Merge pull request #676 from prometheus/fabxc/promql

Query/rules refactoring
pull/678/head
Julius Volz 2015-05-07 11:39:26 +02:00
commit 2579606e77
53 changed files with 9224 additions and 9116 deletions

4
Godeps/Godeps.json generated
View File

@ -63,6 +63,10 @@
{
"ImportPath": "github.com/syndtr/gosnappy/snappy",
"Rev": "156a073208e131d7d2e212cb749feae7c339e846"
},
{
"ImportPath": "golang.org/x/net/context",
"Rev": "b6fdb7d8a4ccefede406f8fe0f017fb58265054c"
}
]
}

View File

@ -0,0 +1,447 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package context defines the Context type, which carries deadlines,
// cancelation signals, and other request-scoped values across API boundaries
// and between processes.
//
// Incoming requests to a server should create a Context, and outgoing calls to
// servers should accept a Context. The chain of function calls between must
// propagate the Context, optionally replacing it with a modified copy created
// using WithDeadline, WithTimeout, WithCancel, or WithValue.
//
// Programs that use Contexts should follow these rules to keep interfaces
// consistent across packages and enable static analysis tools to check context
// propagation:
//
// Do not store Contexts inside a struct type; instead, pass a Context
// explicitly to each function that needs it. The Context should be the first
// parameter, typically named ctx:
//
// func DoSomething(ctx context.Context, arg Arg) error {
// // ... use ctx ...
// }
//
// Do not pass a nil Context, even if a function permits it. Pass context.TODO
// if you are unsure about which Context to use.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
//
// The same Context may be passed to functions running in different goroutines;
// Contexts are safe for simultaneous use by multiple goroutines.
//
// See http://blog.golang.org/context for example code for a server that uses
// Contexts.
package context
import (
"errors"
"fmt"
"sync"
"time"
)
// A Context carries a deadline, a cancelation signal, and other values across
// API boundaries.
//
// Context's methods may be called by multiple goroutines simultaneously.
type Context interface {
// Deadline returns the time when work done on behalf of this context
// should be canceled. Deadline returns ok==false when no deadline is
// set. Successive calls to Deadline return the same results.
Deadline() (deadline time.Time, ok bool)
// Done returns a channel that's closed when work done on behalf of this
// context should be canceled. Done may return nil if this context can
// never be canceled. Successive calls to Done return the same value.
//
// WithCancel arranges for Done to be closed when cancel is called;
// WithDeadline arranges for Done to be closed when the deadline
// expires; WithTimeout arranges for Done to be closed when the timeout
// elapses.
//
// Done is provided for use in select statements:
//
// // Stream generates values with DoSomething and sends them to out
// // until DoSomething returns an error or ctx.Done is closed.
// func Stream(ctx context.Context, out <-chan Value) error {
// for {
// v, err := DoSomething(ctx)
// if err != nil {
// return err
// }
// select {
// case <-ctx.Done():
// return ctx.Err()
// case out <- v:
// }
// }
// }
//
// See http://blog.golang.org/pipelines for more examples of how to use
// a Done channel for cancelation.
Done() <-chan struct{}
// Err returns a non-nil error value after Done is closed. Err returns
// Canceled if the context was canceled or DeadlineExceeded if the
// context's deadline passed. No other values for Err are defined.
// After Done is closed, successive calls to Err return the same value.
Err() error
// Value returns the value associated with this context for key, or nil
// if no value is associated with key. Successive calls to Value with
// the same key returns the same result.
//
// Use context values only for request-scoped data that transits
// processes and API boundaries, not for passing optional parameters to
// functions.
//
// A key identifies a specific value in a Context. Functions that wish
// to store values in Context typically allocate a key in a global
// variable then use that key as the argument to context.WithValue and
// Context.Value. A key can be any type that supports equality;
// packages should define keys as an unexported type to avoid
// collisions.
//
// Packages that define a Context key should provide type-safe accessors
// for the values stores using that key:
//
// // Package user defines a User type that's stored in Contexts.
// package user
//
// import "golang.org/x/net/context"
//
// // User is the type of value stored in the Contexts.
// type User struct {...}
//
// // key is an unexported type for keys defined in this package.
// // This prevents collisions with keys defined in other packages.
// type key int
//
// // userKey is the key for user.User values in Contexts. It is
// // unexported; clients use user.NewContext and user.FromContext
// // instead of using this key directly.
// var userKey key = 0
//
// // NewContext returns a new Context that carries value u.
// func NewContext(ctx context.Context, u *User) context.Context {
// return context.WithValue(ctx, userKey, u)
// }
//
// // FromContext returns the User value stored in ctx, if any.
// func FromContext(ctx context.Context) (*User, bool) {
// u, ok := ctx.Value(userKey).(*User)
// return u, ok
// }
Value(key interface{}) interface{}
}
// Canceled is the error returned by Context.Err when the context is canceled.
var Canceled = errors.New("context canceled")
// DeadlineExceeded is the error returned by Context.Err when the context's
// deadline passes.
var DeadlineExceeded = errors.New("context deadline exceeded")
// An emptyCtx is never canceled, has no values, and has no deadline. It is not
// struct{}, since vars of this type must have distinct addresses.
type emptyCtx int
func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
return
}
func (*emptyCtx) Done() <-chan struct{} {
return nil
}
func (*emptyCtx) Err() error {
return nil
}
func (*emptyCtx) Value(key interface{}) interface{} {
return nil
}
func (e *emptyCtx) String() string {
switch e {
case background:
return "context.Background"
case todo:
return "context.TODO"
}
return "unknown empty Context"
}
var (
background = new(emptyCtx)
todo = new(emptyCtx)
)
// Background returns a non-nil, empty Context. It is never canceled, has no
// values, and has no deadline. It is typically used by the main function,
// initialization, and tests, and as the top-level Context for incoming
// requests.
func Background() Context {
return background
}
// TODO returns a non-nil, empty Context. Code should use context.TODO when
// it's unclear which Context to use or it's is not yet available (because the
// surrounding function has not yet been extended to accept a Context
// parameter). TODO is recognized by static analysis tools that determine
// whether Contexts are propagated correctly in a program.
func TODO() Context {
return todo
}
// A CancelFunc tells an operation to abandon its work.
// A CancelFunc does not wait for the work to stop.
// After the first call, subsequent calls to a CancelFunc do nothing.
type CancelFunc func()
// WithCancel returns a copy of parent with a new Done channel. The returned
// context's Done channel is closed when the returned cancel function is called
// or when the parent context's Done channel is closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
c := newCancelCtx(parent)
propagateCancel(parent, &c)
return &c, func() { c.cancel(true, Canceled) }
}
// newCancelCtx returns an initialized cancelCtx.
func newCancelCtx(parent Context) cancelCtx {
return cancelCtx{
Context: parent,
done: make(chan struct{}),
}
}
// propagateCancel arranges for child to be canceled when parent is.
func propagateCancel(parent Context, child canceler) {
if parent.Done() == nil {
return // parent is never canceled
}
if p, ok := parentCancelCtx(parent); ok {
p.mu.Lock()
if p.err != nil {
// parent has already been canceled
child.cancel(false, p.err)
} else {
if p.children == nil {
p.children = make(map[canceler]bool)
}
p.children[child] = true
}
p.mu.Unlock()
} else {
go func() {
select {
case <-parent.Done():
child.cancel(false, parent.Err())
case <-child.Done():
}
}()
}
}
// parentCancelCtx follows a chain of parent references until it finds a
// *cancelCtx. This function understands how each of the concrete types in this
// package represents its parent.
func parentCancelCtx(parent Context) (*cancelCtx, bool) {
for {
switch c := parent.(type) {
case *cancelCtx:
return c, true
case *timerCtx:
return &c.cancelCtx, true
case *valueCtx:
parent = c.Context
default:
return nil, false
}
}
}
// removeChild removes a context from its parent.
func removeChild(parent Context, child canceler) {
p, ok := parentCancelCtx(parent)
if !ok {
return
}
p.mu.Lock()
if p.children != nil {
delete(p.children, child)
}
p.mu.Unlock()
}
// A canceler is a context type that can be canceled directly. The
// implementations are *cancelCtx and *timerCtx.
type canceler interface {
cancel(removeFromParent bool, err error)
Done() <-chan struct{}
}
// A cancelCtx can be canceled. When canceled, it also cancels any children
// that implement canceler.
type cancelCtx struct {
Context
done chan struct{} // closed by the first cancel call.
mu sync.Mutex
children map[canceler]bool // set to nil by the first cancel call
err error // set to non-nil by the first cancel call
}
func (c *cancelCtx) Done() <-chan struct{} {
return c.done
}
func (c *cancelCtx) Err() error {
c.mu.Lock()
defer c.mu.Unlock()
return c.err
}
func (c *cancelCtx) String() string {
return fmt.Sprintf("%v.WithCancel", c.Context)
}
// cancel closes c.done, cancels each of c's children, and, if
// removeFromParent is true, removes c from its parent's children.
func (c *cancelCtx) cancel(removeFromParent bool, err error) {
if err == nil {
panic("context: internal error: missing cancel error")
}
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return // already canceled
}
c.err = err
close(c.done)
for child := range c.children {
// NOTE: acquiring the child's lock while holding parent's lock.
child.cancel(false, err)
}
c.children = nil
c.mu.Unlock()
if removeFromParent {
removeChild(c.Context, c)
}
}
// WithDeadline returns a copy of the parent context with the deadline adjusted
// to be no later than d. If the parent's deadline is already earlier than d,
// WithDeadline(parent, d) is semantically equivalent to parent. The returned
// context's Done channel is closed when the deadline expires, when the returned
// cancel function is called, or when the parent context's Done channel is
// closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc) {
if cur, ok := parent.Deadline(); ok && cur.Before(deadline) {
// The current deadline is already sooner than the new one.
return WithCancel(parent)
}
c := &timerCtx{
cancelCtx: newCancelCtx(parent),
deadline: deadline,
}
propagateCancel(parent, c)
d := deadline.Sub(time.Now())
if d <= 0 {
c.cancel(true, DeadlineExceeded) // deadline has already passed
return c, func() { c.cancel(true, Canceled) }
}
c.mu.Lock()
defer c.mu.Unlock()
if c.err == nil {
c.timer = time.AfterFunc(d, func() {
c.cancel(true, DeadlineExceeded)
})
}
return c, func() { c.cancel(true, Canceled) }
}
// A timerCtx carries a timer and a deadline. It embeds a cancelCtx to
// implement Done and Err. It implements cancel by stopping its timer then
// delegating to cancelCtx.cancel.
type timerCtx struct {
cancelCtx
timer *time.Timer // Under cancelCtx.mu.
deadline time.Time
}
func (c *timerCtx) Deadline() (deadline time.Time, ok bool) {
return c.deadline, true
}
func (c *timerCtx) String() string {
return fmt.Sprintf("%v.WithDeadline(%s [%s])", c.cancelCtx.Context, c.deadline, c.deadline.Sub(time.Now()))
}
func (c *timerCtx) cancel(removeFromParent bool, err error) {
c.cancelCtx.cancel(false, err)
if removeFromParent {
// Remove this timerCtx from its parent cancelCtx's children.
removeChild(c.cancelCtx.Context, c)
}
c.mu.Lock()
if c.timer != nil {
c.timer.Stop()
c.timer = nil
}
c.mu.Unlock()
}
// WithTimeout returns WithDeadline(parent, time.Now().Add(timeout)).
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete:
//
// func slowOperationWithTimeout(ctx context.Context) (Result, error) {
// ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)
// defer cancel() // releases resources if slowOperation completes before timeout elapses
// return slowOperation(ctx)
// }
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
return WithDeadline(parent, time.Now().Add(timeout))
}
// WithValue returns a copy of parent in which the value associated with key is
// val.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
func WithValue(parent Context, key interface{}, val interface{}) Context {
return &valueCtx{parent, key, val}
}
// A valueCtx carries a key-value pair. It implements Value for that key and
// delegates all other calls to the embedded Context.
type valueCtx struct {
Context
key, val interface{}
}
func (c *valueCtx) String() string {
return fmt.Sprintf("%v.WithValue(%#v, %#v)", c.Context, c.key, c.val)
}
func (c *valueCtx) Value(key interface{}) interface{} {
if c.key == key {
return c.val
}
return c.Context.Value(key)
}

View File

@ -0,0 +1,575 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package context
import (
"fmt"
"math/rand"
"runtime"
"strings"
"sync"
"testing"
"time"
)
// otherContext is a Context that's not one of the types defined in context.go.
// This lets us test code paths that differ based on the underlying type of the
// Context.
type otherContext struct {
Context
}
func TestBackground(t *testing.T) {
c := Background()
if c == nil {
t.Fatalf("Background returned nil")
}
select {
case x := <-c.Done():
t.Errorf("<-c.Done() == %v want nothing (it should block)", x)
default:
}
if got, want := fmt.Sprint(c), "context.Background"; got != want {
t.Errorf("Background().String() = %q want %q", got, want)
}
}
func TestTODO(t *testing.T) {
c := TODO()
if c == nil {
t.Fatalf("TODO returned nil")
}
select {
case x := <-c.Done():
t.Errorf("<-c.Done() == %v want nothing (it should block)", x)
default:
}
if got, want := fmt.Sprint(c), "context.TODO"; got != want {
t.Errorf("TODO().String() = %q want %q", got, want)
}
}
func TestWithCancel(t *testing.T) {
c1, cancel := WithCancel(Background())
if got, want := fmt.Sprint(c1), "context.Background.WithCancel"; got != want {
t.Errorf("c1.String() = %q want %q", got, want)
}
o := otherContext{c1}
c2, _ := WithCancel(o)
contexts := []Context{c1, o, c2}
for i, c := range contexts {
if d := c.Done(); d == nil {
t.Errorf("c[%d].Done() == %v want non-nil", i, d)
}
if e := c.Err(); e != nil {
t.Errorf("c[%d].Err() == %v want nil", i, e)
}
select {
case x := <-c.Done():
t.Errorf("<-c.Done() == %v want nothing (it should block)", x)
default:
}
}
cancel()
time.Sleep(100 * time.Millisecond) // let cancelation propagate
for i, c := range contexts {
select {
case <-c.Done():
default:
t.Errorf("<-c[%d].Done() blocked, but shouldn't have", i)
}
if e := c.Err(); e != Canceled {
t.Errorf("c[%d].Err() == %v want %v", i, e, Canceled)
}
}
}
func TestParentFinishesChild(t *testing.T) {
// Context tree:
// parent -> cancelChild
// parent -> valueChild -> timerChild
parent, cancel := WithCancel(Background())
cancelChild, stop := WithCancel(parent)
defer stop()
valueChild := WithValue(parent, "key", "value")
timerChild, stop := WithTimeout(valueChild, 10000*time.Hour)
defer stop()
select {
case x := <-parent.Done():
t.Errorf("<-parent.Done() == %v want nothing (it should block)", x)
case x := <-cancelChild.Done():
t.Errorf("<-cancelChild.Done() == %v want nothing (it should block)", x)
case x := <-timerChild.Done():
t.Errorf("<-timerChild.Done() == %v want nothing (it should block)", x)
case x := <-valueChild.Done():
t.Errorf("<-valueChild.Done() == %v want nothing (it should block)", x)
default:
}
// The parent's children should contain the two cancelable children.
pc := parent.(*cancelCtx)
cc := cancelChild.(*cancelCtx)
tc := timerChild.(*timerCtx)
pc.mu.Lock()
if len(pc.children) != 2 || !pc.children[cc] || !pc.children[tc] {
t.Errorf("bad linkage: pc.children = %v, want %v and %v",
pc.children, cc, tc)
}
pc.mu.Unlock()
if p, ok := parentCancelCtx(cc.Context); !ok || p != pc {
t.Errorf("bad linkage: parentCancelCtx(cancelChild.Context) = %v, %v want %v, true", p, ok, pc)
}
if p, ok := parentCancelCtx(tc.Context); !ok || p != pc {
t.Errorf("bad linkage: parentCancelCtx(timerChild.Context) = %v, %v want %v, true", p, ok, pc)
}
cancel()
pc.mu.Lock()
if len(pc.children) != 0 {
t.Errorf("pc.cancel didn't clear pc.children = %v", pc.children)
}
pc.mu.Unlock()
// parent and children should all be finished.
check := func(ctx Context, name string) {
select {
case <-ctx.Done():
default:
t.Errorf("<-%s.Done() blocked, but shouldn't have", name)
}
if e := ctx.Err(); e != Canceled {
t.Errorf("%s.Err() == %v want %v", name, e, Canceled)
}
}
check(parent, "parent")
check(cancelChild, "cancelChild")
check(valueChild, "valueChild")
check(timerChild, "timerChild")
// WithCancel should return a canceled context on a canceled parent.
precanceledChild := WithValue(parent, "key", "value")
select {
case <-precanceledChild.Done():
default:
t.Errorf("<-precanceledChild.Done() blocked, but shouldn't have")
}
if e := precanceledChild.Err(); e != Canceled {
t.Errorf("precanceledChild.Err() == %v want %v", e, Canceled)
}
}
func TestChildFinishesFirst(t *testing.T) {
cancelable, stop := WithCancel(Background())
defer stop()
for _, parent := range []Context{Background(), cancelable} {
child, cancel := WithCancel(parent)
select {
case x := <-parent.Done():
t.Errorf("<-parent.Done() == %v want nothing (it should block)", x)
case x := <-child.Done():
t.Errorf("<-child.Done() == %v want nothing (it should block)", x)
default:
}
cc := child.(*cancelCtx)
pc, pcok := parent.(*cancelCtx) // pcok == false when parent == Background()
if p, ok := parentCancelCtx(cc.Context); ok != pcok || (ok && pc != p) {
t.Errorf("bad linkage: parentCancelCtx(cc.Context) = %v, %v want %v, %v", p, ok, pc, pcok)
}
if pcok {
pc.mu.Lock()
if len(pc.children) != 1 || !pc.children[cc] {
t.Errorf("bad linkage: pc.children = %v, cc = %v", pc.children, cc)
}
pc.mu.Unlock()
}
cancel()
if pcok {
pc.mu.Lock()
if len(pc.children) != 0 {
t.Errorf("child's cancel didn't remove self from pc.children = %v", pc.children)
}
pc.mu.Unlock()
}
// child should be finished.
select {
case <-child.Done():
default:
t.Errorf("<-child.Done() blocked, but shouldn't have")
}
if e := child.Err(); e != Canceled {
t.Errorf("child.Err() == %v want %v", e, Canceled)
}
// parent should not be finished.
select {
case x := <-parent.Done():
t.Errorf("<-parent.Done() == %v want nothing (it should block)", x)
default:
}
if e := parent.Err(); e != nil {
t.Errorf("parent.Err() == %v want nil", e)
}
}
}
func testDeadline(c Context, wait time.Duration, t *testing.T) {
select {
case <-time.After(wait):
t.Fatalf("context should have timed out")
case <-c.Done():
}
if e := c.Err(); e != DeadlineExceeded {
t.Errorf("c.Err() == %v want %v", e, DeadlineExceeded)
}
}
func TestDeadline(t *testing.T) {
c, _ := WithDeadline(Background(), time.Now().Add(100*time.Millisecond))
if got, prefix := fmt.Sprint(c), "context.Background.WithDeadline("; !strings.HasPrefix(got, prefix) {
t.Errorf("c.String() = %q want prefix %q", got, prefix)
}
testDeadline(c, 200*time.Millisecond, t)
c, _ = WithDeadline(Background(), time.Now().Add(100*time.Millisecond))
o := otherContext{c}
testDeadline(o, 200*time.Millisecond, t)
c, _ = WithDeadline(Background(), time.Now().Add(100*time.Millisecond))
o = otherContext{c}
c, _ = WithDeadline(o, time.Now().Add(300*time.Millisecond))
testDeadline(c, 200*time.Millisecond, t)
}
func TestTimeout(t *testing.T) {
c, _ := WithTimeout(Background(), 100*time.Millisecond)
if got, prefix := fmt.Sprint(c), "context.Background.WithDeadline("; !strings.HasPrefix(got, prefix) {
t.Errorf("c.String() = %q want prefix %q", got, prefix)
}
testDeadline(c, 200*time.Millisecond, t)
c, _ = WithTimeout(Background(), 100*time.Millisecond)
o := otherContext{c}
testDeadline(o, 200*time.Millisecond, t)
c, _ = WithTimeout(Background(), 100*time.Millisecond)
o = otherContext{c}
c, _ = WithTimeout(o, 300*time.Millisecond)
testDeadline(c, 200*time.Millisecond, t)
}
func TestCanceledTimeout(t *testing.T) {
c, _ := WithTimeout(Background(), 200*time.Millisecond)
o := otherContext{c}
c, cancel := WithTimeout(o, 400*time.Millisecond)
cancel()
time.Sleep(100 * time.Millisecond) // let cancelation propagate
select {
case <-c.Done():
default:
t.Errorf("<-c.Done() blocked, but shouldn't have")
}
if e := c.Err(); e != Canceled {
t.Errorf("c.Err() == %v want %v", e, Canceled)
}
}
type key1 int
type key2 int
var k1 = key1(1)
var k2 = key2(1) // same int as k1, different type
var k3 = key2(3) // same type as k2, different int
func TestValues(t *testing.T) {
check := func(c Context, nm, v1, v2, v3 string) {
if v, ok := c.Value(k1).(string); ok == (len(v1) == 0) || v != v1 {
t.Errorf(`%s.Value(k1).(string) = %q, %t want %q, %t`, nm, v, ok, v1, len(v1) != 0)
}
if v, ok := c.Value(k2).(string); ok == (len(v2) == 0) || v != v2 {
t.Errorf(`%s.Value(k2).(string) = %q, %t want %q, %t`, nm, v, ok, v2, len(v2) != 0)
}
if v, ok := c.Value(k3).(string); ok == (len(v3) == 0) || v != v3 {
t.Errorf(`%s.Value(k3).(string) = %q, %t want %q, %t`, nm, v, ok, v3, len(v3) != 0)
}
}
c0 := Background()
check(c0, "c0", "", "", "")
c1 := WithValue(Background(), k1, "c1k1")
check(c1, "c1", "c1k1", "", "")
if got, want := fmt.Sprint(c1), `context.Background.WithValue(1, "c1k1")`; got != want {
t.Errorf("c.String() = %q want %q", got, want)
}
c2 := WithValue(c1, k2, "c2k2")
check(c2, "c2", "c1k1", "c2k2", "")
c3 := WithValue(c2, k3, "c3k3")
check(c3, "c2", "c1k1", "c2k2", "c3k3")
c4 := WithValue(c3, k1, nil)
check(c4, "c4", "", "c2k2", "c3k3")
o0 := otherContext{Background()}
check(o0, "o0", "", "", "")
o1 := otherContext{WithValue(Background(), k1, "c1k1")}
check(o1, "o1", "c1k1", "", "")
o2 := WithValue(o1, k2, "o2k2")
check(o2, "o2", "c1k1", "o2k2", "")
o3 := otherContext{c4}
check(o3, "o3", "", "c2k2", "c3k3")
o4 := WithValue(o3, k3, nil)
check(o4, "o4", "", "c2k2", "")
}
func TestAllocs(t *testing.T) {
bg := Background()
for _, test := range []struct {
desc string
f func()
limit float64
gccgoLimit float64
}{
{
desc: "Background()",
f: func() { Background() },
limit: 0,
gccgoLimit: 0,
},
{
desc: fmt.Sprintf("WithValue(bg, %v, nil)", k1),
f: func() {
c := WithValue(bg, k1, nil)
c.Value(k1)
},
limit: 3,
gccgoLimit: 3,
},
{
desc: "WithTimeout(bg, 15*time.Millisecond)",
f: func() {
c, _ := WithTimeout(bg, 15*time.Millisecond)
<-c.Done()
},
limit: 8,
gccgoLimit: 13,
},
{
desc: "WithCancel(bg)",
f: func() {
c, cancel := WithCancel(bg)
cancel()
<-c.Done()
},
limit: 5,
gccgoLimit: 8,
},
{
desc: "WithTimeout(bg, 100*time.Millisecond)",
f: func() {
c, cancel := WithTimeout(bg, 100*time.Millisecond)
cancel()
<-c.Done()
},
limit: 8,
gccgoLimit: 25,
},
} {
limit := test.limit
if runtime.Compiler == "gccgo" {
// gccgo does not yet do escape analysis.
// TOOD(iant): Remove this when gccgo does do escape analysis.
limit = test.gccgoLimit
}
if n := testing.AllocsPerRun(100, test.f); n > limit {
t.Errorf("%s allocs = %f want %d", test.desc, n, int(limit))
}
}
}
func TestSimultaneousCancels(t *testing.T) {
root, cancel := WithCancel(Background())
m := map[Context]CancelFunc{root: cancel}
q := []Context{root}
// Create a tree of contexts.
for len(q) != 0 && len(m) < 100 {
parent := q[0]
q = q[1:]
for i := 0; i < 4; i++ {
ctx, cancel := WithCancel(parent)
m[ctx] = cancel
q = append(q, ctx)
}
}
// Start all the cancels in a random order.
var wg sync.WaitGroup
wg.Add(len(m))
for _, cancel := range m {
go func(cancel CancelFunc) {
cancel()
wg.Done()
}(cancel)
}
// Wait on all the contexts in a random order.
for ctx := range m {
select {
case <-ctx.Done():
case <-time.After(1 * time.Second):
buf := make([]byte, 10<<10)
n := runtime.Stack(buf, true)
t.Fatalf("timed out waiting for <-ctx.Done(); stacks:\n%s", buf[:n])
}
}
// Wait for all the cancel functions to return.
done := make(chan struct{})
go func() {
wg.Wait()
close(done)
}()
select {
case <-done:
case <-time.After(1 * time.Second):
buf := make([]byte, 10<<10)
n := runtime.Stack(buf, true)
t.Fatalf("timed out waiting for cancel functions; stacks:\n%s", buf[:n])
}
}
func TestInterlockedCancels(t *testing.T) {
parent, cancelParent := WithCancel(Background())
child, cancelChild := WithCancel(parent)
go func() {
parent.Done()
cancelChild()
}()
cancelParent()
select {
case <-child.Done():
case <-time.After(1 * time.Second):
buf := make([]byte, 10<<10)
n := runtime.Stack(buf, true)
t.Fatalf("timed out waiting for child.Done(); stacks:\n%s", buf[:n])
}
}
func TestLayersCancel(t *testing.T) {
testLayers(t, time.Now().UnixNano(), false)
}
func TestLayersTimeout(t *testing.T) {
testLayers(t, time.Now().UnixNano(), true)
}
func testLayers(t *testing.T, seed int64, testTimeout bool) {
rand.Seed(seed)
errorf := func(format string, a ...interface{}) {
t.Errorf(fmt.Sprintf("seed=%d: %s", seed, format), a...)
}
const (
timeout = 200 * time.Millisecond
minLayers = 30
)
type value int
var (
vals []*value
cancels []CancelFunc
numTimers int
ctx = Background()
)
for i := 0; i < minLayers || numTimers == 0 || len(cancels) == 0 || len(vals) == 0; i++ {
switch rand.Intn(3) {
case 0:
v := new(value)
ctx = WithValue(ctx, v, v)
vals = append(vals, v)
case 1:
var cancel CancelFunc
ctx, cancel = WithCancel(ctx)
cancels = append(cancels, cancel)
case 2:
var cancel CancelFunc
ctx, cancel = WithTimeout(ctx, timeout)
cancels = append(cancels, cancel)
numTimers++
}
}
checkValues := func(when string) {
for _, key := range vals {
if val := ctx.Value(key).(*value); key != val {
errorf("%s: ctx.Value(%p) = %p want %p", when, key, val, key)
}
}
}
select {
case <-ctx.Done():
errorf("ctx should not be canceled yet")
default:
}
if s, prefix := fmt.Sprint(ctx), "context.Background."; !strings.HasPrefix(s, prefix) {
t.Errorf("ctx.String() = %q want prefix %q", s, prefix)
}
t.Log(ctx)
checkValues("before cancel")
if testTimeout {
select {
case <-ctx.Done():
case <-time.After(timeout + timeout/10):
errorf("ctx should have timed out")
}
checkValues("after timeout")
} else {
cancel := cancels[rand.Intn(len(cancels))]
cancel()
select {
case <-ctx.Done():
default:
errorf("ctx should be canceled")
}
checkValues("after cancel")
}
}
func TestCancelRemoves(t *testing.T) {
checkChildren := func(when string, ctx Context, want int) {
if got := len(ctx.(*cancelCtx).children); got != want {
t.Errorf("%s: context has %d children, want %d", when, got, want)
}
}
ctx, _ := WithCancel(Background())
checkChildren("after creation", ctx, 0)
_, cancel := WithCancel(ctx)
checkChildren("with WithCancel child ", ctx, 1)
cancel()
checkChildren("after cancelling WithCancel child", ctx, 0)
ctx, _ = WithCancel(Background())
checkChildren("after creation", ctx, 0)
_, cancel = WithTimeout(ctx, 60*time.Minute)
checkChildren("with WithTimeout child ", ctx, 1)
cancel()
checkChildren("after cancelling WithTimeout child", ctx, 0)
}

