mirror of https://github.com/prometheus/prometheus
Make topk/bottomk aggregators.
parent
f26823afa7
commit
3e5136e36d
|
@ -103,6 +103,7 @@ type Expressions []Expr
|
|||
type AggregateExpr struct {
|
||||
Op itemType // The used aggregation operation.
|
||||
Expr Expr // The vector expression over which is aggregated.
|
||||
Param Expr // Parameter used by some aggregators.
|
||||
Grouping model.LabelNames // The labels by which to group the vector.
|
||||
Without bool // Whether to drop the given labels rather than keep them.
|
||||
KeepCommonLabels bool // Whether to keep common labels among result elements.
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
package promql
|
||||
|
||||
import (
|
||||
"container/heap"
|
||||
"fmt"
|
||||
"math"
|
||||
"runtime"
|
||||
|
@ -610,7 +611,7 @@ func (ev *evaluator) eval(expr Expr) model.Value {
|
|||
switch e := expr.(type) {
|
||||
case *AggregateExpr:
|
||||
vector := ev.evalVector(e.Expr)
|
||||
return ev.aggregation(e.Op, e.Grouping, e.Without, e.KeepCommonLabels, vector)
|
||||
return ev.aggregation(e.Op, e.Grouping, e.Without, e.KeepCommonLabels, e.Param, vector)
|
||||
|
||||
case *BinaryExpr:
|
||||
lhs := ev.evalOneOf(e.LHS, model.ValScalar, model.ValVector)
|
||||
|
@ -1060,15 +1061,24 @@ type groupedAggregation struct {
|
|||
value model.SampleValue
|
||||
valuesSquaredSum model.SampleValue
|
||||
groupCount int
|
||||
heap vectorByValueHeap
|
||||
reverseHeap vectorByReverseValueHeap
|
||||
}
|
||||
|
||||
// aggregation evaluates an aggregation operation on a vector.
|
||||
func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without bool, keepCommon bool, vec vector) vector {
|
||||
func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without bool, keepCommon bool, param Expr, vec vector) vector {
|
||||
|
||||
result := map[uint64]*groupedAggregation{}
|
||||
var k int
|
||||
if op == itemTopK || op == itemBottomK {
|
||||
k = ev.evalInt(param)
|
||||
if k < 1 {
|
||||
return vector{}
|
||||
}
|
||||
}
|
||||
|
||||
for _, sample := range vec {
|
||||
withoutMetric := sample.Metric
|
||||
for _, s := range vec {
|
||||
withoutMetric := s.Metric
|
||||
if without {
|
||||
for _, l := range grouping {
|
||||
withoutMetric.Del(l)
|
||||
|
@ -1080,7 +1090,7 @@ func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without
|
|||
if without {
|
||||
groupingKey = uint64(withoutMetric.Metric.Fingerprint())
|
||||
} else {
|
||||
groupingKey = model.SignatureForLabels(sample.Metric.Metric, grouping...)
|
||||
groupingKey = model.SignatureForLabels(s.Metric.Metric, grouping...)
|
||||
}
|
||||
|
||||
groupedResult, ok := result[groupingKey]
|
||||
|
@ -1088,7 +1098,7 @@ func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without
|
|||
if !ok {
|
||||
var m metric.Metric
|
||||
if keepCommon {
|
||||
m = sample.Metric
|
||||
m = s.Metric
|
||||
m.Del(model.MetricNameLabel)
|
||||
} else if without {
|
||||
m = withoutMetric
|
||||
|
@ -1098,44 +1108,65 @@ func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without
|
|||
Copied: true,
|
||||
}
|
||||
for _, l := range grouping {
|
||||
if v, ok := sample.Metric.Metric[l]; ok {
|
||||
if v, ok := s.Metric.Metric[l]; ok {
|
||||
m.Set(l, v)
|
||||
}
|
||||
}
|
||||
}
|
||||
result[groupingKey] = &groupedAggregation{
|
||||
labels: m,
|
||||
value: sample.Value,
|
||||
valuesSquaredSum: sample.Value * sample.Value,
|
||||
value: s.Value,
|
||||
valuesSquaredSum: s.Value * s.Value,
|
||||
groupCount: 1,
|
||||
}
|
||||
if op == itemTopK {
|
||||
result[groupingKey].heap = make(vectorByValueHeap, 0, k)
|
||||
heap.Push(&result[groupingKey].heap, &sample{Value: s.Value, Metric: s.Metric})
|
||||
} else if op == itemBottomK {
|
||||
result[groupingKey].reverseHeap = make(vectorByReverseValueHeap, 0, k)
|
||||
heap.Push(&result[groupingKey].reverseHeap, &sample{Value: s.Value, Metric: s.Metric})
|
||||
}
|
||||
continue
|
||||
}
|
||||
// Add the sample to the existing group.
