mirror of https://github.com/prometheus/prometheus
Update from review comments.
Signed-off-by: György Krajcsovits <gyorgy.krajcsovits@grafana.com>pull/14658/head
parent
6aee5b4b38
commit
386fc8b9f6
|
@ -497,8 +497,7 @@ eval instant at 5m rate(const_histogram_bucket[5m])
|
|||
{le="2.0"} 0
|
||||
{le="+Inf"} 0
|
||||
|
||||
# There is no change to the bucket count over time, thus rate is 0 in each bucket.
|
||||
# However native histograms do not represent empty buckets, so here the zeros are implicit.
|
||||
# Native histograms do not represent empty buckets, so here the zeros are implicit.
|
||||
eval instant at 5m rate(const_histogram[5m])
|
||||
{} {{schema:-53 sum:0 count:0 custom_values:[0.0 1.0 2.0]}}
|
||||
|
||||
|
@ -507,7 +506,5 @@ eval instant at 5m rate(const_histogram[5m])
|
|||
eval instant at 5m histogram_quantile(1.0, sum by (le) (rate(const_histogram_bucket[5m])))
|
||||
{} NaN
|
||||
|
||||
# Zero buckets mean no observations, so there is no value that observations fall below,
|
||||
# which means that any quantile is a NaN.
|
||||
eval instant at 5m histogram_quantile(1.0, sum(rate(const_histogram[5m])))
|
||||
{} NaN
|
||||
|
|
|
@ -794,7 +794,8 @@ load 1m
|
|||
eval instant at 5m rate(const_histogram[5m])
|
||||
{} {{schema:0 sum:0 count:0}}
|
||||
|
||||
# Zero buckets mean no observations, so average has no meaningful value.
|
||||
# Zero buckets mean no observations, thus the denominator in the average is 0
|
||||
# leading to 0/0, which is NaN.
|
||||
eval instant at 5m histogram_avg(rate(const_histogram[5m]))
|
||||
{} NaN
|
||||
|
||||
|
@ -802,15 +803,19 @@ eval instant at 5m histogram_avg(rate(const_histogram[5m]))
|
|||
eval instant at 5m histogram_count(rate(const_histogram[5m]))
|
||||
{} 0.0
|
||||
|
||||
# Zero buckets mean no observations, so the sum should be NaN, However
|
||||
# we return 0 for compatibility with classic histograms.
|
||||
# Zero buckets mean no observations and empty histogram has a sum of 0 by definition.
|
||||
eval instant at 5m histogram_sum(rate(const_histogram[5m]))
|
||||
{} 0.0
|
||||
|
||||
# BUG??? Zero buckets mean no observations, thus any fraction should be 0.
|
||||
# Zero buckets mean no observations, thus the denominator in the fraction is 0,
|
||||
# leading to 0/0, which is NaN.
|
||||
eval instant at 5m histogram_fraction(0.0, 1.0, rate(const_histogram[5m]))
|
||||
{} NaN
|
||||
|
||||
# Workaround to calculate the observation count corresponding to NaN fraction.
|
||||
eval instant at 5m histogram_count(rate(const_histogram[5m])) == 0.0 or histogram_fraction(0.0, 1.0, rate(const_histogram[5m])) * histogram_count(rate(const_histogram[5m]))
|
||||
{} 0.0
|
||||
|
||||
# Zero buckets mean no observations, so there is no value that observations fall below,
|
||||
# which means that any quantile is a NaN.
|
||||
eval instant at 5m histogram_quantile(1.0, rate(const_histogram[5m]))
|
||||
|
|
Loading…
Reference in New Issue