View File

@ -0,0 +1,26 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package context_test
import (
"fmt"
"time"
"golang.org/x/net/context"
)
func ExampleWithTimeout() {
// Pass a context with a timeout to tell a blocking function that it
// should abandon its work after the timeout elapses.
ctx, _ := context.WithTimeout(context.Background(), 100*time.Millisecond)
select {
case <-time.After(200 * time.Millisecond):
fmt.Println("overslept")
case <-ctx.Done():
fmt.Println(ctx.Err()) // prints "context deadline exceeded"
}
// Output:
// context deadline exceeded
}

27
main.go
View File

@ -32,8 +32,9 @@ import (
"github.com/prometheus/prometheus/config"
"github.com/prometheus/prometheus/notification"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/retrieval"
"github.com/prometheus/prometheus/rules/manager"
"github.com/prometheus/prometheus/rules"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/storage/remote"
@ -76,7 +77,8 @@ var (
)
type prometheus struct {
ruleManager manager.RuleManager
queryEngine *promql.Engine
ruleManager *rules.Manager
targetManager retrieval.TargetManager
notificationHandler *notification.NotificationHandler
storage local.Storage
@ -155,16 +157,18 @@ func NewPrometheus() *prometheus {
targetManager := retrieval.NewTargetManager(sampleAppender, conf.GlobalLabels())
targetManager.AddTargetsFromConfig(conf)
ruleManager := manager.NewRuleManager(&manager.RuleManagerOptions{
queryEngine := promql.NewEngine(memStorage)
ruleManager := rules.NewManager(&rules.ManagerOptions{
SampleAppender: sampleAppender,
NotificationHandler: notificationHandler,
EvaluationInterval: conf.EvaluationInterval(),
Storage: memStorage,
QueryEngine: queryEngine,
PrometheusURL: web.MustBuildServerURL(*pathPrefix),
PathPrefix: *pathPrefix,
})
if err := ruleManager.AddRulesFromConfig(conf); err != nil {
glog.Error("Error loading rule files: ", err)
if err := ruleManager.LoadRuleFiles(conf.Global.GetRuleFile()...); err != nil {
glog.Errorf("Error loading rule files: %s", err)
os.Exit(1)
}
@ -188,8 +192,8 @@ func NewPrometheus() *prometheus {
}
consolesHandler := &web.ConsolesHandler{
Storage: memStorage,
PathPrefix: *pathPrefix,
QueryEngine: queryEngine,
PathPrefix: *pathPrefix,
}
graphsHandler := &web.GraphsHandler{
@ -197,8 +201,9 @@ func NewPrometheus() *prometheus {
}
metricsService := &api.MetricsService{
Now: clientmodel.Now,
Storage: memStorage,
Now: clientmodel.Now,
Storage: memStorage,
QueryEngine: queryEngine,
}
webService := &web.WebService{
@ -210,6 +215,7 @@ func NewPrometheus() *prometheus {
}
p := &prometheus{
queryEngine: queryEngine,
ruleManager: ruleManager,
targetManager: targetManager,
notificationHandler: notificationHandler,
@ -252,6 +258,7 @@ func (p *prometheus) Serve() {
p.targetManager.Stop()
p.ruleManager.Stop()
p.queryEngine.Stop()
if err := p.storage.Stop(); err != nil {
glog.Error("Error stopping local storage: ", err)

170
promql/analyzer.go Normal file
View File

@ -0,0 +1,170 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"errors"
"time"
"golang.org/x/net/context"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/local"
)
// An Analyzer traverses an expression and determines which data has to be requested
// from the storage. It is bound to a context that allows cancellation and timing out.
type Analyzer struct {
// The storage from which to query data.
Storage local.Storage
// The expression being analyzed.
Expr Expr
// The time range for evaluation of Expr.
Start, End clientmodel.Timestamp
// The preload times for different query time offsets.
offsetPreloadTimes map[time.Duration]preloadTimes
}
// preloadTimes tracks which instants or ranges to preload for a set of
// fingerprints. One of these structs is collected for each offset by the query
// analyzer.
type preloadTimes struct {
// Instants require single samples to be loaded along the entire query
// range, with intervals between the samples corresponding to the query
// resolution.
instants map[clientmodel.Fingerprint]struct{}
// Ranges require loading a range of samples at each resolution step,
// stretching backwards from the current evaluation timestamp. The length of
// the range into the past is given by the duration, as in "foo[5m]".
ranges map[clientmodel.Fingerprint]time.Duration
}
// Analyze the provided expression and attach metrics and fingerprints to data-selecting
// AST nodes that are later used to preload the data from the storage.
func (a *Analyzer) Analyze(ctx context.Context) error {
a.offsetPreloadTimes = map[time.Duration]preloadTimes{}
getPreloadTimes := func(offset time.Duration) preloadTimes {
if _, ok := a.offsetPreloadTimes[offset]; !ok {
a.offsetPreloadTimes[offset] = preloadTimes{
instants: map[clientmodel.Fingerprint]struct{}{},
ranges: map[clientmodel.Fingerprint]time.Duration{},
}
}
return a.offsetPreloadTimes[offset]
}
// Retrieve fingerprints and metrics for the required time range for
// each metric or matrix selector node.
Inspect(a.Expr, func(node Node) bool {
switch n := node.(type) {
case *VectorSelector:
pt := getPreloadTimes(n.Offset)
fpts := a.Storage.GetFingerprintsForLabelMatchers(n.LabelMatchers)
n.fingerprints = fpts
n.metrics = map[clientmodel.Fingerprint]clientmodel.COWMetric{}
n.iterators = map[clientmodel.Fingerprint]local.SeriesIterator{}
for _, fp := range fpts {
// Only add the fingerprint to the instants if not yet present in the
// ranges. Ranges always contain more points and span more time than
// instants for the same offset.
if _, alreadyInRanges := pt.ranges[fp]; !alreadyInRanges {
pt.instants[fp] = struct{}{}
}
n.metrics[fp] = a.Storage.GetMetricForFingerprint(fp)
}
case *MatrixSelector:
pt := getPreloadTimes(n.Offset)
fpts := a.Storage.GetFingerprintsForLabelMatchers(n.LabelMatchers)
n.fingerprints = fpts
n.metrics = map[clientmodel.Fingerprint]clientmodel.COWMetric{}
n.iterators = map[clientmodel.Fingerprint]local.SeriesIterator{}
for _, fp := range fpts {
if pt.ranges[fp] < n.Range {
pt.ranges[fp] = n.Range
// Delete the fingerprint from the instants. Ranges always contain more
// points and span more time than instants, so we don't need to track
// an instant for the same fingerprint, should we have one.
delete(pt.instants, fp)
}
n.metrics[fp] = a.Storage.GetMetricForFingerprint(fp)
}
}
return true
})
// Currently we do not return an error but we might place a context check in here
// or extend the stage in some other way.
return nil
}
// Prepare the expression evaluation by preloading all required chunks from the storage
// and setting the respective storage iterators in the AST nodes.
func (a *Analyzer) Prepare(ctx context.Context) (local.Preloader, error) {
const env = "query preparation"
if a.offsetPreloadTimes == nil {
return nil, errors.New("analysis must be performed before preparing query")
}
var err error
// The preloader must not be closed unless an error ocurred as closing
// unpins the preloaded chunks.
p := a.Storage.NewPreloader()
defer func() {
if err != nil {
p.Close()
}
}()
// Preload all analyzed ranges.
for offset, pt := range a.offsetPreloadTimes {
if err = contextDone(ctx, env); err != nil {
return nil, err
}
start := a.Start.Add(-offset)
end := a.End.Add(-offset)
for fp, rangeDuration := range pt.ranges {
err = p.PreloadRange(fp, start.Add(-rangeDuration), end, *stalenessDelta)
if err != nil {
return nil, err
}
}
for fp := range pt.instants {
err = p.PreloadRange(fp, start, end, *stalenessDelta)
if err != nil {
return nil, err
}
}
}
// Attach storage iterators to AST nodes.
Inspect(a.Expr, func(node Node) bool {
switch n := node.(type) {
case *VectorSelector:
for _, fp := range n.fingerprints {
n.iterators[fp] = a.Storage.NewIterator(fp)
}
case *MatrixSelector:
for _, fp := range n.fingerprints {
n.iterators[fp] = a.Storage.NewIterator(fp)
}
}
return true
})
return p, nil
}

345
promql/ast.go Normal file
View File

@ -0,0 +1,345 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"fmt"
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/storage/metric"
)
// Node is a generic interface for all nodes in an AST.
//
// Whenever numerous nodes are listed such as in a switch-case statement
// or a chain of function definitions (e.g. String(), expr(), etc.) convention is
// to list them as follows:
//
// - Statements
// - statement types (alphabetical)
// - ...
// - Expressions
// - expression types (alphabetical)
// - ...
//
type Node interface {
// String representation of the node that returns the given node when parsed
// as part of a valid query.
String() string
// DotGraph returns a dot graph representation of the node.
DotGraph() string
}
// Statement is a generic interface for all statements.
type Statement interface {
Node
// stmt ensures that no other type accidentally implements the interface
stmt()
}
// Statements is a list of statement nodes that implements Node.
type Statements []Statement
// AlertStmt represents an added alert rule.
type AlertStmt struct {
Name string
Expr Expr
Duration time.Duration
Labels clientmodel.LabelSet
Summary string
Description string
}
// EvalStmt holds an expression and information on the range it should
// be evaluated on.
type EvalStmt struct {
Expr Expr // Expression to be evaluated.
// The time boundaries for the evaluation. If Start equals End an instant
// is evaluated.
Start, End clientmodel.Timestamp
// Time between two evaluated instants for the range [Start:End].
Interval time.Duration
}
// RecordStmt represents an added recording rule.
type RecordStmt struct {
Name string
Expr Expr
Labels clientmodel.LabelSet
}
func (*AlertStmt) stmt() {}
func (*EvalStmt) stmt() {}
func (*RecordStmt) stmt() {}
// ExprType is the type an evaluated expression returns.
type ExprType int
const (
ExprNone ExprType = iota
ExprScalar
ExprVector
ExprMatrix
ExprString
)
func (e ExprType) String() string {
switch e {
case ExprNone:
return "<ExprNone>"
case ExprScalar:
return "scalar"
case ExprVector:
return "vector"
case ExprMatrix:
return "matrix"
case ExprString:
return "string"
}
panic("promql.ExprType.String: unhandled expression type")
}
// Expr is a generic interface for all expression types.
type Expr interface {
Node
// Type returns the type the expression evaluates to. It does not perform
// in-depth checks as this is done at parsing-time.
Type() ExprType
// expr ensures that no other types accidentally implement the interface.
expr()
}
// Expressions is a list of expression nodes that implements Node.
type Expressions []Expr
// AggregateExpr represents an aggregation operation on a vector.
type AggregateExpr struct {
Op itemType // The used aggregation operation.
Expr Expr // The vector expression over which is aggregated.
Grouping clientmodel.LabelNames // The labels by which to group the vector.
KeepExtraLabels bool // Whether to keep extra labels common among result elements.
}
// BinaryExpr represents a binary expression between two child expressions.
type BinaryExpr struct {
Op itemType // The operation of the expression.
LHS, RHS Expr // The operands on the respective sides of the operator.
// The matching behavior for the operation if both operands are vectors.
// If they are not this field is nil.
VectorMatching *VectorMatching
}
// Call represents a function call.
type Call struct {
Func *Function // The function that was called.
Args Expressions // Arguments used in the call.
}
// MatrixSelector represents a matrix selection.
type MatrixSelector struct {
Name string
Range time.Duration
Offset time.Duration
LabelMatchers metric.LabelMatchers
// The series iterators are populated at query analysis time.
iterators map[clientmodel.Fingerprint]local.SeriesIterator
metrics map[clientmodel.Fingerprint]clientmodel.COWMetric
// Fingerprints are populated from label matchers at query analysis time.
fingerprints clientmodel.Fingerprints
}
// NumberLiteral represents a number.
type NumberLiteral struct {
Val clientmodel.SampleValue
}
// ParenExpr wraps an expression so it cannot be disassembled as a consequence
// of operator precendence.
type ParenExpr struct {
Expr Expr
}
// StringLiteral represents a string.
type StringLiteral struct {
Val string
}
// UnaryExpr represents a unary operation on another expression.
// Currently unary operations are only supported for scalars.
type UnaryExpr struct {
Op itemType
Expr Expr
}
// VectorSelector represents a vector selection.
type VectorSelector struct {
Name string
Offset time.Duration
LabelMatchers metric.LabelMatchers
// The series iterators are populated at query analysis time.
iterators map[clientmodel.Fingerprint]local.SeriesIterator
metrics map[clientmodel.Fingerprint]clientmodel.COWMetric
// Fingerprints are populated from label matchers at query analysis time.
fingerprints clientmodel.Fingerprints
}
func (e *AggregateExpr) Type() ExprType { return ExprVector }
func (e *Call) Type() ExprType { return e.Func.ReturnType }
func (e *MatrixSelector) Type() ExprType { return ExprMatrix }
func (e *NumberLiteral) Type() ExprType { return ExprScalar }
func (e *ParenExpr) Type() ExprType { return e.Expr.Type() }
func (e *StringLiteral) Type() ExprType { return ExprString }
func (e *UnaryExpr) Type() ExprType { return e.Expr.Type() }
func (e *VectorSelector) Type() ExprType { return ExprVector }
func (e *BinaryExpr) Type() ExprType {
if e.LHS.Type() == ExprScalar && e.RHS.Type() == ExprScalar {
return ExprScalar
}
return ExprVector
}
func (*AggregateExpr) expr() {}
func (*BinaryExpr) expr() {}
func (*Call) expr() {}
func (*MatrixSelector) expr() {}
func (*NumberLiteral) expr() {}
func (*ParenExpr) expr() {}
func (*StringLiteral) expr() {}
func (*UnaryExpr) expr() {}
func (*VectorSelector) expr() {}
// VectorMatchCardinaly describes the cardinality relationship
// of two vectors in a binary operation.
type VectorMatchCardinality int
const (
CardOneToOne VectorMatchCardinality = iota
CardManyToOne
CardOneToMany
CardManyToMany
)
func (vmc VectorMatchCardinality) String() string {
switch vmc {
case CardOneToOne:
return "one-to-one"
case CardManyToOne:
return "many-to-one"
case CardOneToMany:
return "one-to-many"
case CardManyToMany:
return "many-to-many"
}
panic("promql.VectorMatchCardinality.String: unknown match cardinality")
}
// VectorMatching describes how elements from two vectors in a binary
// operation are supposed to be matched.
type VectorMatching struct {
// The cardinality of the two vectors.
Card VectorMatchCardinality
// On contains the labels which define equality of a pair
// of elements from the vectors.
On clientmodel.LabelNames
// Include contains additional labels that should be included in
// the result from the side with the higher cardinality.
Include clientmodel.LabelNames
}
// A Visitor's Visit method is invoked for each node encountered by Walk.
// If the result visitor w is not nil, Walk visits each of the children
// of node with the visitor w, followed by a call of w.Visit(nil).
type Visitor interface {
Visit(node Node) (w Visitor)
}
// Walk traverses an AST in depth-first order: It starts by calling
// v.Visit(node); node must not be nil. If the visitor w returned by
// v.Visit(node) is not nil, Walk is invoked recursively with visitor
// w for each of the non-nil children of node, followed by a call of
// w.Visit(nil).
func Walk(v Visitor, node Node) {
if v = v.Visit(node); v == nil {
return
}
switch n := node.(type) {
case Statements:
for _, s := range n {
Walk(v, s)
}
case *AlertStmt:
Walk(v, n.Expr)
case *EvalStmt:
Walk(v, n.Expr)
case *RecordStmt:
Walk(v, n.Expr)
case Expressions:
for _, e := range n {
Walk(v, e)
}
case *AggregateExpr:
Walk(v, n.Expr)
case *BinaryExpr:
Walk(v, n.LHS)
Walk(v, n.RHS)
case *Call:
Walk(v, n.Args)
case *ParenExpr:
Walk(v, n.Expr)
case *UnaryExpr:
Walk(v, n.Expr)
case *MatrixSelector, *NumberLiteral, *StringLiteral, *VectorSelector:
// nothing to do
default:
panic(fmt.Errorf("promql.Walk: unhandled node type %T", node))
}
v.Visit(nil)
}
type inspector func(Node) bool
func (f inspector) Visit(node Node) Visitor {
if f(node) {
return f
}
return nil
}
// Inspect traverses an AST in depth-first order: It starts by calling
// f(node); node must not be nil. If f returns true, Inspect invokes f
// for all the non-nil children of node, recursively.
func Inspect(node Node, f func(Node) bool) {
Walk(inspector(f), node)
}

