||||
|
||||
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
||||
// Add samples in output vector to output series.
|
||||
for _, sample := range enh.Out {
|
||||
h := sample.Metric.Hash()
|
||||
ss, ok := seriess[h]
|
||||
if !ok {
|
||||
ss = Series{Metric: sample.Metric}
|
||||
}
|
||||
if sample.H == nil {
|
||||
if ss.Floats == nil {
|
||||
ss.Floats = getFPointSlice(numSteps)
|
||||
}
|
||||
ss.Floats = append(ss.Floats, FPoint{T: ts, F: sample.F})
|
||||
} else {
|
||||
if ss.Histograms == nil {
|
||||
ss.Histograms = getHPointSlice(numSteps)
|
||||
}
|
||||
ss.Histograms = append(ss.Histograms, HPoint{T: ts, H: sample.H})
|
||||
}
|
||||
seriess[h] = ss
|
||||
}
|
||||
|
||||
return nil, annos
|
||||
}
|
||||
|
||||
// aggregationK evaluates count_values on vec.
|
||||
|
|
Loading…
Reference in New Issue