|
||||
if keepCommon {
|
||||
groupedResult.labels = labelIntersection(groupedResult.labels, sample.Metric)
|
||||
groupedResult.labels = labelIntersection(groupedResult.labels, s.Metric)
|
||||
}
|
||||
|
||||
switch op {
|
||||
case itemSum:
|
||||
groupedResult.value += sample.Value
|
||||
groupedResult.value += s.Value
|
||||
case itemAvg:
|
||||
groupedResult.value += sample.Value
|
||||
groupedResult.value += s.Value
|
||||
groupedResult.groupCount++
|
||||
case itemMax:
|
||||
if groupedResult.value < sample.Value || math.IsNaN(float64(groupedResult.value)) {
|
||||
groupedResult.value = sample.Value
|
||||
if groupedResult.value < s.Value || math.IsNaN(float64(groupedResult.value)) {
|
||||
groupedResult.value = s.Value
|
||||
}
|
||||
case itemMin:
|
||||
if groupedResult.value > sample.Value || math.IsNaN(float64(groupedResult.value)) {
|
||||
groupedResult.value = sample.Value
|
||||
if groupedResult.value > s.Value || math.IsNaN(float64(groupedResult.value)) {
|
||||
groupedResult.value = s.Value
|
||||
}
|
||||
case itemCount:
|
||||
groupedResult.groupCount++
|
||||
case itemStdvar, itemStddev:
|
||||
groupedResult.value += sample.Value
|
||||
groupedResult.valuesSquaredSum += sample.Value * sample.Value
|
||||
groupedResult.value += s.Value
|
||||
groupedResult.valuesSquaredSum += s.Value * s.Value
|
||||
groupedResult.groupCount++
|
||||
case itemTopK:
|
||||
if len(groupedResult.heap) < k || groupedResult.heap[0].Value < s.Value || math.IsNaN(float64(groupedResult.heap[0].Value)) {
|
||||
if len(groupedResult.heap) == k {
|
||||
heap.Pop(&groupedResult.heap)
|
||||
}
|
||||
heap.Push(&groupedResult.heap, &sample{Value: s.Value, Metric: s.Metric})
|
||||
}
|
||||
case itemBottomK:
|
||||
if len(groupedResult.reverseHeap) < k || groupedResult.reverseHeap[0].Value > s.Value || math.IsNaN(float64(groupedResult.reverseHeap[0].Value)) {
|
||||
if len(groupedResult.reverseHeap) == k {
|
||||
heap.Pop(&groupedResult.reverseHeap)
|
||||
}
|
||||
heap.Push(&groupedResult.reverseHeap, &sample{Value: s.Value, Metric: s.Metric})
|
||||
}
|
||||
default:
|
||||
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
||||
}
|
||||
|
@ -1156,6 +1187,28 @@ func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without
|
|||
case itemStddev:
|
||||
avg := float64(aggr.value) / float64(aggr.groupCount)
|
||||
aggr.value = model.SampleValue(math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg))
|
||||
case itemTopK:
|
||||
// The heap keeps the lowest value on top, so reverse it.
|
||||
sort.Sort(sort.Reverse(aggr.heap))
|
||||
for _, v := range aggr.heap {
|
||||
resultVector = append(resultVector, &sample{
|
||||
Metric: v.Metric,
|
||||
Value: v.Value,
|
||||
Timestamp: ev.Timestamp,
|
||||
})
|
||||
}
|
||||
continue // Bypass default append.
|
||||
case itemBottomK:
|
||||
// The heap keeps the lowest value on top, so reverse it.
|
||||
sort.Sort(sort.Reverse(aggr.reverseHeap))
|
||||
for _, v := range aggr.reverseHeap {
|
||||
resultVector = append(resultVector, &sample{
|
||||
Metric: v.Metric,
|
||||
Value: v.Value,
|
||||
Timestamp: ev.Timestamp,
|
||||
})
|
||||
}
|
||||
continue // Bypass default append.
|
||||
default:
|
||||
// For other aggregations, we already have the right value.