1172
promql/engine.go Normal file

File diff suppressed because it is too large Load Diff

169
promql/engine_test.go Normal file
View File

@ -0,0 +1,169 @@
package promql
import (
"sync"
"testing"
"time"
"golang.org/x/net/context"
)
var noop = testStmt(func(context.Context) error {
return nil
})
func TestQueryConcurreny(t *testing.T) {
engine := NewEngine(nil)
defer engine.Stop()
block := make(chan struct{})
processing := make(chan struct{})
f1 := testStmt(func(context.Context) error {
processing <- struct{}{}
<-block
return nil
})
for i := 0; i < *maxConcurrentQueries; i++ {
q := engine.newTestQuery(f1)
go q.Exec()
select {
case <-processing:
// Expected.
case <-time.After(5 * time.Millisecond):
t.Fatalf("Query within concurrency threshold not being executed")
}
}
q := engine.newTestQuery(f1)
go q.Exec()
select {
case <-processing:
t.Fatalf("Query above concurrency threhosld being executed")
case <-time.After(5 * time.Millisecond):
// Expected.
}
// Terminate a running query.
block <- struct{}{}
select {
case <-processing:
// Expected.
case <-time.After(5 * time.Millisecond):
t.Fatalf("Query within concurrency threshold not being executed")
}
// Terminate remaining queries.
for i := 0; i < *maxConcurrentQueries; i++ {
block <- struct{}{}
}
}
func TestQueryTimeout(t *testing.T) {
*defaultQueryTimeout = 5 * time.Millisecond
defer func() {
// Restore default query timeout
*defaultQueryTimeout = 2 * time.Minute
}()
engine := NewEngine(nil)
defer engine.Stop()
f1 := testStmt(func(context.Context) error {
time.Sleep(10 * time.Millisecond)
return nil
})
// Timeouts are not exact but checked in designated places. For example between
// invoking test statements.
query := engine.newTestQuery(f1, f1)
res := query.Exec()
if res.Err == nil {
t.Fatalf("expected timeout error but got none")
}
if _, ok := res.Err.(ErrQueryTimeout); res.Err != nil && !ok {
t.Fatalf("expected timeout error but got: %s", res.Err)
}
}
func TestQueryCancel(t *testing.T) {
engine := NewEngine(nil)
defer engine.Stop()
// As for timeouts, cancellation is only checked at designated points. We ensure
// that we reach one of those points using the same method.
f1 := testStmt(func(context.Context) error {
time.Sleep(2 * time.Millisecond)
return nil
})
query1 := engine.newTestQuery(f1, f1)
query2 := engine.newTestQuery(f1, f1)
// Cancel query after starting it.
var wg sync.WaitGroup
var res *Result
wg.Add(1)
go func() {
res = query1.Exec()
wg.Done()
}()
time.Sleep(1 * time.Millisecond)
query1.Cancel()
wg.Wait()
if res.Err == nil {
t.Fatalf("expected cancellation error for query1 but got none")
}
if _, ok := res.Err.(ErrQueryCanceled); res.Err != nil && !ok {
t.Fatalf("expected cancellation error for query1 but got: %s", res.Err)
}
// Canceling query before starting it must have no effect.
query2.Cancel()
res = query2.Exec()
if res.Err != nil {
t.Fatalf("unexpeceted error on executing query2: %s", res.Err)
}
}
func TestEngineShutdown(t *testing.T) {
engine := NewEngine(nil)
handlerExecutions := 0
// Shutdown engine on first handler execution. Should handler execution ever become
// concurrent this test has to be adjusted accordingly.
f1 := testStmt(func(context.Context) error {
handlerExecutions++
engine.Stop()
time.Sleep(10 * time.Millisecond)
return nil
})
query1 := engine.newTestQuery(f1, f1)
query2 := engine.newTestQuery(f1, f1)
// Stopping the engine must cancel the base context. While executing queries is
// still possible, their context is canceled from the beginning and execution should
// terminate immediately.
res := query1.Exec()
if res.Err == nil {
t.Fatalf("expected error on shutdown during query but got none")
}
if handlerExecutions != 1 {
t.Fatalf("expected only one handler to be executed before query cancellation but got %d executions", handlerExecutions)
}
res2 := query2.Exec()
if res2.Err == nil {
t.Fatalf("expected error on querying shutdown engine but got none")
}
if handlerExecutions != 1 {
t.Fatalf("expected no handler execution for query after engine shutdown")
}
}

716
promql/functions.go Normal file
View File

@ -0,0 +1,716 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"container/heap"
"math"
"sort"
"strconv"
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
)
// Function represents a function of the expression language and is
// used by function nodes.
type Function struct {
Name string
ArgTypes []ExprType
OptionalArgs int
ReturnType ExprType
Call func(ev *evaluator, args Expressions) Value
}
// === time() clientmodel.SampleValue ===
func funcTime(ev *evaluator, args Expressions) Value {
return &Scalar{
Value: clientmodel.SampleValue(ev.Timestamp.Unix()),
Timestamp: ev.Timestamp,
}
}
// === delta(matrix ExprMatrix, isCounter=0 ExprScalar) Vector ===
func funcDelta(ev *evaluator, args Expressions) Value {
isCounter := len(args) >= 2 && ev.evalInt(args[1]) > 0
resultVector := Vector{}
// If we treat these metrics as counters, we need to fetch all values
// in the interval to find breaks in the timeseries' monotonicity.
// I.e. if a counter resets, we want to ignore that reset.
var matrixValue Matrix
if isCounter {
matrixValue = ev.evalMatrix(args[0])
} else {
matrixValue = ev.evalMatrixBounds(args[0])
}
for _, samples := range matrixValue {
// No sense in trying to compute a delta without at least two points. Drop
// this vector element.
if len(samples.Values) < 2 {
continue
}
counterCorrection := clientmodel.SampleValue(0)
lastValue := clientmodel.SampleValue(0)
for _, sample := range samples.Values {
currentValue := sample.Value
if isCounter && currentValue < lastValue {
counterCorrection += lastValue - currentValue
}
lastValue = currentValue
}
resultValue := lastValue - samples.Values[0].Value + counterCorrection
targetInterval := args[0].(*MatrixSelector).Range
sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp)
if sampledInterval == 0 {
// Only found one sample. Cannot compute a rate from this.
continue
}
// Correct for differences in target vs. actual delta interval.
//
// Above, we didn't actually calculate the delta for the specified target
// interval, but for an interval between the first and last found samples
// under the target interval, which will usually have less time between
// them. Depending on how many samples are found under a target interval,
// the delta results are distorted and temporal aliasing occurs (ugly
// bumps). This effect is corrected for below.
intervalCorrection := clientmodel.SampleValue(targetInterval) / clientmodel.SampleValue(sampledInterval)
resultValue *= intervalCorrection
resultSample := &Sample{
Metric: samples.Metric,
Value: resultValue,
Timestamp: ev.Timestamp,
}
resultSample.Metric.Delete(clientmodel.MetricNameLabel)
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === rate(node ExprMatrix) Vector ===
func funcRate(ev *evaluator, args Expressions) Value {
args = append(args, &NumberLiteral{1})
vector := funcDelta(ev, args).(Vector)
// TODO: could be other type of ExprMatrix in the future (right now, only
// MatrixSelector exists). Find a better way of getting the duration of a
// matrix, such as looking at the samples themselves.
interval := args[0].(*MatrixSelector).Range
for i := range vector {
vector[i].Value /= clientmodel.SampleValue(interval / time.Second)
}
return vector
}
// === sort(node ExprVector) Vector ===
func funcSort(ev *evaluator, args Expressions) Value {
byValueSorter := vectorByValueHeap(ev.evalVector(args[0]))
sort.Sort(byValueSorter)
return Vector(byValueSorter)
}
// === sortDesc(node ExprVector) Vector ===
func funcSortDesc(ev *evaluator, args Expressions) Value {
byValueSorter := vectorByValueHeap(ev.evalVector(args[0]))
sort.Sort(sort.Reverse(byValueSorter))
return Vector(byValueSorter)
}
// === topk(k ExprScalar, node ExprVector) Vector ===
func funcTopk(ev *evaluator, args Expressions) Value {
k := ev.evalInt(args[0])
if k < 1 {
return Vector{}
}
vector := ev.evalVector(args[1])
topk := make(vectorByValueHeap, 0, k)
for _, el := range vector {
if len(topk) < k || topk[0].Value < el.Value {
if len(topk) == k {
heap.Pop(&topk)
}
heap.Push(&topk, el)
}
}
sort.Sort(sort.Reverse(topk))
return Vector(topk)
}
// === bottomk(k ExprScalar, node ExprVector) Vector ===
func funcBottomk(ev *evaluator, args Expressions) Value {
k := ev.evalInt(args[0])
if k < 1 {
return Vector{}
}
vector := ev.evalVector(args[1])
bottomk := make(vectorByValueHeap, 0, k)
bkHeap := reverseHeap{Interface: &bottomk}
for _, el := range vector {
if len(bottomk) < k || bottomk[0].Value > el.Value {
if len(bottomk) == k {
heap.Pop(&bkHeap)
}
heap.Push(&bkHeap, el)
}
}
sort.Sort(bottomk)
return Vector(bottomk)
}
// === drop_common_labels(node ExprVector) Vector ===
func funcDropCommonLabels(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
if len(vector) < 1 {
return Vector{}
}
common := clientmodel.LabelSet{}
for k, v := range vector[0].Metric.Metric {
// TODO(julius): Should we also drop common metric names?
if k == clientmodel.MetricNameLabel {
continue
}
common[k] = v
}
for _, el := range vector[1:] {
for k, v := range common {
if el.Metric.Metric[k] != v {
// Deletion of map entries while iterating over them is safe.
// From http://golang.org/ref/spec#For_statements:
// "If map entries that have not yet been reached are deleted during
// iteration, the corresponding iteration values will not be produced."
delete(common, k)
}
}
}
for _, el := range vector {
for k := range el.Metric.Metric {
if _, ok := common[k]; ok {
el.Metric.Delete(k)
}
}
}
return vector
}
// === round(vector ExprVector, toNearest=1 Scalar) Vector ===
func funcRound(ev *evaluator, args Expressions) Value {
// round returns a number rounded to toNearest.
// Ties are solved by rounding up.
toNearest := float64(1)
if len(args) >= 2 {
toNearest = ev.evalFloat(args[1])
}
// Invert as it seems to cause fewer floating point accuracy issues.
toNearestInverse := 1.0 / toNearest
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Floor(float64(el.Value)*toNearestInverse+0.5) / toNearestInverse)
}
return vector
}
// === scalar(node ExprVector) Scalar ===
func funcScalar(ev *evaluator, args Expressions) Value {
v := ev.evalVector(args[0])
if len(v) != 1 {
return &Scalar{clientmodel.SampleValue(math.NaN()), ev.Timestamp}
}
return &Scalar{clientmodel.SampleValue(v[0].Value), ev.Timestamp}
}
// === count_scalar(vector ExprVector) model.SampleValue ===
func funcCountScalar(ev *evaluator, args Expressions) Value {
return &Scalar{
Value: clientmodel.SampleValue(len(ev.evalVector(args[0]))),
Timestamp: ev.Timestamp,
}
}
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func(metric.Values) clientmodel.SampleValue) Value {
matrix := ev.evalMatrix(args[0])
resultVector := Vector{}
for _, el := range matrix {
if len(el.Values) == 0 {
continue
}
el.Metric.Delete(clientmodel.MetricNameLabel)
resultVector = append(resultVector, &Sample{
Metric: el.Metric,
Value: aggrFn(el.Values),
Timestamp: ev.Timestamp,
})
}
return resultVector
}
// === avg_over_time(matrix ExprMatrix) Vector ===
func funcAvgOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue {
var sum clientmodel.SampleValue
for _, v := range values {
sum += v.Value
}
return sum / clientmodel.SampleValue(len(values))
})
}
// === count_over_time(matrix ExprMatrix) Vector ===
func funcCountOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue {
return clientmodel.SampleValue(len(values))
})
}
// === floor(vector ExprVector) Vector ===
func funcFloor(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Floor(float64(el.Value)))
}
return vector
}
// === max_over_time(matrix ExprMatrix) Vector ===
func funcMaxOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue {
max := math.Inf(-1)
for _, v := range values {
max = math.Max(max, float64(v.Value))
}
return clientmodel.SampleValue(max)
})
}
// === min_over_time(matrix ExprMatrix) Vector ===
func funcMinOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue {
min := math.Inf(1)
for _, v := range values {
min = math.Min(min, float64(v.Value))
}
return clientmodel.SampleValue(min)
})
}
// === sum_over_time(matrix ExprMatrix) Vector ===
func funcSumOverTime(ev *evaluator, args Expressions) Value {
return aggrOverTime(ev, args, func(values metric.Values) clientmodel.SampleValue {
var sum clientmodel.SampleValue
for _, v := range values {
sum += v.Value
}
return sum
})
}
// === abs(vector ExprVector) Vector ===
func funcAbs(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Abs(float64(el.Value)))
}
return vector
}
// === absent(vector ExprVector) Vector ===
func funcAbsent(ev *evaluator, args Expressions) Value {
if len(ev.evalVector(args[0])) > 0 {
return Vector{}
}
m := clientmodel.Metric{}
if vs, ok := args[0].(*VectorSelector); ok {
for _, matcher := range vs.LabelMatchers {
if matcher.Type == metric.Equal && matcher.Name != clientmodel.MetricNameLabel {
m[matcher.Name] = matcher.Value
}
}
}
return Vector{
&Sample{
Metric: clientmodel.COWMetric{
Metric: m,
Copied: true,
},
Value: 1,
Timestamp: ev.Timestamp,
},
}
}
// === ceil(vector ExprVector) Vector ===
func funcCeil(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Ceil(float64(el.Value)))
}
return vector
}
// === exp(vector ExprVector) Vector ===
func funcExp(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Exp(float64(el.Value)))
}
return vector
}
// === sqrt(vector VectorNode) Vector ===
func funcSqrt(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Sqrt(float64(el.Value)))
}
return vector
}
// === ln(vector ExprVector) Vector ===
func funcLn(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Log(float64(el.Value)))
}
return vector
}
// === log2(vector ExprVector) Vector ===
func funcLog2(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Log2(float64(el.Value)))
}
return vector
}
// === log10(vector ExprVector) Vector ===
func funcLog10(ev *evaluator, args Expressions) Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Log10(float64(el.Value)))
}
return vector
}
// === deriv(node ExprMatrix) Vector ===
func funcDeriv(ev *evaluator, args Expressions) Value {
resultVector := Vector{}
matrix := ev.evalMatrix(args[0])
for _, samples := range matrix {
// No sense in trying to compute a derivative without at least two points.
// Drop this vector element.
if len(samples.Values) < 2 {
continue
}
// Least squares.
n := clientmodel.SampleValue(0)
sumY := clientmodel.SampleValue(0)
sumX := clientmodel.SampleValue(0)
sumXY := clientmodel.SampleValue(0)
sumX2 := clientmodel.SampleValue(0)
for _, sample := range samples.Values {
x := clientmodel.SampleValue(sample.Timestamp.UnixNano() / 1e9)
n += 1.0
sumY += sample.Value
sumX += x
sumXY += x * sample.Value
sumX2 += x * x
}
numerator := sumXY - sumX*sumY/n
denominator := sumX2 - (sumX*sumX)/n
resultValue := numerator / denominator
resultSample := &Sample{
Metric: samples.Metric,
Value: resultValue,
Timestamp: ev.Timestamp,
}
resultSample.Metric.Delete(clientmodel.MetricNameLabel)
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === histogram_quantile(k ExprScalar, vector ExprVector) Vector ===
func funcHistogramQuantile(ev *evaluator, args Expressions) Value {
q := clientmodel.SampleValue(ev.evalFloat(args[0]))
inVec := ev.evalVector(args[1])
outVec := Vector{}
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{}
for _, el := range inVec {
upperBound, err := strconv.ParseFloat(
string(el.Metric.Metric[clientmodel.BucketLabel]), 64,
)
if err != nil {
// Oops, no bucket label or malformed label value. Skip.
// TODO(beorn7): Issue a warning somehow.
continue
}
signature := clientmodel.SignatureWithoutLabels(el.Metric.Metric, excludedLabels)
mb, ok := signatureToMetricWithBuckets[signature]
if !ok {
el.Metric.Delete(clientmodel.BucketLabel)
el.Metric.Delete(clientmodel.MetricNameLabel)
mb = &metricWithBuckets{el.Metric, nil}
signatureToMetricWithBuckets[signature] = mb
}
mb.buckets = append(mb.buckets, bucket{upperBound, el.Value})
}
for _, mb := range signatureToMetricWithBuckets {
outVec = append(outVec, &Sample{
Metric: mb.metric,
Value: clientmodel.SampleValue(quantile(q, mb.buckets)),
Timestamp: ev.Timestamp,
})
}
return outVec
}
var functions = map[string]*Function{
"abs": {
Name: "abs",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcAbs,
},
"absent": {
Name: "absent",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcAbsent,
},
"avg_over_time": {
Name: "avg_over_time",
ArgTypes: []ExprType{ExprMatrix},
ReturnType: ExprVector,
Call: funcAvgOverTime,
},
"bottomk": {
Name: "bottomk",
ArgTypes: []ExprType{ExprScalar, ExprVector},
ReturnType: ExprVector,
Call: funcBottomk,
},
"ceil": {
Name: "ceil",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcCeil,
},
"count_over_time": {
Name: "count_over_time",
ArgTypes: []ExprType{ExprMatrix},
ReturnType: ExprVector,
Call: funcCountOverTime,
},
"count_scalar": {
Name: "count_scalar",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprScalar,
Call: funcCountScalar,
},
"delta": {
Name: "delta",
ArgTypes: []ExprType{ExprMatrix, ExprScalar},
OptionalArgs: 1, // The 2nd argument is deprecated.
ReturnType: ExprVector,
Call: funcDelta,
},
"deriv": {
Name: "deriv",
ArgTypes: []ExprType{ExprMatrix},
ReturnType: ExprVector,
Call: funcDeriv,
},
"drop_common_labels": {
Name: "drop_common_labels",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcDropCommonLabels,
},
"exp": {
Name: "exp",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcExp,
},
"floor": {
Name: "floor",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcFloor,
},
"histogram_quantile": {
Name: "histogram_quantile",
ArgTypes: []ExprType{ExprScalar, ExprVector},
ReturnType: ExprVector,
Call: funcHistogramQuantile,
},
"ln": {
Name: "ln",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcLn,
},
"log10": {
Name: "log10",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcLog10,
},
"log2": {
Name: "log2",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcLog2,
},
"max_over_time": {
Name: "max_over_time",
ArgTypes: []ExprType{ExprMatrix},
ReturnType: ExprVector,
Call: funcMaxOverTime,
},
"min_over_time": {
Name: "min_over_time",
ArgTypes: []ExprType{ExprMatrix},
ReturnType: ExprVector,
Call: funcMinOverTime,
},
"rate": {
Name: "rate",
ArgTypes: []ExprType{ExprMatrix},
ReturnType: ExprVector,
Call: funcRate,
},
"round": {
Name: "round",
ArgTypes: []ExprType{ExprVector, ExprScalar},
OptionalArgs: 1,
ReturnType: ExprVector,
Call: funcRound,
},
"scalar": {
Name: "scalar",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprScalar,
Call: funcScalar,
},
"sort": {
Name: "sort",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcSort,
},
"sort_desc": {
Name: "sort_desc",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcSortDesc,
},
"sqrt": {
Name: "sqrt",
ArgTypes: []ExprType{ExprVector},
ReturnType: ExprVector,
Call: funcSqrt,
},
"sum_over_time": {
Name: "sum_over_time",
ArgTypes: []ExprType{ExprMatrix},
ReturnType: ExprVector,
Call: funcSumOverTime,
},
"time": {
Name: "time",
ArgTypes: []ExprType{},
ReturnType: ExprScalar,
Call: funcTime,
},
"topk": {
Name: "topk",
ArgTypes: []ExprType{ExprScalar, ExprVector},
ReturnType: ExprVector,
Call: funcTopk,
},
}
// getFunction returns a predefined Function object for the given name.
func getFunction(name string) (*Function, bool) {
function, ok := functions[name]
return function, ok
}
type vectorByValueHeap Vector
func (s vectorByValueHeap) Len() int {
return len(s)
}
func (s vectorByValueHeap) Less(i, j int) bool {
if math.IsNaN(float64(s[i].Value)) {
return true
}
return s[i].Value < s[j].Value
}
func (s vectorByValueHeap) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s *vectorByValueHeap) Push(x interface{}) {
*s = append(*s, x.(*Sample))
}
func (s *vectorByValueHeap) Pop() interface{} {
old := *s
n := len(old)
el := old[n-1]
*s = old[0 : n-1]
return el
}
type reverseHeap struct {
heap.Interface
}
func (s reverseHeap) Less(i, j int) bool {
return s.Interface.Less(j, i)
}

707
promql/lex.go Normal file
View File

@ -0,0 +1,707 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"fmt"
"strings"
"unicode"
"unicode/utf8"
)
// item represents a token or text string returned from the scanner.
type item struct {
typ itemType // The type of this item.
pos Pos // The starting position, in bytes, of this item in the input string.
val string // The value of this item.
}
// String returns a descriptive string for the item.
func (i item) String() string {
switch {
case i.typ == itemEOF:
return "EOF"
case i.typ == itemError:
return i.val
case i.typ == itemIdentifier || i.typ == itemMetricIdentifier:
return fmt.Sprintf("%q", i.val)
case i.typ.isKeyword():
return fmt.Sprintf("<%s>", i.val)
case i.typ.isOperator():
return fmt.Sprintf("<op:%s>", i.val)
case i.typ.isAggregator():
return fmt.Sprintf("<aggr:%s>", i.val)
case len(i.val) > 10:
return fmt.Sprintf("%.10q...", i.val)
}
return fmt.Sprintf("%q", i.val)
}
// isOperator returns true if the item corresponds to a logical or arithmetic operator.
// Returns false otherwise.
func (i itemType) isOperator() bool { return i > operatorsStart && i < operatorsEnd }
// isAggregator returns true if the item belongs to the aggregator functions.
// Returns false otherwise
func (i itemType) isAggregator() bool { return i > aggregatorsStart && i < aggregatorsEnd }
// isKeyword returns true if the item corresponds to a keyword.
// Returns false otherwise.
func (i itemType) isKeyword() bool { return i > keywordsStart && i < keywordsEnd }
// Constants for operator precedence in expressions.
//
const LowestPrec = 0 // Non-operators.
// Precedence returns the operator precedence of the binary
// operator op. If op is not a binary operator, the result
// is LowestPrec.
func (i itemType) precedence() int {
switch i {
case itemLOR:
return 1
case itemLAND:
return 2
case itemEQL, itemNEQ, itemLTE, itemLSS, itemGTE, itemGTR:
return 3
case itemADD, itemSUB:
return 4
case itemMUL, itemDIV, itemMOD:
return 5
default:
return LowestPrec
}
}
type itemType int
const (
itemError itemType = iota // Error occurred, value is error message
itemEOF
itemComment
itemIdentifier
itemMetricIdentifier
itemLeftParen
itemRightParen
itemLeftBrace
itemRightBrace
itemLeftBracket
itemRightBracket
itemComma
itemAssign
itemSemicolon
itemString
itemNumber
itemDuration
operatorsStart
// Operators.
itemSUB
itemADD
itemMUL
itemMOD
itemDIV
itemLAND
itemLOR
itemEQL
itemNEQ
itemLTE
itemLSS
itemGTE
itemGTR
itemEQLRegex
itemNEQRegex
operatorsEnd
aggregatorsStart
// Aggregators.
itemAvg
itemCount
itemSum
itemMin
itemMax
itemStddev
itemStdvar
aggregatorsEnd
keywordsStart
// Keywords.
itemAlert
itemIf
itemFor
itemWith
itemSummary
itemDescription
itemKeepingExtra
itemOffset
itemBy
itemOn
itemGroupLeft
itemGroupRight
keywordsEnd
)
var key = map[string]itemType{
// Operators.
"and": itemLAND,
"or": itemLOR,
// Aggregators.
"sum": itemSum,
"avg": itemAvg,
"count": itemCount,
"min": itemMin,
"max": itemMax,
"stddev": itemStddev,
"stdvar": itemStdvar,
// Keywords.
"alert": itemAlert,
"if": itemIf,
"for": itemFor,
"with": itemWith,
"summary": itemSummary,
"description": itemDescription,
"offset": itemOffset,
"by": itemBy,
"keeping_extra": itemKeepingExtra,
"on": itemOn,
"group_left": itemGroupLeft,
"group_right": itemGroupRight,
}
// These are the default string representations for common items. It does not
// imply that those are the only character sequences that can be lexed to such an item.
var itemTypeStr = map[itemType]string{
itemLeftParen: "(",
itemRightParen: ")",
itemLeftBrace: "{",
itemRightBrace: "}",
itemLeftBracket: "[",
itemRightBracket: "]",
itemComma: ",",
itemAssign: "=",
itemSemicolon: ";",
itemSUB: "-",
itemADD: "+",
itemMUL: "*",
itemMOD: "%",
itemDIV: "/",
itemEQL: "==",
itemNEQ: "!=",
itemLTE: "<=",
itemLSS: "<",
itemGTE: ">=",
itemGTR: ">",
itemEQLRegex: "=~",
itemNEQRegex: "!~",
}
func init() {
// Add keywords to item type strings.
for s, ty := range key {
itemTypeStr[ty] = s
}
}
func (t itemType) String() string {
if s, ok := itemTypeStr[t]; ok {
return s
}
return fmt.Sprintf("<item %d>", t)
}
func (i item) desc() string {
if _, ok := itemTypeStr[i.typ]; ok {
return i.String()
}
if i.typ == itemEOF {
return i.typ.desc()
}
return fmt.Sprintf("%s %s", i.typ.desc(), i)
}
func (t itemType) desc() string {
switch t {
case itemError:
return "error"
case itemEOF:
return "end of input"
case itemComment:
return "comment"
case itemIdentifier:
return "identifier"
case itemMetricIdentifier:
return "metric identifier"
case itemString:
return "string"
case itemNumber:
return "number"
case itemDuration:
return "duration"
}
return fmt.Sprintf("%q", t)
}
const eof = -1
// stateFn represents the state of the scanner as a function that returns the next state.
type stateFn func(*lexer) stateFn
// Pos is the position in a string.
type Pos int
// lexer holds the state of the scanner.
type lexer struct {
input string // The string being scanned.
state stateFn // The next lexing function to enter.
pos Pos // Current position in the input.
start Pos // Start position of this item.
width Pos // Width of last rune read from input.
lastPos Pos // Position of most recent item returned by nextItem.
items chan item // Channel of scanned items.
parenDepth int // Nesting depth of ( ) exprs.
braceOpen bool // Whether a { is opened.
bracketOpen bool // Whether a [ is opened.
stringOpen rune // Quote rune of the string currently being read.
}
// next returns the next rune in the input.
func (l *lexer) next() rune {
if int(l.pos) >= len(l.input) {
l.width = 0
return eof
}
r, w := utf8.DecodeRuneInString(l.input[l.pos:])
l.width = Pos(w)
l.pos += l.width
return r
}
// peek returns but does not consume the next rune in the input.
func (l *lexer) peek() rune {
r := l.next()
l.backup()
return r
}
// backup steps back one rune. Can only be called once per call of next.
func (l *lexer) backup() {
l.pos -= l.width
}
// emit passes an item back to the client.
func (l *lexer) emit(t itemType) {
l.items <- item{t, l.start, l.input[l.start:l.pos]}
l.start = l.pos
}
// ignore skips over the pending input before this point.
func (l *lexer) ignore() {
l.start = l.pos
}
// accept consumes the next rune if it's from the valid set.
func (l *lexer) accept(valid string) bool {
if strings.IndexRune(valid, l.next()) >= 0 {
return true
}
l.backup()
return false
}
// acceptRun consumes a run of runes from the valid set.
func (l *lexer) acceptRun(valid string) {
for strings.IndexRune(valid, l.next()) >= 0 {
// consume
}
l.backup()
}
// lineNumber reports which line we're on, based on the position of
// the previous item returned by nextItem. Doing it this way
// means we don't have to worry about peek double counting.
func (l *lexer) lineNumber() int {
return 1 + strings.Count(l.input[:l.lastPos], "\n")
}
// linePosition reports at which character in the current line
// we are on.
func (l *lexer) linePosition() int {
lb := strings.LastIndex(l.input[:l.lastPos], "\n")
if lb == -1 {
return 1 + int(l.lastPos)
}
return 1 + int(l.lastPos) - lb
}
// errorf returns an error token and terminates the scan by passing
// back a nil pointer that will be the next state, terminating l.nextItem.
func (l *lexer) errorf(format string, args ...interface{}) stateFn {
l.items <- item{itemError, l.start, fmt.Sprintf(format, args...)}
return nil
}
// nextItem returns the next item from the input.
func (l *lexer) nextItem() item {
item := <-l.items
l.lastPos = item.pos
return item
}
// lex creates a new scanner for the input string.
func lex(input string) *lexer {
l := &lexer{
input: input,
items: make(chan item),
}
go l.run()
return l
}
// run runs the state machine for the lexer.
func (l *lexer) run() {
for l.state = lexStatements; l.state != nil; {
l.state = l.state(l)
}
close(l.items)
}
// lineComment is the character that starts a line comment.
const lineComment = "#"
// lexStatements is the top-level state for lexing.
func lexStatements(l *lexer) stateFn {
if l.braceOpen {
return lexInsideBraces
}
if strings.HasPrefix(l.input[l.pos:], lineComment) {
return lexLineComment
}
switch r := l.next(); {
case r == eof:
if l.parenDepth != 0 {
return l.errorf("unclosed left parenthesis")
} else if l.bracketOpen {
return l.errorf("unclosed left bracket")
}
l.emit(itemEOF)
return nil
case r == ',':
l.emit(itemComma)
case isSpace(r):
return lexSpace
case r == '*':
l.emit(itemMUL)
case r == '/':
l.emit(itemDIV)
case r == '%':
l.emit(itemMOD)
case r == '+':
l.emit(itemADD)
case r == '-':
l.emit(itemSUB)
case r == '=':
if t := l.peek(); t == '=' {
l.next()
l.emit(itemEQL)
} else if t == '~' {
return l.errorf("unexpected character after '=': %q", t)
} else {
l.emit(itemAssign)
}
case r == '!':
if t := l.next(); t == '=' {
l.emit(itemNEQ)
} else {
return l.errorf("unexpected character after '!': %q", t)
}
case r == '<':
if t := l.peek(); t == '=' {
l.next()
l.emit(itemLTE)
} else {
l.emit(itemLSS)
}
case r == '>':
if t := l.peek(); t == '=' {
l.next()
l.emit(itemGTE)
} else {
l.emit(itemGTR)
}
case unicode.IsDigit(r) || (r == '.' && unicode.IsDigit(l.peek())):
l.backup()
return lexNumberOrDuration
case r == '"' || r == '\'':
l.stringOpen = r
return lexString
case r == 'N' || r == 'n' || r == 'I' || r == 'i':
n2 := strings.ToLower(l.input[l.pos:])
if len(n2) < 3 || !isAlphaNumeric(rune(n2[2])) {
if (r == 'N' || r == 'n') && strings.HasPrefix(n2, "an") {
l.pos += 2
l.emit(itemNumber)
break
}
if (r == 'I' || r == 'i') && strings.HasPrefix(n2, "nf") {
l.pos += 2
l.emit(itemNumber)
break
}
}
fallthrough
case isAlphaNumeric(r) || r == ':':
l.backup()
return lexKeywordOrIdentifier
case r == '(':
l.emit(itemLeftParen)
l.parenDepth++
return lexStatements
case r == ')':
l.emit(itemRightParen)
l.parenDepth--
if l.parenDepth < 0 {
return l.errorf("unexpected right parenthesis %q", r)
}
return lexStatements
case r == '{':
l.emit(itemLeftBrace)
l.braceOpen = true
return lexInsideBraces(l)
case r == '[':
if l.bracketOpen {
return l.errorf("unexpected left bracket %q", r)
}
l.emit(itemLeftBracket)
l.bracketOpen = true
return lexDuration
case r == ']':
if !l.bracketOpen {
return l.errorf("unexpected right bracket %q", r)
}
l.emit(itemRightBracket)
l.bracketOpen = false
default:
return l.errorf("unexpected character: %q", r)
}
return lexStatements
}
// lexInsideBraces scans the inside of a vector selector. Keywords are ignored and
// scanned as identifiers.
func lexInsideBraces(l *lexer) stateFn {
if strings.HasPrefix(l.input[l.pos:], lineComment) {
return lexLineComment
}
switch r := l.next(); {
case r == eof:
return l.errorf("unexpected end of input inside braces")
case isSpace(r):
return lexSpace
case unicode.IsLetter(r) || r == '_':
l.backup()
return lexIdentifier
case r == ',':
l.emit(itemComma)
case r == '"' || r == '\'':
l.stringOpen = r
return lexString
case r == '=':
if l.next() == '~' {
l.emit(itemEQLRegex)
break
}
l.backup()
l.emit(itemEQL)
case r == '!':
switch nr := l.next(); {
case nr == '~':
l.emit(itemNEQRegex)
case nr == '=':
l.emit(itemNEQ)
default:
return l.errorf("unexpected character after '!' inside braces: %q", nr)
}
case r == '{':
return l.errorf("unexpected left brace %q", r)
case r == '}':
l.emit(itemRightBrace)
l.braceOpen = false
return lexStatements
default:
return l.errorf("unexpected character inside braces: %q", r)
}
return lexInsideBraces
}
// lexString scans a quoted string. The initial quote has already been seen.
func lexString(l *lexer) stateFn {
Loop:
for {
switch l.next() {
case '\\':
if r := l.next(); r != eof && r != '\n' {
break
}
fallthrough
case eof, '\n':
return l.errorf("unterminated quoted string")
case l.stringOpen:
break Loop
}
}
l.emit(itemString)
return lexStatements
}
// lexSpace scans a run of space characters. One space has already been seen.
func lexSpace(l *lexer) stateFn {
for isSpace(l.peek()) {
l.next()
}
l.ignore()
return lexStatements
}
// lexLineComment scans a line comment. Left comment marker is known to be present.
func lexLineComment(l *lexer) stateFn {
l.pos += Pos(len(lineComment))
for r := l.next(); !isEndOfLine(r) && r != eof; {
r = l.next()
}
l.backup()
l.emit(itemComment)
return lexStatements
}
func lexDuration(l *lexer) stateFn {
if l.scanNumber() {
return l.errorf("missing unit character in duration")
}
// Next two chars must be a valid unit and a non-alphanumeric.
if l.accept("smhdwy") {
if isAlphaNumeric(l.next()) {
return l.errorf("bad duration syntax: %q", l.input[l.start:l.pos])
}
l.backup()
l.emit(itemDuration)
return lexStatements
}
return l.errorf("bad duration syntax: %q", l.input[l.start:l.pos])
}
// lexNumber scans a number: decimal, hex, oct or float.
func lexNumber(l *lexer) stateFn {
if !l.scanNumber() {
return l.errorf("bad number syntax: %q", l.input[l.start:l.pos])
}
l.emit(itemNumber)
return lexStatements
}
// lexNumberOrDuration scans a number or a duration item.
func lexNumberOrDuration(l *lexer) stateFn {
if l.scanNumber() {
l.emit(itemNumber)
return lexStatements
}
// Next two chars must be a valid unit and a non-alphanumeric.
if l.accept("smhdwy") {
if isAlphaNumeric(l.next()) {
return l.errorf("bad number or duration syntax: %q", l.input[l.start:l.pos])
}
l.backup()
l.emit(itemDuration)
return lexStatements
}
return l.errorf("bad number or duration syntax: %q", l.input[l.start:l.pos])
}
// scanNumber scans numbers of different formats. The scanned item is
// not necessarily a valid number. This case is caught by the parser.
func (l *lexer) scanNumber() bool {
digits := "0123456789"
if l.accept("0") && l.accept("xX") {
digits = "0123456789abcdefABCDEF"
}
l.acceptRun(digits)
if l.accept(".") {
l.acceptRun(digits)
}
if l.accept("eE") {
l.accept("+-")
l.acceptRun("0123456789")
}
// Next thing must not be alphanumeric.
if isAlphaNumeric(l.peek()) {
return false
}
return true
}
// lexIdentifier scans an alphanumeric identifier. The next character
// is known to be a letter.
func lexIdentifier(l *lexer) stateFn {
for isAlphaNumeric(l.next()) {
// absorb
}
l.backup()
l.emit(itemIdentifier)
return lexStatements
}
// lexKeywordOrIdentifier scans an alphanumeric identifier which may contain
// a colon rune. If the identifier is a keyword the respective keyword item
// is scanned.
func lexKeywordOrIdentifier(l *lexer) stateFn {
Loop:
for {
switch r := l.next(); {
case isAlphaNumeric(r) || r == ':':
// absorb.
default:
l.backup()
word := l.input[l.start:l.pos]
if kw, ok := key[strings.ToLower(word)]; ok {
l.emit(kw)
} else if !strings.Contains(word, ":") {
l.emit(itemIdentifier)
} else {
l.emit(itemMetricIdentifier)
}
break Loop
}
}
return lexStatements
}
func isSpace(r rune) bool {
return r == ' ' || r == '\t' || r == '\n'
}
// isEndOfLine reports whether r is an end-of-line character.
func isEndOfLine(r rune) bool {
return r == '\r' || r == '\n'
}
// isAlphaNumeric reports whether r is an alphabetic, digit, or underscore.
func isAlphaNumeric(r rune) bool {
return r == '_' || ('a' <= r && r <= 'z') || ('A' <= r && r <= 'Z') || unicode.IsDigit(r)
}