|
||||
}
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
package promql
|
||||
|
||||
import (
|
||||
"container/heap"
|
||||
"math"
|
||||
"regexp"
|
||||
"sort"
|
||||
|
@ -298,52 +297,6 @@ func funcSortDesc(ev *evaluator, args Expressions) model.Value {
|
|||
return vector(byValueSorter)
|
||||
}
|
||||
|
||||
// === topk(k model.ValScalar, node model.ValVector) Vector ===
|
||||
func funcTopk(ev *evaluator, args Expressions) model.Value {
|
||||
k := ev.evalInt(args[0])
|
||||
if k < 1 {
|
||||
return vector{}
|
||||
}
|
||||
vec := ev.evalVector(args[1])
|
||||
|
||||
topk := make(vectorByValueHeap, 0, k)
|
||||
|
||||
for _, el := range vec {
|
||||
if len(topk) < k || topk[0].Value < el.Value || math.IsNaN(float64(topk[0].Value)) {
|
||||
if len(topk) == k {
|
||||
heap.Pop(&topk)
|
||||
}
|
||||
heap.Push(&topk, el)
|
||||
}
|
||||
}
|
||||
// The heap keeps the lowest value on top, so reverse it.
|
||||
sort.Sort(sort.Reverse(topk))
|
||||
return vector(topk)
|
||||
}
|
||||
|
||||
// === bottomk(k model.ValScalar, node model.ValVector) Vector ===
|
||||
func funcBottomk(ev *evaluator, args Expressions) model.Value {
|
||||
k := ev.evalInt(args[0])
|
||||
if k < 1 {
|
||||
return vector{}
|
||||
}
|
||||
vec := ev.evalVector(args[1])
|
||||
|
||||
bottomk := make(vectorByReverseValueHeap, 0, k)
|
||||
|
||||
for _, el := range vec {
|
||||
if len(bottomk) < k || bottomk[0].Value > el.Value || math.IsNaN(float64(bottomk[0].Value)) {
|
||||
if len(bottomk) == k {
|
||||
heap.Pop(&bottomk)
|
||||
}
|
||||
heap.Push(&bottomk, el)
|
||||
}
|
||||
}
|
||||
// The heap keeps the highest value on top, so reverse it.
|
||||
sort.Sort(sort.Reverse(bottomk))
|
||||
return vector(bottomk)
|
||||
}
|
||||
|
||||
// === clamp_max(vector model.ValVector, max Scalar) Vector ===
|
||||
func funcClampMax(ev *evaluator, args Expressions) model.Value {
|
||||
vec := ev.evalVector(args[0])
|
||||
|
@ -866,12 +819,6 @@ var functions = map[string]*Function{
|
|||
ReturnType: model.ValVector,
|
||||
Call: funcAvgOverTime,
|
||||
},
|
||||
"bottomk": {
|
||||
Name: "bottomk",
|
||||
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector},
|
||||
ReturnType: model.ValVector,
|
||||
Call: funcBottomk,
|
||||
},
|
||||
"ceil": {
|
||||
Name: "ceil",
|
||||
ArgTypes: []model.ValueType{model.ValVector},
|
||||
|
@ -1053,12 +1000,6 @@ var functions = map[string]*Function{
|
|||
ReturnType: model.ValScalar,
|
||||
Call: funcTime,
|
||||
},
|
||||
"topk": {
|
||||
Name: "topk",
|
||||
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector},
|
||||
ReturnType: model.ValVector,
|
||||
Call: funcTopk,
|
||||
},
|
||||
"vector": {
|
||||
Name: "vector",
|
||||
ArgTypes: []model.ValueType{model.ValScalar},
|
||||
|
|
|
@ -58,6 +58,10 @@ func (i itemType) isOperator() bool { return i > operatorsStart && i < operators
|
|||
// Returns false otherwise
|
||||
func (i itemType) isAggregator() bool { return i > aggregatorsStart && i < aggregatorsEnd }
|
||||
|
||||
// isAggregator returns true if the item is an aggregator that takes a parameter.
|
||||
// Returns false otherwise
|
||||
func (i itemType) isAggregatorWithParam() bool { return i == itemTopK || i == itemBottomK }
|
||||
|
||||
// isKeyword returns true if the item corresponds to a keyword.
|
||||
// Returns false otherwise.