359
promql/lex_test.go Normal file
View File

@ -0,0 +1,359 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"reflect"
"testing"
)
var tests = []struct {
input string
expected []item
fail bool
}{
// Test common stuff.
{
input: ",",
expected: []item{{itemComma, 0, ","}},
}, {
input: "()",
expected: []item{{itemLeftParen, 0, `(`}, {itemRightParen, 1, `)`}},
}, {
input: "{}",
expected: []item{{itemLeftBrace, 0, `{`}, {itemRightBrace, 1, `}`}},
}, {
input: "[5m]",
expected: []item{
{itemLeftBracket, 0, `[`},
{itemDuration, 1, `5m`},
{itemRightBracket, 3, `]`},
},
},
// Test numbers.
{
input: "1",
expected: []item{{itemNumber, 0, "1"}},
}, {
input: "4.23",
expected: []item{{itemNumber, 0, "4.23"}},
}, {
input: ".3",
expected: []item{{itemNumber, 0, ".3"}},
}, {
input: "5.",
expected: []item{{itemNumber, 0, "5."}},
}, {
input: "NaN",
expected: []item{{itemNumber, 0, "NaN"}},
}, {
input: "nAN",
expected: []item{{itemNumber, 0, "nAN"}},
}, {
input: "NaN 123",
expected: []item{{itemNumber, 0, "NaN"}, {itemNumber, 4, "123"}},
}, {
input: "NaN123",
expected: []item{{itemIdentifier, 0, "NaN123"}},
}, {
input: "iNf",
expected: []item{{itemNumber, 0, "iNf"}},
}, {
input: "Inf",
expected: []item{{itemNumber, 0, "Inf"}},
}, {
input: "+Inf",
expected: []item{{itemADD, 0, "+"}, {itemNumber, 1, "Inf"}},
}, {
input: "+Inf 123",
expected: []item{{itemADD, 0, "+"}, {itemNumber, 1, "Inf"}, {itemNumber, 5, "123"}},
}, {
input: "-Inf",
expected: []item{{itemSUB, 0, "-"}, {itemNumber, 1, "Inf"}},
}, {
input: "Infoo",
expected: []item{{itemIdentifier, 0, "Infoo"}},
}, {
input: "-Infoo",
expected: []item{{itemSUB, 0, "-"}, {itemIdentifier, 1, "Infoo"}},
}, {
input: "-Inf 123",
expected: []item{{itemSUB, 0, "-"}, {itemNumber, 1, "Inf"}, {itemNumber, 5, "123"}},
}, {
input: "0x123",
expected: []item{{itemNumber, 0, "0x123"}},
},
// Test duration.
{
input: "5s",
expected: []item{{itemDuration, 0, "5s"}},
}, {
input: "123m",
expected: []item{{itemDuration, 0, "123m"}},
}, {
input: "1h",
expected: []item{{itemDuration, 0, "1h"}},
}, {
input: "3w",
expected: []item{{itemDuration, 0, "3w"}},
}, {
input: "1y",
expected: []item{{itemDuration, 0, "1y"}},
},
// Test identifiers.
{
input: "abc",
expected: []item{{itemIdentifier, 0, "abc"}},
}, {
input: "a:bc",
expected: []item{{itemMetricIdentifier, 0, "a:bc"}},
}, {
input: "abc d",
expected: []item{{itemIdentifier, 0, "abc"}, {itemIdentifier, 4, "d"}},
},
// Test comments.
{
input: "# some comment",
expected: []item{{itemComment, 0, "# some comment"}},
}, {
input: "5 # 1+1\n5",
expected: []item{
{itemNumber, 0, "5"},
{itemComment, 2, "# 1+1"},
{itemNumber, 8, "5"},
},
},
// Test operators.
{
input: `=`,
expected: []item{{itemAssign, 0, `=`}},
}, {
// Inside braces equality is a single '=' character.
input: `{=}`,
expected: []item{{itemLeftBrace, 0, `{`}, {itemEQL, 1, `=`}, {itemRightBrace, 2, `}`}},
}, {
input: `==`,
expected: []item{{itemEQL, 0, `==`}},
}, {
input: `!=`,
expected: []item{{itemNEQ, 0, `!=`}},
}, {
input: `<`,
expected: []item{{itemLSS, 0, `<`}},
}, {
input: `>`,
expected: []item{{itemGTR, 0, `>`}},
}, {
input: `>=`,
expected: []item{{itemGTE, 0, `>=`}},
}, {
input: `<=`,
expected: []item{{itemLTE, 0, `<=`}},
}, {
input: `+`,
expected: []item{{itemADD, 0, `+`}},
}, {
input: `-`,
expected: []item{{itemSUB, 0, `-`}},
}, {
input: `*`,
expected: []item{{itemMUL, 0, `*`}},
}, {
input: `/`,
expected: []item{{itemDIV, 0, `/`}},
}, {
input: `%`,
expected: []item{{itemMOD, 0, `%`}},
}, {
input: `AND`,
expected: []item{{itemLAND, 0, `AND`}},
}, {
input: `or`,
expected: []item{{itemLOR, 0, `or`}},
},
// Test aggregators.
{
input: `sum`,
expected: []item{{itemSum, 0, `sum`}},
}, {
input: `AVG`,
expected: []item{{itemAvg, 0, `AVG`}},
}, {
input: `MAX`,
expected: []item{{itemMax, 0, `MAX`}},
}, {
input: `min`,
expected: []item{{itemMin, 0, `min`}},
}, {
input: `count`,
expected: []item{{itemCount, 0, `count`}},
}, {
input: `stdvar`,
expected: []item{{itemStdvar, 0, `stdvar`}},
}, {
input: `stddev`,
expected: []item{{itemStddev, 0, `stddev`}},
},
// Test keywords.
{
input: "alert",
expected: []item{{itemAlert, 0, "alert"}},
}, {
input: "keeping_extra",
expected: []item{{itemKeepingExtra, 0, "keeping_extra"}},
}, {
input: "if",
expected: []item{{itemIf, 0, "if"}},
}, {
input: "for",
expected: []item{{itemFor, 0, "for"}},
}, {
input: "with",
expected: []item{{itemWith, 0, "with"}},
}, {
input: "description",
expected: []item{{itemDescription, 0, "description"}},
}, {
input: "summary",
expected: []item{{itemSummary, 0, "summary"}},
}, {
input: "offset",
expected: []item{{itemOffset, 0, "offset"}},
}, {
input: "by",
expected: []item{{itemBy, 0, "by"}},
}, {
input: "on",
expected: []item{{itemOn, 0, "on"}},
}, {
input: "group_left",
expected: []item{{itemGroupLeft, 0, "group_left"}},
}, {
input: "group_right",
expected: []item{{itemGroupRight, 0, "group_right"}},
},
// Test Selector.
{
input: `台北`,
fail: true,
}, {
input: `{foo="bar"}`,
expected: []item{
{itemLeftBrace, 0, `{`},
{itemIdentifier, 1, `foo`},
{itemEQL, 4, `=`},
{itemString, 5, `"bar"`},
{itemRightBrace, 10, `}`},
},
}, {
input: `{NaN != "bar" }`,
expected: []item{
{itemLeftBrace, 0, `{`},
{itemIdentifier, 1, `NaN`},
{itemNEQ, 5, `!=`},
{itemString, 8, `"bar"`},
{itemRightBrace, 14, `}`},
},
}, {
input: `{alert=~"bar" }`,
expected: []item{
{itemLeftBrace, 0, `{`},
{itemIdentifier, 1, `alert`},
{itemEQLRegex, 6, `=~`},
{itemString, 8, `"bar"`},
{itemRightBrace, 14, `}`},
},
}, {
input: `{on!~"bar"}`,
expected: []item{
{itemLeftBrace, 0, `{`},
{itemIdentifier, 1, `on`},
{itemNEQRegex, 3, `!~`},
{itemString, 5, `"bar"`},
{itemRightBrace, 10, `}`},
},
}, {
input: `{alert!#"bar"}`, fail: true,
}, {
input: `{foo:a="bar"}`, fail: true,
},
// Test common errors.
{
input: `=~`, fail: true,
}, {
input: `!~`, fail: true,
}, {
input: `!(`, fail: true,
}, {
input: "1a", fail: true,
},
// Test mismatched parens.
{
input: `(`, fail: true,
}, {
input: `())`, fail: true,
}, {
input: `(()`, fail: true,
}, {
input: `{`, fail: true,
}, {
input: `}`, fail: true,
}, {
input: "{{", fail: true,
}, {
input: "{{}}", fail: true,
}, {
input: `[`, fail: true,
}, {
input: `[[`, fail: true,
}, {
input: `[]]`, fail: true,
}, {
input: `[[]]`, fail: true,
}, {
input: `]`, fail: true,
},
}
// TestLexer tests basic functionality of the lexer. More elaborate tests are implemented
// for the parser to avoid duplicated effort.
func TestLexer(t *testing.T) {
for i, test := range tests {
l := lex(test.input)
out := []item{}
for it := range l.items {
out = append(out, it)
}
lastItem := out[len(out)-1]
if test.fail {
if lastItem.typ != itemError {
t.Fatalf("%d: expected lexing error but did not fail", i)
}
continue
}
if lastItem.typ == itemError {
t.Fatalf("%d: unexpected lexing error: %s", i, lastItem)
}
if !reflect.DeepEqual(lastItem, item{itemEOF, Pos(len(test.input)), ""}) {
t.Fatalf("%d: lexing error: expected output to end with EOF item", i)
}
out = out[:len(out)-1]
if !reflect.DeepEqual(out, test.expected) {
t.Errorf("%d: lexing mismatch:\nexpected: %#v\n-----\ngot: %#v", i, test.expected, out)
}
}
}

889
promql/parse.go Normal file
View File

@ -0,0 +1,889 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"fmt"
"runtime"
"strconv"
"strings"
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
"github.com/prometheus/prometheus/utility"
)
type parser struct {
lex *lexer
token [3]item
peekCount int
}
// ParseErr wraps a parsing error with line and position context.
// If the parsing input was a single line, line will be 0 and omitted
// from the error string.
type ParseErr struct {
Line, Pos int
Err error
}
func (e *ParseErr) Error() string {
if e.Line == 0 {
return fmt.Sprintf("Parse error at char %d: %s", e.Pos, e.Err)
}
return fmt.Sprintf("Parse error at line %d, char %d: %s", e.Line, e.Pos, e.Err)
}
// ParseStmts parses the input and returns the resulting statements or any ocurring error.
func ParseStmts(input string) (Statements, error) {
p := newParser(input)
stmts, err := p.parseStmts()
if err != nil {
return nil, err
}
err = p.typecheck(stmts)
return stmts, err
}
// ParseExpr returns the expression parsed from the input.
func ParseExpr(input string) (Expr, error) {
p := newParser(input)
expr, err := p.parseExpr()
if err != nil {
return nil, err
}
err = p.typecheck(expr)
return expr, err
}
// newParser returns a new parser.
func newParser(input string) *parser {
p := &parser{
lex: lex(input),
}
return p
}
// parseStmts parses a sequence of statements from the input.
func (p *parser) parseStmts() (stmts Statements, err error) {
defer p.recover(&err)
stmts = Statements{}
for p.peek().typ != itemEOF {
if p.peek().typ == itemComment {
continue
}
stmts = append(stmts, p.stmt())
}
return
}
// parseExpr parses a single expression from the input.
func (p *parser) parseExpr() (expr Expr, err error) {
defer p.recover(&err)
for p.peek().typ != itemEOF {
if p.peek().typ == itemComment {
continue
}
if expr != nil {
p.errorf("could not parse remaining input %.15q...", p.lex.input[p.lex.lastPos:])
}
expr = p.expr()
}
if expr == nil {
p.errorf("no expression found in input")
}
return
}
// typecheck checks correct typing of the parsed statements or expression.
func (p *parser) typecheck(node Node) (err error) {
defer p.recover(&err)
p.checkType(node)
return nil
}
// next returns the next token.
func (p *parser) next() item {
if p.peekCount > 0 {
p.peekCount--
} else {
t := p.lex.nextItem()
// Skip comments.
for t.typ == itemComment {
t = p.lex.nextItem()
}
p.token[0] = t
}
if p.token[p.peekCount].typ == itemError {
p.errorf("%s", p.token[p.peekCount].val)
}
return p.token[p.peekCount]
}
// peek returns but does not consume the next token.
func (p *parser) peek() item {
if p.peekCount > 0 {
return p.token[p.peekCount-1]
}
p.peekCount = 1
t := p.lex.nextItem()
// Skip comments.
for t.typ == itemComment {
t = p.lex.nextItem()
}
p.token[0] = t
return p.token[0]
}
// backup backs the input stream up one token.
func (p *parser) backup() {
p.peekCount++
}
// errorf formats the error and terminates processing.
func (p *parser) errorf(format string, args ...interface{}) {
p.error(fmt.Errorf(format, args...))
}
// error terminates processing.
func (p *parser) error(err error) {
perr := &ParseErr{
Line: p.lex.lineNumber(),
Pos: p.lex.linePosition(),
Err: err,
}
if strings.Count(strings.TrimSpace(p.lex.input), "\n") == 0 {
perr.Line = 0
}
panic(perr)
}
// expect consumes the next token and guarantees it has the required type.
func (p *parser) expect(exp itemType, context string) item {
token := p.next()
if token.typ != exp {
p.errorf("unexpected %s in %s, expected %s", token.desc(), context, exp.desc())
}
return token
}
// expectOneOf consumes the next token and guarantees it has one of the required types.
func (p *parser) expectOneOf(exp1, exp2 itemType, context string) item {
token := p.next()
if token.typ != exp1 && token.typ != exp2 {
p.errorf("unexpected %s in %s, expected %s or %s", token.desc(), context, exp1.desc(), exp2.desc())
}
return token
}
// recover is the handler that turns panics into returns from the top level of Parse.
func (p *parser) recover(errp *error) {
e := recover()
if e != nil {
if _, ok := e.(runtime.Error); ok {
panic(e)
}
*errp = e.(error)
}
return
}
// stmt parses any statement.
//
// alertStatement | recordStatement
//
func (p *parser) stmt() Statement {
switch tok := p.peek(); tok.typ {
case itemAlert:
return p.alertStmt()
case itemIdentifier, itemMetricIdentifier:
return p.recordStmt()
}
p.errorf("no valid statement detected")
return nil
}
// alertStmt parses an alert rule.
//
// ALERT name IF expr [FOR duration] [WITH label_set]
// SUMMARY "summary"
// DESCRIPTION "description"
//
func (p *parser) alertStmt() *AlertStmt {
const ctx = "alert statement"
p.expect(itemAlert, ctx)
name := p.expect(itemIdentifier, ctx)
// Alerts require a vector typed expression.
p.expect(itemIf, ctx)
expr := p.expr()
// Optional for clause.
var duration time.Duration
var err error
if p.peek().typ == itemFor {
p.next()
dur := p.expect(itemDuration, ctx)
duration, err = parseDuration(dur.val)
if err != nil {
p.error(err)
}
}
lset := clientmodel.LabelSet{}
if p.peek().typ == itemWith {
p.expect(itemWith, ctx)
lset = p.labelSet()
}
p.expect(itemSummary, ctx)
sum, err := strconv.Unquote(p.expect(itemString, ctx).val)
if err != nil {
p.error(err)
}
p.expect(itemDescription, ctx)
desc, err := strconv.Unquote(p.expect(itemString, ctx).val)
if err != nil {
p.error(err)
}
return &AlertStmt{
Name: name.val,
Expr: expr,
Duration: duration,
Labels: lset,
Summary: sum,
Description: desc,
}
}
// recordStmt parses a recording rule.
func (p *parser) recordStmt() *RecordStmt {
const ctx = "record statement"
name := p.expectOneOf(itemIdentifier, itemMetricIdentifier, ctx).val
var lset clientmodel.LabelSet
if p.peek().typ == itemLeftBrace {
lset = p.labelSet()
}
p.expect(itemAssign, ctx)
expr := p.expr()
return &RecordStmt{
Name: name,
Labels: lset,
Expr: expr,
}
}
// expr parses any expression.
func (p *parser) expr() Expr {
// Parse the starting expression.
expr := p.unaryExpr()
if expr == nil {
p.errorf("no valid expression found")
}
// Loop through the operations and construct a binary operation tree based
// on the operators' precedence.
for {
// If the next token is not an operator the expression is done.
op := p.peek().typ
if !op.isOperator() {
return expr
}
p.next() // Consume operator.
// Parse optional operator matching options. Its validity
// is checked in the type-checking stage.
vecMatching := &VectorMatching{
Card: CardOneToOne,
}
if op == itemLAND || op == itemLOR {
vecMatching.Card = CardManyToMany
}
// Parse ON clause.
if p.peek().typ == itemOn {
p.next()
vecMatching.On = p.labels()
// Parse grouping.
if t := p.peek().typ; t == itemGroupLeft {
p.next()
vecMatching.Card = CardManyToOne
vecMatching.Include = p.labels()
} else if t == itemGroupRight {
p.next()
vecMatching.Card = CardOneToMany
vecMatching.Include = p.labels()
}
}
for _, ln := range vecMatching.On {
for _, ln2 := range vecMatching.Include {
if ln == ln2 {
p.errorf("label %q must not occur in ON and INCLUDE clause at once", ln)
}
}
}
// Parse the next operand.
rhs := p.unaryExpr()
if rhs == nil {
p.errorf("missing right-hand side in binary expression")
}
// Assign the new root based on the precendence of the LHS and RHS operators.
if lhs, ok := expr.(*BinaryExpr); ok && lhs.Op.precedence() < op.precedence() {
expr = &BinaryExpr{
Op: lhs.Op,
LHS: lhs.LHS,
RHS: &BinaryExpr{
Op: op,
LHS: lhs.RHS,
RHS: rhs,
VectorMatching: vecMatching,
},
VectorMatching: lhs.VectorMatching,
}
} else {
expr = &BinaryExpr{
Op: op,
LHS: expr,
RHS: rhs,
VectorMatching: vecMatching,
}
}
}
return nil
}
// unaryExpr parses a unary expression.
//
// <vector_selector> | <matrix_selector> | (+|-) <number_literal> | '(' <expr> ')'
//
func (p *parser) unaryExpr() Expr {
switch t := p.peek(); t.typ {
case itemADD, itemSUB:
p.next()
e := p.unaryExpr()
// Simplify unary expressions for number literals.
if nl, ok := e.(*NumberLiteral); ok {
if t.typ == itemSUB {
nl.Val *= -1
}
return nl
}
return &UnaryExpr{Op: t.typ, Expr: e}
case itemLeftParen:
p.next()
e := p.expr()
p.expect(itemRightParen, "paren expression")
return &ParenExpr{Expr: e}
}
e := p.primaryExpr()
// Expression might be followed by a range selector.
if p.peek().typ == itemLeftBracket {
vs, ok := e.(*VectorSelector)
if !ok {
p.errorf("range specification must be preceded by a metric selector, but follows a %T instead", e)
}
e = p.rangeSelector(vs)
}
return e
}
// rangeSelector parses a matrix selector based on a given vector selector.
//
// <vector_selector> '[' <duration> ']'
//
func (p *parser) rangeSelector(vs *VectorSelector) *MatrixSelector {
const ctx = "matrix selector"
p.next()
var erange, offset time.Duration
var err error
erangeStr := p.expect(itemDuration, ctx).val
erange, err = parseDuration(erangeStr)
if err != nil {
p.error(err)
}
p.expect(itemRightBracket, ctx)
// Parse optional offset.
if p.peek().typ == itemOffset {
p.next()
offi := p.expect(itemDuration, ctx)
offset, err = parseDuration(offi.val)
if err != nil {
p.error(err)
}
}
e := &MatrixSelector{
Name: vs.Name,
LabelMatchers: vs.LabelMatchers,
Range: erange,
Offset: offset,
}
return e
}
// primaryExpr parses a primary expression.
//
// <metric_name> | <function_call> | <vector_aggregation> | <literal>
//
func (p *parser) primaryExpr() Expr {
switch t := p.next(); {
case t.typ == itemNumber:
n, err := strconv.ParseInt(t.val, 0, 64)
f := float64(n)
if err != nil {
f, err = strconv.ParseFloat(t.val, 64)
}
if err != nil {
p.errorf("error parsing number: %s", err)
}
return &NumberLiteral{clientmodel.SampleValue(f)}
case t.typ == itemString:
s := t.val[1 : len(t.val)-1]
return &StringLiteral{s}
case t.typ == itemLeftBrace:
// Metric selector without metric name.
p.backup()
return p.vectorSelector("")
case t.typ == itemIdentifier:
// Check for function call.
if p.peek().typ == itemLeftParen {
return p.call(t.val)
}
fallthrough // Else metric selector.
case t.typ == itemMetricIdentifier:
return p.vectorSelector(t.val)
case t.typ.isAggregator():
p.backup()
return p.aggrExpr()
}
return nil
}
// labels parses a list of labelnames.
//
// '(' <label_name>, ... ')'
//
func (p *parser) labels() clientmodel.LabelNames {
const ctx = "grouping opts"
p.expect(itemLeftParen, ctx)
labels := clientmodel.LabelNames{}
for {
id := p.expect(itemIdentifier, ctx)
labels = append(labels, clientmodel.LabelName(id.val))
if p.peek().typ != itemComma {
break
}
p.next()
}
p.expect(itemRightParen, ctx)
return labels
}
// aggrExpr parses an aggregation expression.
//
// <aggr_op> (<vector_expr>) [by <labels>] [keeping_extra]
// <aggr_op> [by <labels>] [keeping_extra] (<vector_expr>)
//
func (p *parser) aggrExpr() *AggregateExpr {
const ctx = "aggregation"
agop := p.next()
if !agop.typ.isAggregator() {
p.errorf("expected aggregation operator but got %s", agop)
}
var grouping clientmodel.LabelNames
var keepExtra bool
modifiersFirst := false
if p.peek().typ == itemBy {
p.next()
grouping = p.labels()
modifiersFirst = true
}
if p.peek().typ == itemKeepingExtra {
p.next()
keepExtra = true
modifiersFirst = true
}
p.expect(itemLeftParen, ctx)
e := p.expr()
p.expect(itemRightParen, ctx)
if !modifiersFirst {
if p.peek().typ == itemBy {
if len(grouping) > 0 {
p.errorf("aggregation must only contain one grouping clause")
}
p.next()
grouping = p.labels()
}
if p.peek().typ == itemKeepingExtra {
p.next()
keepExtra = true
}
}
return &AggregateExpr{
Op: agop.typ,
Expr: e,
Grouping: grouping,
KeepExtraLabels: keepExtra,
}
}
// call parses a function call.
//
// <func_name> '(' [ <arg_expr>, ...] ')'
//
func (p *parser) call(name string) *Call {
const ctx = "function call"
fn, exist := getFunction(name)
if !exist {
p.errorf("unknown function with name %q", name)
}
p.expect(itemLeftParen, ctx)
// Might be call without args.
if p.peek().typ == itemRightParen {
p.next() // Consume.
return &Call{fn, nil}
}
var args []Expr
for {
e := p.expr()
args = append(args, e)
// Terminate if no more arguments.
if p.peek().typ != itemComma {
break
}
p.next()
}
// Call must be closed.
p.expect(itemRightParen, ctx)
return &Call{Func: fn, Args: args}
}
// labelSet parses a set of label matchers
//
// '{' [ <labelname> '=' <match_string>, ... ] '}'
//
func (p *parser) labelSet() clientmodel.LabelSet {
set := clientmodel.LabelSet{}
for _, lm := range p.labelMatchers(itemEQL) {
set[lm.Name] = lm.Value
}
return set
}
// labelMatchers parses a set of label matchers.
//
// '{' [ <labelname> <match_op> <match_string>, ... ] '}'
//
func (p *parser) labelMatchers(operators ...itemType) metric.LabelMatchers {
const ctx = "label matching"
matchers := metric.LabelMatchers{}
p.expect(itemLeftBrace, ctx)
// Check if no matchers are provided.
if p.peek().typ == itemRightBrace {
p.next()
return matchers
}
for {
label := p.expect(itemIdentifier, ctx)
op := p.next().typ
if !op.isOperator() {
p.errorf("expected label matching operator but got %s", op)
}
var validOp = false
for _, allowedOp := range operators {
if op == allowedOp {
validOp = true
}
}
if !validOp {
p.errorf("operator must be one of %q, is %q", operators, op)
}
val, err := strconv.Unquote(p.expect(itemString, ctx).val)
if err != nil {
p.error(err)
}
// Map the item to the respective match type.
var matchType metric.MatchType
switch op {
case itemEQL:
matchType = metric.Equal
case itemNEQ:
matchType = metric.NotEqual
case itemEQLRegex:
matchType = metric.RegexMatch
case itemNEQRegex:
matchType = metric.RegexNoMatch
default:
p.errorf("item %q is not a metric match type", op)
}
m, err := metric.NewLabelMatcher(
matchType,
clientmodel.LabelName(label.val),
clientmodel.LabelValue(val),
)
if err != nil {
p.error(err)
}
matchers = append(matchers, m)
// Terminate list if last matcher.
if p.peek().typ != itemComma {
break
}
p.next()
}
p.expect(itemRightBrace, ctx)
return matchers
}
// metricSelector parses a new metric selector.
//
// <metric_identifier> [<label_matchers>] [ offset <duration> ]
// [<metric_identifier>] <label_matchers> [ offset <duration> ]
//
func (p *parser) vectorSelector(name string) *VectorSelector {
const ctx = "metric selector"
var matchers metric.LabelMatchers
// Parse label matching if any.
if t := p.peek(); t.typ == itemLeftBrace {
matchers = p.labelMatchers(itemEQL, itemNEQ, itemEQLRegex, itemNEQRegex)
}
// Metric name must not be set in the label matchers and before at the same time.
if name != "" {
for _, m := range matchers {
if m.Name == clientmodel.MetricNameLabel {
p.errorf("metric name must not be set twice: %q or %q", name, m.Value)
}
}
// Set name label matching.
matchers = append(matchers, &metric.LabelMatcher{
Type: metric.Equal,
Name: clientmodel.MetricNameLabel,
Value: clientmodel.LabelValue(name),
})
}
if len(matchers) == 0 {
p.errorf("vector selector must contain label matchers or metric name")
}
var err error
var offset time.Duration
// Parse optional offset.
if p.peek().typ == itemOffset {
p.next()
offi := p.expect(itemDuration, ctx)
offset, err = parseDuration(offi.val)
if err != nil {
p.error(err)
}
}
return &VectorSelector{
Name: name,
LabelMatchers: matchers,
Offset: offset,
}
}
// expectType checks the type of the node and raises an error if it
// is not of the expected type.
func (p *parser) expectType(node Node, want ExprType, context string) {
t := p.checkType(node)
if t != want {
p.errorf("expected type %s in %s, got %s", want, context, t)
}
}
// check the types of the children of each node and raise an error
// if they do not form a valid node.
//
// Some of these checks are redundant as the the parsing stage does not allow
// them, but the costs are small and might reveal errors when making changes.
func (p *parser) checkType(node Node) (typ ExprType) {
// For expressions the type is determined by their Type function.
// Statements and lists do not have a type but are not invalid either.
switch n := node.(type) {
case Statements, Expressions, Statement:
typ = ExprNone
case Expr:
typ = n.Type()
default:
p.errorf("unknown node type: %T", node)
}
// Recursively check correct typing for child nodes and raise
// errors in case of bad typing.
switch n := node.(type) {
case Statements:
for _, s := range n {
p.expectType(s, ExprNone, "statement list")
}
case *AlertStmt:
p.expectType(n.Expr, ExprVector, "alert statement")
case *EvalStmt:
ty := p.checkType(n.Expr)
if ty == ExprNone {
p.errorf("evaluation statement must have a valid expression type but got %s", ty)
}
case *RecordStmt:
p.expectType(n.Expr, ExprVector, "record statement")
case Expressions:
for _, e := range n {
ty := p.checkType(e)
if ty == ExprNone {
p.errorf("expression must have a valid expression type but got %s", ty)
}
}
case *AggregateExpr:
if !n.Op.isAggregator() {
p.errorf("aggregation operator expected in aggregation expression but got %q", n.Op)
}
p.expectType(n.Expr, ExprVector, "aggregation expression")
case *BinaryExpr:
lt := p.checkType(n.LHS)
rt := p.checkType(n.RHS)
if !n.Op.isOperator() {
p.errorf("only logical and arithmetic operators allowed in binary expression, got %q", n.Op)
}
if (lt != ExprScalar && lt != ExprVector) || (rt != ExprScalar && rt != ExprVector) {
p.errorf("binary expression must contain only scalar and vector types")
}
if (lt != ExprVector || rt != ExprVector) && n.VectorMatching != nil {
if len(n.VectorMatching.On) > 0 {
p.errorf("vector matching only allowed between vectors")
}
n.VectorMatching = nil
} else {
// Both operands are vectors.
if n.Op == itemLAND || n.Op == itemLOR {
if n.VectorMatching.Card == CardOneToMany || n.VectorMatching.Card == CardManyToOne {
p.errorf("no grouping allowed for AND and OR operations")
}
if n.VectorMatching.Card != CardManyToMany {
p.errorf("AND and OR operations must always be many-to-many")
}
}
}
if (lt == ExprScalar || rt == ExprScalar) && (n.Op == itemLAND || n.Op == itemLOR) {
p.errorf("AND and OR not allowed in binary scalar expression")
}
case *Call:
nargs := len(n.Func.ArgTypes)
if na := nargs - n.Func.OptionalArgs; na > len(n.Args) {
p.errorf("expected at least %d argument(s) in call to %q, got %d", na, n.Func.Name, len(n.Args))
}
if nargs < len(n.Args) {
p.errorf("expected at most %d argument(s) in call to %q, got %d", nargs, n.Func.Name, len(n.Args))
}
for i, arg := range n.Args {
p.expectType(arg, n.Func.ArgTypes[i], fmt.Sprintf("call to function %q", n.Func.Name))
}
case *ParenExpr:
p.checkType(n.Expr)
case *UnaryExpr:
if n.Op != itemADD && n.Op != itemSUB {
p.errorf("only + and - operators allowed for unary expressions")
}
p.expectType(n.Expr, ExprScalar, "unary expression")
case *NumberLiteral, *MatrixSelector, *StringLiteral, *VectorSelector:
// Nothing to do for terminals.
default:
p.errorf("unknown node type: %T", node)
}
return
}
func parseDuration(ds string) (time.Duration, error) {
dur, err := utility.StringToDuration(ds)
if err != nil {
return 0, err
}
if dur == 0 {
return 0, fmt.Errorf("duration must be greater than 0")
}
return dur, nil
}

1218
promql/parse_test.go Normal file

File diff suppressed because it is too large Load Diff

399
promql/printer.go Normal file
View File

@ -0,0 +1,399 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"fmt"
"reflect"
"sort"
"strings"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
"github.com/prometheus/prometheus/utility"
)
func (matrix Matrix) String() string {
metricStrings := make([]string, 0, len(matrix))
for _, sampleStream := range matrix {
metricName, hasName := sampleStream.Metric.Metric[clientmodel.MetricNameLabel]
numLabels := len(sampleStream.Metric.Metric)
if hasName {
numLabels--
}
labelStrings := make([]string, 0, numLabels)
for label, value := range sampleStream.Metric.Metric {
if label != clientmodel.MetricNameLabel {
labelStrings = append(labelStrings, fmt.Sprintf("%s=%q", label, value))
}
}
sort.Strings(labelStrings)
valueStrings := make([]string, 0, len(sampleStream.Values))
for _, value := range sampleStream.Values {
valueStrings = append(valueStrings,
fmt.Sprintf("\n%v @[%v]", value.Value, value.Timestamp))
}
metricStrings = append(metricStrings,
fmt.Sprintf("%s{%s} => %s",
metricName,
strings.Join(labelStrings, ", "),
strings.Join(valueStrings, ", ")))
}
sort.Strings(metricStrings)
return strings.Join(metricStrings, "\n")
}
func (vector Vector) String() string {
metricStrings := make([]string, 0, len(vector))
for _, sample := range vector {
metricStrings = append(metricStrings,
fmt.Sprintf("%s => %v @[%v]",
sample.Metric,
sample.Value, sample.Timestamp))
}
return strings.Join(metricStrings, "\n")
}
// Tree returns a string of the tree structure of the given node.
func Tree(node Node) string {
return tree(node, "")
}
func tree(node Node, level string) string {
if node == nil {
return fmt.Sprintf("%s |---- %T\n", level, node)
}
typs := strings.Split(fmt.Sprintf("%T", node), ".")[1]
var t string
// Only print the number of statements for readability.
if stmts, ok := node.(Statements); ok {
t = fmt.Sprintf("%s |---- %s :: %d\n", level, typs, len(stmts))
} else {
t = fmt.Sprintf("%s |---- %s :: %s\n", level, typs, node)
}
level += " · · ·"
switch n := node.(type) {
case Statements:
for _, s := range n {
t += tree(s, level)
}
case *AlertStmt:
t += tree(n.Expr, level)
case *EvalStmt:
t += tree(n.Expr, level)
case *RecordStmt:
t += tree(n.Expr, level)
case Expressions:
for _, e := range n {
t += tree(e, level)
}
case *AggregateExpr:
t += tree(n.Expr, level)
case *BinaryExpr:
t += tree(n.LHS, level)
t += tree(n.RHS, level)
case *Call:
t += tree(n.Args, level)
case *ParenExpr:
t += tree(n.Expr, level)
case *UnaryExpr:
t += tree(n.Expr, level)
case *MatrixSelector, *NumberLiteral, *StringLiteral, *VectorSelector:
// nothing to do
default:
panic("promql.Tree: not all node types covered")
}
return t
}
func (stmts Statements) String() (s string) {
if len(stmts) == 0 {
return ""
}
for _, stmt := range stmts {
s += stmt.String()
s += "\n\n"
}
return s[:len(s)-2]
}
func (node *AlertStmt) String() string {
s := fmt.Sprintf("ALERT %s", node.Name)
s += fmt.Sprintf("\n\tIF %s", node.Expr)
if node.Duration > 0 {
s += fmt.Sprintf("\n\tFOR %s", utility.DurationToString(node.Duration))
}
if len(node.Labels) > 0 {
s += fmt.Sprintf("\n\tWITH %s", node.Labels)
}
s += fmt.Sprintf("\n\tSUMMARY %q", node.Summary)
s += fmt.Sprintf("\n\tDESCRIPTION %q", node.Description)
return s
}
func (node *EvalStmt) String() string {
return "EVAL " + node.Expr.String()
}
func (node *RecordStmt) String() string {
s := fmt.Sprintf("%s%s = %s", node.Name, node.Labels, node.Expr)
return s
}
func (es Expressions) String() (s string) {
if len(es) == 0 {
return ""
}
for _, e := range es {
s += e.String()
s += ", "
}
return s[:len(s)-2]
}
func (node *AggregateExpr) String() string {
aggrString := fmt.Sprintf("%s(%s)", node.Op, node.Expr)
if len(node.Grouping) > 0 {
return fmt.Sprintf("%s BY (%s)", aggrString, node.Grouping)
}
return aggrString
}
func (node *BinaryExpr) String() string {
matching := ""
vm := node.VectorMatching
if vm != nil && len(vm.On) > 0 {
matching = fmt.Sprintf(" ON(%s)", vm.On)
if vm.Card == CardManyToOne {
matching += fmt.Sprintf(" GROUP_LEFT(%s)", vm.Include)
}
if vm.Card == CardOneToMany {
matching += fmt.Sprintf(" GROUP_RIGHT(%s)", vm.Include)
}
}
return fmt.Sprintf("%s %s%s %s", node.LHS, node.Op, matching, node.RHS)
}
func (node *Call) String() string {
return fmt.Sprintf("%s(%s)", node.Func.Name, node.Args)
}
func (node *MatrixSelector) String() string {
vecSelector := &VectorSelector{
Name: node.Name,
LabelMatchers: node.LabelMatchers,
}
return fmt.Sprintf("%s[%s]", vecSelector.String(), utility.DurationToString(node.Range))
}
func (node *NumberLiteral) String() string {
return fmt.Sprint(node.Val)
}
func (node *ParenExpr) String() string {
return fmt.Sprintf("(%s)", node.Expr)
}
func (node *StringLiteral) String() string {
return fmt.Sprintf("%q", node.Val)
}
func (node *UnaryExpr) String() string {
return fmt.Sprintf("%s%s", node.Op, node.Expr)
}
func (node *VectorSelector) String() string {
labelStrings := make([]string, 0, len(node.LabelMatchers)-1)
for _, matcher := range node.LabelMatchers {
// Only include the __name__ label if its no equality matching.
if matcher.Name == clientmodel.MetricNameLabel && matcher.Type == metric.Equal {
continue
}
labelStrings = append(labelStrings, matcher.String())
}
if len(labelStrings) == 0 {
return node.Name
}
sort.Strings(labelStrings)
return fmt.Sprintf("%s{%s}", node.Name, strings.Join(labelStrings, ","))
}
// DotGraph returns a DOT representation of a statement list.
func (ss Statements) DotGraph() string {
graph := ""
for _, stmt := range ss {
graph += stmt.DotGraph()
}
return graph
}
// DotGraph returns a DOT representation of the alert statement.
func (node *AlertStmt) DotGraph() string {
graph := fmt.Sprintf(
`digraph "Alert Statement" {
%#p[shape="box",label="ALERT %s IF FOR %s"];
%#p -> %x;
%s
}`,
node, node.Name, utility.DurationToString(node.Duration),
node, reflect.ValueOf(node.Expr).Pointer(),
node.Expr.DotGraph(),
)
return graph
}
// DotGraph returns a DOT representation of the eval statement.
func (node *EvalStmt) DotGraph() string {
graph := fmt.Sprintf(
`%#p[shape="box",label="[%d:%s:%d]";
%#p -> %x;
%s
}`,
node, node.Start, node.End, node.Interval,
node, reflect.ValueOf(node.Expr).Pointer(),
node.Expr.DotGraph(),
)
return graph
}
// DotGraph returns a DOT representation of the record statement.
func (node *RecordStmt) DotGraph() string {
graph := fmt.Sprintf(
`%#p[shape="box",label="%s = "];
%#p -> %x;
%s
}`,
node, node.Name,
node, reflect.ValueOf(node.Expr).Pointer(),
node.Expr.DotGraph(),
)
return graph
}
// DotGraph returns a DOT representation of // DotGraph returns a DOT representation of the record statement.
// DotGraph returns a DOT representation of a statement list.
func (es Expressions) DotGraph() string {
graph := ""
for _, expr := range es {
graph += expr.DotGraph()
}
return graph
}
// DotGraph returns a DOT representation of the vector aggregation.
func (node *AggregateExpr) DotGraph() string {
groupByStrings := make([]string, 0, len(node.Grouping))
for _, label := range node.Grouping {
groupByStrings = append(groupByStrings, string(label))
}
graph := fmt.Sprintf("%#p[label=\"%s BY (%s)\"]\n",
node,
node.Op,
strings.Join(groupByStrings, ", "))
graph += fmt.Sprintf("%#p -> %x;\n", node, reflect.ValueOf(node.Expr).Pointer())
graph += node.Expr.DotGraph()
return graph
}
// DotGraph returns a DOT representation of the expression.
func (node *BinaryExpr) DotGraph() string {
nodeAddr := reflect.ValueOf(node).Pointer()
graph := fmt.Sprintf(
`
%x[label="%s"];
%x -> %x;
%x -> %x;
%s
%s
}`,
nodeAddr, node.Op,
nodeAddr, reflect.ValueOf(node.LHS).Pointer(),
nodeAddr, reflect.ValueOf(node.RHS).Pointer(),
node.LHS.DotGraph(),
node.RHS.DotGraph(),
)
return graph
}
// DotGraph returns a DOT representation of the function call.
func (node *Call) DotGraph() string {
graph := fmt.Sprintf("%#p[label=\"%s\"];\n", node, node.Func.Name)
graph += functionArgsToDotGraph(node, node.Args)
return graph
}
// DotGraph returns a DOT representation of the number literal.
func (node *NumberLiteral) DotGraph() string {
return fmt.Sprintf("%#p[label=\"%v\"];\n", node, node.Val)
}
// DotGraph returns a DOT representation of the encapsulated expression.
func (node *ParenExpr) DotGraph() string {
return node.Expr.DotGraph()
}
// DotGraph returns a DOT representation of the matrix selector.
func (node *MatrixSelector) DotGraph() string {
return fmt.Sprintf("%#p[label=\"%s\"];\n", node, node)
}
// DotGraph returns a DOT representation of the string literal.
func (node *StringLiteral) DotGraph() string {
return fmt.Sprintf("%#p[label=\"'%q'\"];\n", node, node.Val)
}
// DotGraph returns a DOT representation of the unary expression.
func (node *UnaryExpr) DotGraph() string {
nodeAddr := reflect.ValueOf(node).Pointer()
graph := fmt.Sprintf(
`
%x[label="%s"];
%x -> %x;
%s
%s
}`,
nodeAddr, node.Op,
nodeAddr, reflect.ValueOf(node.Expr).Pointer(),
node.Expr.DotGraph(),
)
return graph
}
// DotGraph returns a DOT representation of the vector selector.
func (node *VectorSelector) DotGraph() string {
return fmt.Sprintf("%#p[label=\"%s\"];\n", node, node)
}
func functionArgsToDotGraph(node Node, args Expressions) string {
graph := args.DotGraph()
for _, arg := range args {
graph += fmt.Sprintf("%x -> %x;\n", reflect.ValueOf(node).Pointer(), reflect.ValueOf(arg).Pointer())
}
return graph
}

1656
promql/promql_test.go Normal file

File diff suppressed because it is too large Load Diff

View File

@ -11,7 +11,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
package promql
import (
"math"
@ -25,8 +25,8 @@ import (
// excludedLabels are the labels to exclude from signature calculation for
// quantiles.
var excludedLabels = map[clientmodel.LabelName]struct{}{
clientmodel.MetricNameLabel: {},
clientmodel.BucketLabel: {},
clientmodel.MetricNameLabel: struct{}{},
clientmodel.BucketLabel: struct{}{},
}
type bucket struct {

View File

@ -11,14 +11,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package rules
package promql
import (
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/storage/metric"
)
@ -26,7 +25,7 @@ import (
var testSampleInterval = time.Duration(5) * time.Minute
var testStartTime = clientmodel.Timestamp(0)
func getTestValueStream(startVal clientmodel.SampleValue, endVal clientmodel.SampleValue, stepVal clientmodel.SampleValue, startTime clientmodel.Timestamp) (resultValues metric.Values) {
func getTestValueStream(startVal, endVal, stepVal clientmodel.SampleValue, startTime clientmodel.Timestamp) (resultValues metric.Values) {
currentTime := startTime
for currentVal := startVal; currentVal <= endVal; currentVal += stepVal {
sample := metric.SamplePair{
@ -39,11 +38,11 @@ func getTestValueStream(startVal clientmodel.SampleValue, endVal clientmodel.Sam
return resultValues
}
func getTestVectorFromTestMatrix(matrix ast.Matrix) ast.Vector {
vector := ast.Vector{}
func getTestVectorFromTestMatrix(matrix Matrix) Vector {
vector := Vector{}
for _, sampleStream := range matrix {
lastSample := sampleStream.Values[len(sampleStream.Values)-1]
vector = append(vector, &ast.Sample{
vector = append(vector, &Sample{
Metric: sampleStream.Metric,
Value: lastSample.Value,
Timestamp: lastSample.Timestamp,
@ -52,7 +51,7 @@ func getTestVectorFromTestMatrix(matrix ast.Matrix) ast.Vector {
return vector
}
func storeMatrix(storage local.Storage, matrix ast.Matrix) {
func storeMatrix(storage local.Storage, matrix Matrix) {
pendingSamples := clientmodel.Samples{}
for _, sampleStream := range matrix {
for _, sample := range sampleStream.Values {
@ -69,7 +68,9 @@ func storeMatrix(storage local.Storage, matrix ast.Matrix) {
storage.WaitForIndexing()
}
var testMatrix = ast.Matrix{
var testVector = getTestVectorFromTestMatrix(testMatrix)
var testMatrix = Matrix{
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
@ -483,5 +484,3 @@ var testMatrix = ast.Matrix{
Values: getTestValueStream(0, 200, 20, testStartTime),
},
}
var testVector = getTestVectorFromTestMatrix(testMatrix)

View File

@ -1,27 +0,0 @@
# Copyright 2013 The Prometheus Authors
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
all: parser.y.go lexer.l.go
include ../Makefile.INCLUDE
parser.y.go: parser.y
$(GOCC) tool yacc -o parser.y.go -v "" parser.y
lexer.l.go: parser.y.go lexer.l
# This is golex from https://github.com/cznic/golex.
$(GO_GET) github.com/cznic/golex
golex -o="lexer.l.go" lexer.l
clean:
rm lexer.l.go parser.y.go

View File

@ -22,9 +22,7 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/stats"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/utility"
)
@ -80,7 +78,7 @@ type Alert struct {
}
// sample returns a Sample suitable for recording the alert.
func (a Alert) sample(timestamp clientmodel.Timestamp, value clientmodel.SampleValue) *ast.Sample {
func (a Alert) sample(timestamp clientmodel.Timestamp, value clientmodel.SampleValue) *promql.Sample {
recordedMetric := clientmodel.Metric{}
for label, value := range a.Labels {
recordedMetric[label] = value
@ -90,7 +88,7 @@ func (a Alert) sample(timestamp clientmodel.Timestamp, value clientmodel.SampleV
recordedMetric[AlertNameLabel] = clientmodel.LabelValue(a.Name)
recordedMetric[AlertStateLabel] = clientmodel.LabelValue(a.State.String())
return &ast.Sample{
return &promql.Sample{
Metric: clientmodel.COWMetric{
Metric: recordedMetric,
Copied: true,
@ -105,7 +103,7 @@ type AlertingRule struct {
// The name of the alert.
name string
// The vector expression from which to generate alerts.
Vector ast.VectorNode
Vector promql.Expr
// The duration for which a labelset needs to persist in the expression
// output vector before an alert transitions from Pending to Firing state.
holdDuration time.Duration
@ -129,14 +127,18 @@ func (rule *AlertingRule) Name() string {
}
// EvalRaw returns the raw value of the rule expression, without creating alerts.
func (rule *AlertingRule) EvalRaw(timestamp clientmodel.Timestamp, storage local.Storage) (ast.Vector, error) {
return ast.EvalVectorInstant(rule.Vector, timestamp, storage, stats.NewTimerGroup())
func (rule *AlertingRule) EvalRaw(timestamp clientmodel.Timestamp, engine *promql.Engine) (promql.Vector, error) {
query, err := engine.NewInstantQuery(rule.Vector.String(), timestamp)
if err != nil {
return nil, err
}
return query.Exec().Vector()
}
// Eval evaluates the rule expression and then creates pending alerts and fires
// or removes previously pending alerts accordingly.
func (rule *AlertingRule) Eval(timestamp clientmodel.Timestamp, storage local.Storage) (ast.Vector, error) {
exprResult, err := rule.EvalRaw(timestamp, storage)
func (rule *AlertingRule) Eval(timestamp clientmodel.Timestamp, engine *promql.Engine) (promql.Vector, error) {
exprResult, err := rule.EvalRaw(timestamp, engine)
if err != nil {
return nil, err
}
@ -170,7 +172,7 @@ func (rule *AlertingRule) Eval(timestamp clientmodel.Timestamp, storage local.St
}
}
vector := ast.Vector{}
vector := promql.Vector{}
// Check if any pending alerts should be removed or fire now. Write out alert timeseries.
for fp, activeAlert := range rule.activeAlerts {
@ -191,8 +193,8 @@ func (rule *AlertingRule) Eval(timestamp clientmodel.Timestamp, storage local.St
return vector, nil
}
// ToDotGraph returns the text representation of a dot graph.
func (rule *AlertingRule) ToDotGraph() string {
// DotGraph returns the text representation of a dot graph.
func (rule *AlertingRule) DotGraph() string {
graph := fmt.Sprintf(
`digraph "Rules" {
%#p[shape="box",label="ALERT %s IF FOR %s"];
@ -201,7 +203,8 @@ func (rule *AlertingRule) ToDotGraph() string {
}`,
&rule, rule.name, utility.DurationToString(rule.holdDuration),
&rule, reflect.ValueOf(rule.Vector).Pointer(),
rule.Vector.NodeTreeToDotGraph())
rule.Vector.DotGraph(),
)
return graph
}
@ -217,9 +220,9 @@ func (rule *AlertingRule) HTMLSnippet() template.HTML {
}
return template.HTML(fmt.Sprintf(
`ALERT <a href="%s">%s</a> IF <a href="%s">%s</a> FOR %s WITH %s`,
GraphLinkForExpression(alertMetric.String()),
utility.GraphLinkForExpression(alertMetric.String()),
rule.name,
GraphLinkForExpression(rule.Vector.String()),
utility.GraphLinkForExpression(rule.Vector.String()),
rule.Vector,
utility.DurationToString(rule.holdDuration),
rule.Labels))
@ -252,7 +255,7 @@ func (rule *AlertingRule) ActiveAlerts() []Alert {
}
// NewAlertingRule constructs a new AlertingRule.
func NewAlertingRule(name string, vector ast.VectorNode, holdDuration time.Duration, labels clientmodel.LabelSet, summary string, description string) *AlertingRule {
func NewAlertingRule(name string, vector promql.Expr, holdDuration time.Duration, labels clientmodel.LabelSet, summary string, description string) *AlertingRule {
return &AlertingRule{
name: name,
Vector: vector,