|
||||
func (i itemType) isKeyword() bool { return i > keywordsStart && i < keywordsEnd }
|
||||
|
@ -170,6 +174,8 @@ const (
|
|||
itemMax
|
||||
itemStddev
|
||||
itemStdvar
|
||||
itemTopK
|
||||
itemBottomK
|
||||
aggregatorsEnd
|
||||
|
||||
keywordsStart
|
||||
|
@ -203,13 +209,15 @@ var key = map[string]itemType{
|
|||
"unless": itemLUnless,
|
||||
|
||||
// Aggregators.
|
||||
"sum": itemSum,
|
||||
"avg": itemAvg,
|
||||
"count": itemCount,
|
||||
"min": itemMin,
|
||||
"max": itemMax,
|
||||
"stddev": itemStddev,
|
||||
"stdvar": itemStdvar,
|
||||
"sum": itemSum,
|
||||
"avg": itemAvg,
|
||||
"count": itemCount,
|
||||
"min": itemMin,
|
||||
"max": itemMax,
|
||||
"stddev": itemStddev,
|
||||
"stdvar": itemStdvar,
|
||||
"topk": itemTopK,
|
||||
"bottomk": itemBottomK,
|
||||
|
||||
// Keywords.
|
||||
"alert": itemAlert,
|
||||
|
|
|
@ -719,6 +719,11 @@ func (p *parser) aggrExpr() *AggregateExpr {
|
|||
}
|
||||
|
||||
p.expect(itemLeftParen, ctx)
|
||||
var param Expr
|
||||
if agop.typ.isAggregatorWithParam() {
|
||||
param = p.expr()
|
||||
p.expect(itemComma, ctx)
|
||||
}
|
||||
e := p.expr()
|
||||
p.expect(itemRightParen, ctx)
|
||||
|
||||
|
@ -746,6 +751,7 @@ func (p *parser) aggrExpr() *AggregateExpr {
|
|||
return &AggregateExpr{
|
||||
Op: agop.typ,
|
||||
Expr: e,
|
||||
Param: param,
|
||||
Grouping: grouping,
|
||||
Without: without,
|
||||
KeepCommonLabels: keepCommon,
|
||||
|
|
|
@ -1201,6 +1201,18 @@ var testExpr = []struct {
|
|||
},
|
||||
Grouping: model.LabelNames{},
|
||||
},
|
||||
}, {
|
||||
input: "topk(5, some_metric)",
|
||||
expected: &AggregateExpr{
|
||||
Op: itemTopK,
|
||||
Expr: &VectorSelector{
|
||||
Name: "some_metric",
|
||||
LabelMatchers: metric.LabelMatchers{
|
||||
{Type: metric.Equal, Name: model.MetricNameLabel, Value: "some_metric"},
|
||||
},
|
||||
},
|
||||
Param: &NumberLiteral{5},
|
||||
},
|
||||
}, {
|
||||
input: `sum some_metric by (test)`,
|
||||
fail: true,
|
||||
|
@ -1237,6 +1249,10 @@ var testExpr = []struct {
|
|||
input: `sum without (test) (some_metric) by (test)`,
|
||||
fail: true,
|
||||
errMsg: "could not parse remaining input \"by (test)\"...",
|
||||
}, {
|
||||
input: `topk(some_metric)`,
|
||||
fail: true,
|
||||
errMsg: "parse error at char 17: unexpected \")\" in aggregation, expected \",\"",
|
||||
},
|
||||
// Test function calls.
|
||||
{
|
||||
|
|
|
@ -135,7 +135,11 @@ func (es Expressions) String() (s string) {
|
|||
}
|
||||
|
||||
func (node *AggregateExpr) String() string {
|
||||
aggrString := fmt.Sprintf("%s(%s)", node.Op, node.Expr)
|
||||
aggrString := fmt.Sprintf("%s(", node.Op)
|
||||
if node.Op.isAggregatorWithParam() {
|
||||
aggrString += fmt.Sprintf("%s, ", node.Param)
|
||||
}
|
||||
aggrString += fmt.Sprintf("%s)", node.Expr)
|
||||
if len(node.Grouping) > 0 {
|
||||
var format string
|
||||
if node.Without {
|
||||
|
|
|
@ -71,6 +71,9 @@ func TestExprString(t *testing.T) {
|
|||
{
|
||||
in: `sum(task:errors:rate10s{job="s"}) WITHOUT (instance)`,
|
||||
},
|
||||
{
|
||||
in: `topk(5, task:errors:rate10s{job="s"})`,
|
||||
},
|
||||
{
|
||||
in: `a - ON(b) c`,
|
||||
},
|
||||
|
|
Loading…
Reference in New Issue