File diff suppressed because it is too large Load Diff

View File

@ -1,772 +0,0 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
import (
"container/heap"
"fmt"
"math"
"sort"
"strconv"
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
)
// Function represents a function of the expression language and is
// used by function nodes.
type Function struct {
name string
argTypes []ExprType
optionalArgs int
returnType ExprType
callFn func(timestamp clientmodel.Timestamp, args []Node) interface{}
}
// CheckArgTypes returns a non-nil error if the number or types of
// passed in arg nodes do not match the function's expectations.
func (function *Function) CheckArgTypes(args []Node) error {
if len(function.argTypes) < len(args) {
return fmt.Errorf(
"too many arguments to function %v(): %v expected at most, %v given",
function.name, len(function.argTypes), len(args),
)
}
if len(function.argTypes)-function.optionalArgs > len(args) {
return fmt.Errorf(
"too few arguments to function %v(): %v expected at least, %v given",
function.name, len(function.argTypes)-function.optionalArgs, len(args),
)
}
for idx, arg := range args {
invalidType := false
var expectedType string
if _, ok := arg.(ScalarNode); function.argTypes[idx] == ScalarType && !ok {
invalidType = true
expectedType = "scalar"
}
if _, ok := arg.(VectorNode); function.argTypes[idx] == VectorType && !ok {
invalidType = true
expectedType = "vector"
}
if _, ok := arg.(MatrixNode); function.argTypes[idx] == MatrixType && !ok {
invalidType = true
expectedType = "matrix"
}
if _, ok := arg.(StringNode); function.argTypes[idx] == StringType && !ok {
invalidType = true
expectedType = "string"
}
if invalidType {
return fmt.Errorf(
"wrong type for argument %v in function %v(), expected %v",
idx, function.name, expectedType,
)
}
}
return nil
}
// === time() clientmodel.SampleValue ===
func timeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
return clientmodel.SampleValue(timestamp.Unix())
}
// === delta(matrix MatrixNode, isCounter=0 ScalarNode) Vector ===
func deltaImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
matrixNode := args[0].(MatrixNode)
isCounter := len(args) >= 2 && args[1].(ScalarNode).Eval(timestamp) > 0
resultVector := Vector{}
// If we treat these metrics as counters, we need to fetch all values
// in the interval to find breaks in the timeseries' monotonicity.
// I.e. if a counter resets, we want to ignore that reset.
var matrixValue Matrix
if isCounter {
matrixValue = matrixNode.Eval(timestamp)
} else {
matrixValue = matrixNode.EvalBoundaries(timestamp)
}
for _, samples := range matrixValue {
// No sense in trying to compute a delta without at least two points. Drop
// this vector element.
if len(samples.Values) < 2 {
continue
}
counterCorrection := clientmodel.SampleValue(0)
lastValue := clientmodel.SampleValue(0)
for _, sample := range samples.Values {
currentValue := sample.Value
if isCounter && currentValue < lastValue {
counterCorrection += lastValue - currentValue
}
lastValue = currentValue
}
resultValue := lastValue - samples.Values[0].Value + counterCorrection
targetInterval := args[0].(*MatrixSelector).interval
sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp)
if sampledInterval == 0 {
// Only found one sample. Cannot compute a rate from this.
continue
}
// Correct for differences in target vs. actual delta interval.
//
// Above, we didn't actually calculate the delta for the specified target
// interval, but for an interval between the first and last found samples
// under the target interval, which will usually have less time between
// them. Depending on how many samples are found under a target interval,
// the delta results are distorted and temporal aliasing occurs (ugly
// bumps). This effect is corrected for below.
intervalCorrection := clientmodel.SampleValue(targetInterval) / clientmodel.SampleValue(sampledInterval)
resultValue *= intervalCorrection
resultSample := &Sample{
Metric: samples.Metric,
Value: resultValue,
Timestamp: timestamp,
}
resultSample.Metric.Delete(clientmodel.MetricNameLabel)
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === rate(node MatrixNode) Vector ===
func rateImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
args = append(args, &ScalarLiteral{value: 1})
vector := deltaImpl(timestamp, args).(Vector)
// TODO: could be other type of MatrixNode in the future (right now, only
// MatrixSelector exists). Find a better way of getting the duration of a
// matrix, such as looking at the samples themselves.
interval := args[0].(*MatrixSelector).interval
for i := range vector {
vector[i].Value /= clientmodel.SampleValue(interval / time.Second)
}
return vector
}
type vectorByValueHeap Vector
func (s vectorByValueHeap) Len() int {
return len(s)
}
func (s vectorByValueHeap) Less(i, j int) bool {
if math.IsNaN(float64(s[i].Value)) {
return true
}
return s[i].Value < s[j].Value
}
func (s vectorByValueHeap) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s *vectorByValueHeap) Push(x interface{}) {
*s = append(*s, x.(*Sample))
}
func (s *vectorByValueHeap) Pop() interface{} {
old := *s
n := len(old)
el := old[n-1]
*s = old[0 : n-1]
return el
}
type reverseHeap struct {
heap.Interface
}
func (s reverseHeap) Less(i, j int) bool {
return s.Interface.Less(j, i)
}
// === sort(node VectorNode) Vector ===
func sortImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
byValueSorter := vectorByValueHeap(args[0].(VectorNode).Eval(timestamp))
sort.Sort(byValueSorter)
return Vector(byValueSorter)
}
// === sortDesc(node VectorNode) Vector ===
func sortDescImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
byValueSorter := vectorByValueHeap(args[0].(VectorNode).Eval(timestamp))
sort.Sort(sort.Reverse(byValueSorter))
return Vector(byValueSorter)
}
// === topk(k ScalarNode, node VectorNode) Vector ===
func topkImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
k := int(args[0].(ScalarNode).Eval(timestamp))
if k < 1 {
return Vector{}
}
topk := make(vectorByValueHeap, 0, k)
vector := args[1].(VectorNode).Eval(timestamp)
for _, el := range vector {
if len(topk) < k || topk[0].Value < el.Value {
if len(topk) == k {
heap.Pop(&topk)
}
heap.Push(&topk, el)
}
}
sort.Sort(sort.Reverse(topk))
return Vector(topk)
}
// === bottomk(k ScalarNode, node VectorNode) Vector ===
func bottomkImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
k := int(args[0].(ScalarNode).Eval(timestamp))
if k < 1 {
return Vector{}
}
bottomk := make(vectorByValueHeap, 0, k)
bkHeap := reverseHeap{Interface: &bottomk}
vector := args[1].(VectorNode).Eval(timestamp)
for _, el := range vector {
if len(bottomk) < k || bottomk[0].Value > el.Value {
if len(bottomk) == k {
heap.Pop(&bkHeap)
}
heap.Push(&bkHeap, el)
}
}
sort.Sort(bottomk)
return Vector(bottomk)
}
// === drop_common_labels(node VectorNode) Vector ===
func dropCommonLabelsImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
vector := args[0].(VectorNode).Eval(timestamp)
if len(vector) < 1 {
return Vector{}
}
common := clientmodel.LabelSet{}
for k, v := range vector[0].Metric.Metric {
// TODO(julius): Should we also drop common metric names?
if k == clientmodel.MetricNameLabel {
continue
}
common[k] = v
}
for _, el := range vector[1:] {
for k, v := range common {
if el.Metric.Metric[k] != v {
// Deletion of map entries while iterating over them is safe.
// From http://golang.org/ref/spec#For_statements:
// "If map entries that have not yet been reached are deleted during
// iteration, the corresponding iteration values will not be produced."
delete(common, k)
}
}
}
for _, el := range vector {
for k := range el.Metric.Metric {
if _, ok := common[k]; ok {
el.Metric.Delete(k)
}
}
}
return vector
}
// === round(vector VectorNode, toNearest=1 Scalar) Vector ===
func roundImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
// round returns a number rounded to toNearest.
// Ties are solved by rounding up.
toNearest := float64(1)
if len(args) >= 2 {
toNearest = float64(args[1].(ScalarNode).Eval(timestamp))
}
// Invert as it seems to cause fewer floating point accuracy issues.
toNearestInverse := 1.0 / toNearest
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Floor(float64(el.Value)*toNearestInverse+0.5) / toNearestInverse)
}
return vector
}
// === scalar(node VectorNode) Scalar ===
func scalarImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
v := args[0].(VectorNode).Eval(timestamp)
if len(v) != 1 {
return clientmodel.SampleValue(math.NaN())
}
return clientmodel.SampleValue(v[0].Value)
}
// === count_scalar(vector VectorNode) model.SampleValue ===
func countScalarImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
return clientmodel.SampleValue(len(args[0].(VectorNode).Eval(timestamp)))
}
func aggrOverTime(timestamp clientmodel.Timestamp, args []Node, aggrFn func(metric.Values) clientmodel.SampleValue) interface{} {
n := args[0].(MatrixNode)
matrixVal := n.Eval(timestamp)
resultVector := Vector{}
for _, el := range matrixVal {
if len(el.Values) == 0 {
continue
}
el.Metric.Delete(clientmodel.MetricNameLabel)
resultVector = append(resultVector, &Sample{
Metric: el.Metric,
Value: aggrFn(el.Values),
Timestamp: timestamp,
})
}
return resultVector
}
// === avg_over_time(matrix MatrixNode) Vector ===
func avgOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue {
var sum clientmodel.SampleValue
for _, v := range values {
sum += v.Value
}
return sum / clientmodel.SampleValue(len(values))
})
}
// === count_over_time(matrix MatrixNode) Vector ===
func countOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue {
return clientmodel.SampleValue(len(values))
})
}
// === floor(vector VectorNode) Vector ===
func floorImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Floor(float64(el.Value)))
}
return vector
}
// === max_over_time(matrix MatrixNode) Vector ===
func maxOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue {
max := math.Inf(-1)
for _, v := range values {
max = math.Max(max, float64(v.Value))
}
return clientmodel.SampleValue(max)
})
}
// === min_over_time(matrix MatrixNode) Vector ===
func minOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue {
min := math.Inf(1)
for _, v := range values {
min = math.Min(min, float64(v.Value))
}
return clientmodel.SampleValue(min)
})
}
// === sum_over_time(matrix MatrixNode) Vector ===
func sumOverTimeImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
return aggrOverTime(timestamp, args, func(values metric.Values) clientmodel.SampleValue {
var sum clientmodel.SampleValue
for _, v := range values {
sum += v.Value
}
return sum
})
}
// === abs(vector VectorNode) Vector ===
func absImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Abs(float64(el.Value)))
}
return vector
}
// === absent(vector VectorNode) Vector ===
func absentImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
if len(n.Eval(timestamp)) > 0 {
return Vector{}
}
m := clientmodel.Metric{}
if vs, ok := n.(*VectorSelector); ok {
for _, matcher := range vs.labelMatchers {
if matcher.Type == metric.Equal && matcher.Name != clientmodel.MetricNameLabel {
m[matcher.Name] = matcher.Value
}
}
}
return Vector{
&Sample{
Metric: clientmodel.COWMetric{
Metric: m,
Copied: true,
},
Value: 1,
Timestamp: timestamp,
},
}
}
// === ceil(vector VectorNode) Vector ===
func ceilImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Ceil(float64(el.Value)))
}
return vector
}
// === exp(vector VectorNode) Vector ===
func expImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Exp(float64(el.Value)))
}
return vector
}
// === ln(vector VectorNode) Vector ===
func lnImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Log(float64(el.Value)))
}
return vector
}
// === log2(vector VectorNode) Vector ===
func log2Impl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Log2(float64(el.Value)))
}
return vector
}
// === log10(vector VectorNode) Vector ===
func log10Impl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Log10(float64(el.Value)))
}
return vector
}
// === sqrt(vector VectorNode) Vector ===
func sqrtImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp)
for _, el := range vector {
el.Metric.Delete(clientmodel.MetricNameLabel)
el.Value = clientmodel.SampleValue(math.Sqrt(float64(el.Value)))
}
return vector
}
// === deriv(node MatrixNode) Vector ===
func derivImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
matrixNode := args[0].(MatrixNode)
resultVector := Vector{}
matrixValue := matrixNode.Eval(timestamp)
for _, samples := range matrixValue {
// No sense in trying to compute a derivative without at least two points.
// Drop this vector element.
if len(samples.Values) < 2 {
continue
}
// Least squares.
n := clientmodel.SampleValue(0)
sumY := clientmodel.SampleValue(0)
sumX := clientmodel.SampleValue(0)
sumXY := clientmodel.SampleValue(0)
sumX2 := clientmodel.SampleValue(0)
for _, sample := range samples.Values {
x := clientmodel.SampleValue(sample.Timestamp.UnixNano() / 1e9)
n += 1.0
sumY += sample.Value
sumX += x
sumXY += x * sample.Value
sumX2 += x * x
}
numerator := sumXY - sumX*sumY/n
denominator := sumX2 - (sumX*sumX)/n
resultValue := numerator / denominator
resultSample := &Sample{
Metric: samples.Metric,
Value: resultValue,
Timestamp: timestamp,
}
resultSample.Metric.Delete(clientmodel.MetricNameLabel)
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === histogram_quantile(k ScalarNode, vector VectorNode) Vector ===
func histogramQuantileImpl(timestamp clientmodel.Timestamp, args []Node) interface{} {
q := args[0].(ScalarNode).Eval(timestamp)
inVec := args[1].(VectorNode).Eval(timestamp)
outVec := Vector{}
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{}
for _, el := range inVec {
upperBound, err := strconv.ParseFloat(
string(el.Metric.Metric[clientmodel.BucketLabel]), 64,
)
if err != nil {
// Oops, no bucket label or malformed label value. Skip.
// TODO(beorn7): Issue a warning somehow.
continue
}
signature := clientmodel.SignatureWithoutLabels(el.Metric.Metric, excludedLabels)
mb, ok := signatureToMetricWithBuckets[signature]
if !ok {
el.Metric.Delete(clientmodel.BucketLabel)
el.Metric.Delete(clientmodel.MetricNameLabel)
mb = &metricWithBuckets{el.Metric, nil}
signatureToMetricWithBuckets[signature] = mb
}
mb.buckets = append(mb.buckets, bucket{upperBound, el.Value})
}
for _, mb := range signatureToMetricWithBuckets {
outVec = append(outVec, &Sample{
Metric: mb.metric,
Value: clientmodel.SampleValue(quantile(q, mb.buckets)),
Timestamp: timestamp,
})
}
return outVec
}
var functions = map[string]*Function{
"abs": {
name: "abs",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: absImpl,
},
"absent": {
name: "absent",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: absentImpl,
},
"avg_over_time": {
name: "avg_over_time",
argTypes: []ExprType{MatrixType},
returnType: VectorType,
callFn: avgOverTimeImpl,
},
"bottomk": {
name: "bottomk",
argTypes: []ExprType{ScalarType, VectorType},
returnType: VectorType,
callFn: bottomkImpl,
},
"ceil": {
name: "ceil",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: ceilImpl,
},
"count_over_time": {
name: "count_over_time",
argTypes: []ExprType{MatrixType},
returnType: VectorType,
callFn: countOverTimeImpl,
},
"count_scalar": {
name: "count_scalar",
argTypes: []ExprType{VectorType},
returnType: ScalarType,
callFn: countScalarImpl,
},
"delta": {
name: "delta",
argTypes: []ExprType{MatrixType, ScalarType},
optionalArgs: 1, // The 2nd argument is deprecated.
returnType: VectorType,
callFn: deltaImpl,
},
"deriv": {
name: "deriv",
argTypes: []ExprType{MatrixType},
returnType: VectorType,
callFn: derivImpl,
},
"drop_common_labels": {
name: "drop_common_labels",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: dropCommonLabelsImpl,
},
"exp": {
name: "exp",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: expImpl,
},
"floor": {
name: "floor",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: floorImpl,
},
"histogram_quantile": {
name: "histogram_quantile",
argTypes: []ExprType{ScalarType, VectorType},
returnType: VectorType,
callFn: histogramQuantileImpl,
},
"ln": {
name: "ln",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: lnImpl,
},
"log10": {
name: "log10",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: log10Impl,
},
"log2": {
name: "log2",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: log2Impl,
},
"max_over_time": {
name: "max_over_time",
argTypes: []ExprType{MatrixType},
returnType: VectorType,
callFn: maxOverTimeImpl,
},
"min_over_time": {
name: "min_over_time",
argTypes: []ExprType{MatrixType},
returnType: VectorType,
callFn: minOverTimeImpl,
},
"rate": {
name: "rate",
argTypes: []ExprType{MatrixType},
returnType: VectorType,
callFn: rateImpl,
},
"round": {
name: "round",
argTypes: []ExprType{VectorType, ScalarType},
optionalArgs: 1,
returnType: VectorType,
callFn: roundImpl,
},
"scalar": {
name: "scalar",
argTypes: []ExprType{VectorType},
returnType: ScalarType,
callFn: scalarImpl,
},
"sort": {
name: "sort",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: sortImpl,
},
"sort_desc": {
name: "sort_desc",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: sortDescImpl,
},
"sqrt": {
name: "sqrt",
argTypes: []ExprType{VectorType},
returnType: VectorType,
callFn: sqrtImpl,
},
"sum_over_time": {
name: "sum_over_time",
argTypes: []ExprType{MatrixType},
returnType: VectorType,
callFn: sumOverTimeImpl,
},
"time": {
name: "time",
argTypes: []ExprType{},
returnType: ScalarType,
callFn: timeImpl,
},
"topk": {
name: "topk",
argTypes: []ExprType{ScalarType, VectorType},
returnType: VectorType,
callFn: topkImpl,
},
}
// GetFunction returns a predefined Function object for the given
// name.
func GetFunction(name string) (*Function, error) {
function, ok := functions[name]
if !ok {
return nil, fmt.Errorf("couldn't find function %v()", name)
}
return function, nil
}

View File

@ -1,63 +0,0 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
import (
"testing"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
)
type emptyRangeNode struct{}
func (node emptyRangeNode) Type() ExprType { return MatrixType }
func (node emptyRangeNode) NodeTreeToDotGraph() string { return "" }
func (node emptyRangeNode) String() string { return "" }
func (node emptyRangeNode) Children() Nodes { return Nodes{} }
func (node emptyRangeNode) Eval(timestamp clientmodel.Timestamp) Matrix {
return Matrix{
SampleStream{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{clientmodel.MetricNameLabel: "empty_metric"},
},
Values: metric.Values{},
},
}
}
func (node emptyRangeNode) EvalBoundaries(timestamp clientmodel.Timestamp) Matrix {
return Matrix{
SampleStream{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{clientmodel.MetricNameLabel: "empty_metric"},
},
Values: metric.Values{},
},
}
}
func TestDeltaWithEmptyElementDoesNotCrash(t *testing.T) {
now := clientmodel.Now()
vector := deltaImpl(now, []Node{emptyRangeNode{}, &ScalarLiteral{value: 0}}).(Vector)
if len(vector) != 0 {
t.Fatalf("Expected empty result vector, got: %v", vector)
}
vector = deltaImpl(now, []Node{emptyRangeNode{}, &ScalarLiteral{value: 1}}).(Vector)
if len(vector) != 0 {
t.Fatalf("Expected empty result vector, got: %v", vector)
}
}

View File

@ -1,443 +0,0 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
import (
"encoding/json"
"errors"
"fmt"
"reflect"
"sort"
"strings"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/stats"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/utility"
)
// OutputFormat is an enum for the possible output formats.
type OutputFormat int
// Possible output formats.
const (
Text OutputFormat = iota
JSON
)
const jsonFormatVersion = 1
func (opType BinOpType) String() string {
opTypeMap := map[BinOpType]string{
Add: "+",
Sub: "-",
Mul: "*",
Div: "/",
Mod: "%",
GT: ">",
LT: "<",
EQ: "==",
NE: "!=",
GE: ">=",
LE: "<=",
And: "AND",
Or: "OR",
}
return opTypeMap[opType]
}
func (aggrType AggrType) String() string {
aggrTypeMap := map[AggrType]string{
Sum: "SUM",
Avg: "AVG",
Min: "MIN",
Max: "MAX",
Count: "COUNT",
Stdvar: "STDVAR",
Stddev: "STDDEV",
}
return aggrTypeMap[aggrType]
}
func (exprType ExprType) String() string {
exprTypeMap := map[ExprType]string{
ScalarType: "scalar",
VectorType: "vector",
MatrixType: "matrix",
StringType: "string",
}
return exprTypeMap[exprType]
}
func (vector Vector) String() string {
metricStrings := make([]string, 0, len(vector))
for _, sample := range vector {
metricStrings = append(metricStrings,
fmt.Sprintf("%s => %v @[%v]",
sample.Metric,
sample.Value, sample.Timestamp))
}
return strings.Join(metricStrings, "\n")
}
func (matrix Matrix) String() string {
metricStrings := make([]string, 0, len(matrix))
for _, sampleStream := range matrix {
metricName, hasName := sampleStream.Metric.Metric[clientmodel.MetricNameLabel]
numLabels := len(sampleStream.Metric.Metric)
if hasName {
numLabels--
}
labelStrings := make([]string, 0, numLabels)
for label, value := range sampleStream.Metric.Metric {
if label != clientmodel.MetricNameLabel {
labelStrings = append(labelStrings, fmt.Sprintf("%s=%q", label, value))
}
}
sort.Strings(labelStrings)
valueStrings := make([]string, 0, len(sampleStream.Values))
for _, value := range sampleStream.Values {
valueStrings = append(valueStrings,
fmt.Sprintf("\n%v @[%v]", value.Value, value.Timestamp))
}
metricStrings = append(metricStrings,
fmt.Sprintf("%s{%s} => %s",
metricName,
strings.Join(labelStrings, ", "),
strings.Join(valueStrings, ", ")))
}
sort.Strings(metricStrings)
return strings.Join(metricStrings, "\n")
}
// ErrorToJSON converts the given error into JSON.
func ErrorToJSON(err error) string {
errorStruct := struct {
Type string `json:"type"`
Value string `json:"value"`
Version int `json:"version"`
}{
Type: "error",
Value: err.Error(),
Version: jsonFormatVersion,
}
errorJSON, err := json.Marshal(errorStruct)
if err != nil {
return ""
}
return string(errorJSON)
}
// TypedValueToJSON converts the given data of type 'scalar',
// 'vector', or 'matrix' into its JSON representation.
func TypedValueToJSON(data interface{}, typeStr string) string {
dataStruct := struct {
Type string `json:"type"`
Value interface{} `json:"value"`
Version int `json:"version"`
}{
Type: typeStr,
Value: data,
Version: jsonFormatVersion,
}
dataJSON, err := json.Marshal(dataStruct)
if err != nil {
return ErrorToJSON(err)
}
return string(dataJSON)
}
// EvalToString evaluates the given node into a string of the given format.
func EvalToString(node Node, timestamp clientmodel.Timestamp, format OutputFormat, storage local.Storage, queryStats *stats.TimerGroup) string {
totalEvalTimer := queryStats.GetTimer(stats.TotalEvalTime).Start()
defer totalEvalTimer.Stop()
prepareTimer := queryStats.GetTimer(stats.TotalQueryPreparationTime).Start()
closer, err := PrepareInstantQuery(node, timestamp, storage, queryStats)
prepareTimer.Stop()
if err != nil {
panic(err)
}
defer closer.Close()
evalTimer := queryStats.GetTimer(stats.InnerEvalTime).Start()
switch node.Type() {
case ScalarType:
scalar := node.(ScalarNode).Eval(timestamp)
evalTimer.Stop()
switch format {
case Text:
return fmt.Sprintf("scalar: %v @[%v]", scalar, timestamp)
case JSON:
return TypedValueToJSON(scalar, "scalar")
}
case VectorType:
vector := node.(VectorNode).Eval(timestamp)
evalTimer.Stop()
switch format {
case Text:
return vector.String()
case JSON:
return TypedValueToJSON(vector, "vector")
}
case MatrixType:
matrix := node.(MatrixNode).Eval(timestamp)
evalTimer.Stop()
switch format {
case Text:
return matrix.String()
case JSON:
return TypedValueToJSON(matrix, "matrix")
}
case StringType:
str := node.(StringNode).Eval(timestamp)
evalTimer.Stop()
switch format {
case Text:
return str
case JSON:
return TypedValueToJSON(str, "string")
}
}
panic("Switch didn't cover all node types")
}
// EvalToVector evaluates the given node into a Vector. Matrices aren't supported.
func EvalToVector(node Node, timestamp clientmodel.Timestamp, storage local.Storage, queryStats *stats.TimerGroup) (Vector, error) {
totalEvalTimer := queryStats.GetTimer(stats.TotalEvalTime).Start()
defer totalEvalTimer.Stop()
prepareTimer := queryStats.GetTimer(stats.TotalQueryPreparationTime).Start()
closer, err := PrepareInstantQuery(node, timestamp, storage, queryStats)
prepareTimer.Stop()
if err != nil {
panic(err)
}
defer closer.Close()
evalTimer := queryStats.GetTimer(stats.InnerEvalTime).Start()
switch node.Type() {
case ScalarType:
scalar := node.(ScalarNode).Eval(timestamp)
evalTimer.Stop()
return Vector{&Sample{Value: scalar}}, nil
case VectorType:
vector := node.(VectorNode).Eval(timestamp)
evalTimer.Stop()
return vector, nil
case MatrixType:
return nil, errors.New("matrices not supported by EvalToVector")
case StringType:
str := node.(StringNode).Eval(timestamp)
evalTimer.Stop()
return Vector{
&Sample{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
"__value__": clientmodel.LabelValue(str),
},
Copied: true,
},
},
}, nil
}
panic("Switch didn't cover all node types")
}
// NodeTreeToDotGraph returns a DOT representation of the scalar
// literal.
func (node *ScalarLiteral) NodeTreeToDotGraph() string {
return fmt.Sprintf("%#p[label=\"%v\"];\n", node, node.value)
}
func functionArgsToDotGraph(node Node, args []Node) string {
graph := ""
for _, arg := range args {
graph += fmt.Sprintf("%x -> %x;\n", reflect.ValueOf(node).Pointer(), reflect.ValueOf(arg).Pointer())
}
for _, arg := range args {
graph += arg.NodeTreeToDotGraph()
}
return graph
}
// NodeTreeToDotGraph returns a DOT representation of the function
// call.
func (node *ScalarFunctionCall) NodeTreeToDotGraph() string {
graph := fmt.Sprintf("%#p[label=\"%s\"];\n", node, node.function.name)
graph += functionArgsToDotGraph(node, node.args)
return graph
}
// NodeTreeToDotGraph returns a DOT representation of the expression.
func (node *ScalarArithExpr) NodeTreeToDotGraph() string {
nodeAddr := reflect.ValueOf(node).Pointer()
graph := fmt.Sprintf(
`
%x[label="%s"];
%x -> %x;
%x -> %x;
%s
%s
}`,
nodeAddr, node.opType,
nodeAddr, reflect.ValueOf(node.lhs).Pointer(),
nodeAddr, reflect.ValueOf(node.rhs).Pointer(),
node.lhs.NodeTreeToDotGraph(),
node.rhs.NodeTreeToDotGraph(),
)
return graph
}
// NodeTreeToDotGraph returns a DOT representation of the vector selector.
func (node *VectorSelector) NodeTreeToDotGraph() string {
return fmt.Sprintf("%#p[label=\"%s\"];\n", node, node)
}
// NodeTreeToDotGraph returns a DOT representation of the function
// call.
func (node *VectorFunctionCall) NodeTreeToDotGraph() string {
graph := fmt.Sprintf("%#p[label=\"%s\"];\n", node, node.function.name)
graph += functionArgsToDotGraph(node, node.args)
return graph
}
// NodeTreeToDotGraph returns a DOT representation of the vector
// aggregation.
func (node *VectorAggregation) NodeTreeToDotGraph() string {
groupByStrings := make([]string, 0, len(node.groupBy))
for _, label := range node.groupBy {
groupByStrings = append(groupByStrings, string(label))
}
graph := fmt.Sprintf("%#p[label=\"%s BY (%s)\"]\n",
node,
node.aggrType,
strings.Join(groupByStrings, ", "))
graph += fmt.Sprintf("%#p -> %x;\n", node, reflect.ValueOf(node.vector).Pointer())
graph += node.vector.NodeTreeToDotGraph()
return graph
}
// NodeTreeToDotGraph returns a DOT representation of the expression.
func (node *VectorArithExpr) NodeTreeToDotGraph() string {
nodeAddr := reflect.ValueOf(node).Pointer()
graph := fmt.Sprintf(
`
%x[label="%s"];
%x -> %x;
%x -> %x;
%s
%s
}`,
nodeAddr, node.opType,
nodeAddr, reflect.ValueOf(node.lhs).Pointer(),
nodeAddr, reflect.ValueOf(node.rhs).Pointer(),
node.lhs.NodeTreeToDotGraph(),
node.rhs.NodeTreeToDotGraph(),
)
return graph
}
// NodeTreeToDotGraph returns a DOT representation of the matrix
// selector.
func (node *MatrixSelector) NodeTreeToDotGraph() string {
return fmt.Sprintf("%#p[label=\"%s\"];\n", node, node)
}
// NodeTreeToDotGraph returns a DOT representation of the string
// literal.
func (node *StringLiteral) NodeTreeToDotGraph() string {
return fmt.Sprintf("%#p[label=\"'%q'\"];\n", node, node.str)
}
// NodeTreeToDotGraph returns a DOT representation of the function
// call.
func (node *StringFunctionCall) NodeTreeToDotGraph() string {
graph := fmt.Sprintf("%#p[label=\"%s\"];\n", node, node.function.name)
graph += functionArgsToDotGraph(node, node.args)
return graph
}
func (nodes Nodes) String() string {
nodeStrings := make([]string, 0, len(nodes))
for _, node := range nodes {
nodeStrings = append(nodeStrings, node.String())
}
return strings.Join(nodeStrings, ", ")
}
func (node *ScalarLiteral) String() string {
return fmt.Sprint(node.value)
}
func (node *ScalarFunctionCall) String() string {
return fmt.Sprintf("%s(%s)", node.function.name, node.args)
}
func (node *ScalarArithExpr) String() string {
return fmt.Sprintf("(%s %s %s)", node.lhs, node.opType, node.rhs)
}
func (node *VectorSelector) String() string {
labelStrings := make([]string, 0, len(node.labelMatchers)-1)
var metricName clientmodel.LabelValue
for _, matcher := range node.labelMatchers {
if matcher.Name != clientmodel.MetricNameLabel {
labelStrings = append(labelStrings, fmt.Sprintf("%s%s%q", matcher.Name, matcher.Type, matcher.Value))
} else {
metricName = matcher.Value
}
}
switch len(labelStrings) {
case 0:
return string(metricName)
default:
sort.Strings(labelStrings)
return fmt.Sprintf("%s{%s}", metricName, strings.Join(labelStrings, ","))
}
}
func (node *VectorFunctionCall) String() string {
return fmt.Sprintf("%s(%s)", node.function.name, node.args)
}
func (node *VectorAggregation) String() string {
aggrString := fmt.Sprintf("%s(%s)", node.aggrType, node.vector)
if len(node.groupBy) > 0 {
return fmt.Sprintf("%s BY (%s)", aggrString, node.groupBy)
}
return aggrString
}
func (node *VectorArithExpr) String() string {
return fmt.Sprintf("(%s %s %s)", node.lhs, node.opType, node.rhs)
}
func (node *MatrixSelector) String() string {
vectorString := (&VectorSelector{labelMatchers: node.labelMatchers}).String()
intervalString := fmt.Sprintf("[%s]", utility.DurationToString(node.interval))
return vectorString + intervalString
}
func (node *StringLiteral) String() string {
return fmt.Sprintf("%q", node.str)
}
func (node *StringFunctionCall) String() string {
return fmt.Sprintf("%s(%s)", node.function.name, node.args)
}

View File

@ -1,231 +0,0 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
import (
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/stats"
"github.com/prometheus/prometheus/storage/local"
)
// preloadTimes tracks which instants or ranges to preload for a set of
// fingerprints. One of these structs is collected for each offset by the query
// analyzer.
type preloadTimes struct {
// Instants require single samples to be loaded along the entire query
// range, with intervals between the samples corresponding to the query
// resolution.
instants map[clientmodel.Fingerprint]struct{}
// Ranges require loading a range of samples at each resolution step,
// stretching backwards from the current evaluation timestamp. The length of
// the range into the past is given by the duration, as in "foo[5m]".
ranges map[clientmodel.Fingerprint]time.Duration
}
// A queryAnalyzer recursively traverses the AST to look for any nodes
// which will need data from the datastore. Instantiate with
// newQueryAnalyzer.
type queryAnalyzer struct {
// Tracks one set of times to preload per offset that occurs in the query
// expression.
offsetPreloadTimes map[time.Duration]preloadTimes
// The underlying storage to which the query will be applied. Needed for
// extracting timeseries fingerprint information during query analysis.
storage local.Storage
}
// newQueryAnalyzer returns a pointer to a newly instantiated
// queryAnalyzer. The storage is needed to extract timeseries
// fingerprint information during query analysis.
func newQueryAnalyzer(storage local.Storage) *queryAnalyzer {
return &queryAnalyzer{
offsetPreloadTimes: map[time.Duration]preloadTimes{},
storage: storage,
}
}
func (analyzer *queryAnalyzer) getPreloadTimes(offset time.Duration) preloadTimes {
if _, ok := analyzer.offsetPreloadTimes[offset]; !ok {
analyzer.offsetPreloadTimes[offset] = preloadTimes{
instants: map[clientmodel.Fingerprint]struct{}{},
ranges: map[clientmodel.Fingerprint]time.Duration{},
}
}
return analyzer.offsetPreloadTimes[offset]
}
// visit implements the visitor interface.
func (analyzer *queryAnalyzer) visit(node Node) {
switch n := node.(type) {
case *VectorSelector:
pt := analyzer.getPreloadTimes(n.offset)
fingerprints := analyzer.storage.GetFingerprintsForLabelMatchers(n.labelMatchers)
n.fingerprints = fingerprints
for _, fp := range fingerprints {
// Only add the fingerprint to the instants if not yet present in the
// ranges. Ranges always contain more points and span more time than
// instants for the same offset.
if _, alreadyInRanges := pt.ranges[fp]; !alreadyInRanges {
pt.instants[fp] = struct{}{}
}
n.metrics[fp] = analyzer.storage.GetMetricForFingerprint(fp)
}
case *MatrixSelector:
pt := analyzer.getPreloadTimes(n.offset)
fingerprints := analyzer.storage.GetFingerprintsForLabelMatchers(n.labelMatchers)
n.fingerprints = fingerprints
for _, fp := range fingerprints {
if pt.ranges[fp] < n.interval {
pt.ranges[fp] = n.interval
// Delete the fingerprint from the instants. Ranges always contain more
// points and span more time than instants, so we don't need to track
// an instant for the same fingerprint, should we have one.
delete(pt.instants, fp)
}
n.metrics[fp] = analyzer.storage.GetMetricForFingerprint(fp)
}
}
}
type iteratorInitializer struct {
storage local.Storage
}
func (i *iteratorInitializer) visit(node Node) {
switch n := node.(type) {
case *VectorSelector:
for _, fp := range n.fingerprints {
n.iterators[fp] = i.storage.NewIterator(fp)
}
case *MatrixSelector:
for _, fp := range n.fingerprints {
n.iterators[fp] = i.storage.NewIterator(fp)
}
}
}
// PrepareInstantQuery analyzes the query and preloads the necessary time range for each series.
func PrepareInstantQuery(node Node, timestamp clientmodel.Timestamp, storage local.Storage, queryStats *stats.TimerGroup) (local.Preloader, error) {
totalTimer := queryStats.GetTimer(stats.TotalEvalTime)
analyzeTimer := queryStats.GetTimer(stats.QueryAnalysisTime).Start()
analyzer := newQueryAnalyzer(storage)
Walk(analyzer, node)
analyzeTimer.Stop()
preloadTimer := queryStats.GetTimer(stats.PreloadTime).Start()
p := storage.NewPreloader()
for offset, pt := range analyzer.offsetPreloadTimes {
ts := timestamp.Add(-offset)
for fp, rangeDuration := range pt.ranges {
if et := totalTimer.ElapsedTime(); et > *queryTimeout {
preloadTimer.Stop()
p.Close()
return nil, queryTimeoutError{et}
}
if err := p.PreloadRange(fp, ts.Add(-rangeDuration), ts, *stalenessDelta); err != nil {
preloadTimer.Stop()
p.Close()
return nil, err
}
}
for fp := range pt.instants {
if et := totalTimer.ElapsedTime(); et > *queryTimeout {
preloadTimer.Stop()
p.Close()
return nil, queryTimeoutError{et}
}
if err := p.PreloadRange(fp, ts, ts, *stalenessDelta); err != nil {
preloadTimer.Stop()
p.Close()
return nil, err
}
}
}
preloadTimer.Stop()
ii := &iteratorInitializer{
storage: storage,
}
Walk(ii, node)
return p, nil
}
// PrepareRangeQuery analyzes the query and preloads the necessary time range for each series.
func PrepareRangeQuery(node Node, start clientmodel.Timestamp, end clientmodel.Timestamp, interval time.Duration, storage local.Storage, queryStats *stats.TimerGroup) (local.Preloader, error) {
totalTimer := queryStats.GetTimer(stats.TotalEvalTime)
analyzeTimer := queryStats.GetTimer(stats.QueryAnalysisTime).Start()
analyzer := newQueryAnalyzer(storage)
Walk(analyzer, node)
analyzeTimer.Stop()
preloadTimer := queryStats.GetTimer(stats.PreloadTime).Start()
p := storage.NewPreloader()
for offset, pt := range analyzer.offsetPreloadTimes {
offsetStart := start.Add(-offset)
offsetEnd := end.Add(-offset)
for fp, rangeDuration := range pt.ranges {
if et := totalTimer.ElapsedTime(); et > *queryTimeout {
preloadTimer.Stop()
p.Close()
return nil, queryTimeoutError{et}
}
if err := p.PreloadRange(fp, offsetStart.Add(-rangeDuration), offsetEnd, *stalenessDelta); err != nil {
preloadTimer.Stop()
p.Close()
return nil, err
}
/*
if interval < rangeDuration {
if err := p.GetMetricRange(fp, offsetEnd, offsetEnd.Sub(offsetStart)+rangeDuration); err != nil {
p.Close()
return nil, err
}
} else {
if err := p.GetMetricRangeAtInterval(fp, offsetStart, offsetEnd, interval, rangeDuration); err != nil {
p.Close()
return nil, err
}
}
*/
}
for fp := range pt.instants {
if et := totalTimer.ElapsedTime(); et > *queryTimeout {
preloadTimer.Stop()
p.Close()
return nil, queryTimeoutError{et}
}
if err := p.PreloadRange(fp, offsetStart, offsetEnd, *stalenessDelta); err != nil {
preloadTimer.Stop()
p.Close()
return nil, err
}
}
}
preloadTimer.Stop()
ii := &iteratorInitializer{
storage: storage,
}
Walk(ii, node)
return p, nil
}

View File

@ -1,28 +0,0 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
// visitor is the interface for a Node visitor.
type visitor interface {
visit(node Node)
}
// Walk does a depth-first traversal of the AST, starting at node,
// calling visitor.visit for each encountered Node in the tree.
func Walk(v visitor, node Node) {
v.visit(node)
for _, childNode := range node.Children() {
Walk(v, childNode)
}
}

View File

@ -1,16 +0,0 @@
// A simple test recording rule.
dc_http_request_rate5m = sum(rate(http_request_count[5m])) by (dc)
// A simple test alerting rule.
ALERT GlobalRequestRateLow IF(dc_http_request_rate5m < 10000) FOR 5m WITH {
service = "testservice"
/* ... more fields here ... */
}
SUMMARY "Global request rate low"
DESCRIPTION "The global request rate is low"
foo = bar{label1="value1"}
ALERT BazAlert IF(foo > 10) WITH {}
SUMMARY "Baz"
DESCRIPTION "BazAlert"

View File

@ -1 +0,0 @@
now = time()

View File

@ -1,15 +0,0 @@
// A simple test recording rule.
dc_http_request_rate5m = sum(rate(http_request_count[5m])) by (dc)
// A simple test alerting rule with a syntax error (invalid duration string "5").
ALERT GlobalRequestRateLow IF(dc_http_request_rate5m < 10000) FOR 5 WITH {
description = "Global HTTP request rate low!",
summary = "Request rate low"
/* ... more fields here ... */
}
SUMMARY "summary"
DESCRIPTION "description"
foo = bar{label1="value1"}
ALERT BazAlert IF(foo > 10) WITH {} SUMMARY "summary" DESCRIPTION "description"

View File

@ -1,223 +0,0 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package rules
import (
"fmt"
"net/url"
"strings"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/storage/metric"
"github.com/prometheus/prometheus/utility"
)
// CreateRecordingRule is a convenience function to create a recording rule.
func CreateRecordingRule(name string, labels clientmodel.LabelSet, expr ast.Node, permanent bool) (*RecordingRule, error) {
if _, ok := expr.(ast.VectorNode); !ok {
return nil, fmt.Errorf("recording rule expression %v does not evaluate to vector type", expr)
}
return &RecordingRule{
name: name,
labels: labels,
vector: expr.(ast.VectorNode),
permanent: permanent,
}, nil
}
// CreateAlertingRule is a convenience function to create a new alerting rule.
func CreateAlertingRule(name string, expr ast.Node, holdDurationStr string, labels clientmodel.LabelSet, summary string, description string) (*AlertingRule, error) {
if _, ok := expr.(ast.VectorNode); !ok {
return nil, fmt.Errorf("alert rule expression %v does not evaluate to vector type", expr)
}
holdDuration, err := utility.StringToDuration(holdDurationStr)
if err != nil {
return nil, err
}
return NewAlertingRule(name, expr.(ast.VectorNode), holdDuration, labels, summary, description), nil
}
// NewScalarLiteral returns a ScalarLiteral with the given value. If sign is "-"
// the value is negated.
func NewScalarLiteral(value clientmodel.SampleValue, sign string) *ast.ScalarLiteral {
if sign == "-" {
value = -value
}
return ast.NewScalarLiteral(value)
}
// NewFunctionCall is a convenience function to create a new AST function-call node.
func NewFunctionCall(name string, args []ast.Node) (ast.Node, error) {
function, err := ast.GetFunction(name)
if err != nil {
return nil, fmt.Errorf("unknown function %q", name)
}
functionCall, err := ast.NewFunctionCall(function, args)
if err != nil {
return nil, fmt.Errorf(err.Error())
}
return functionCall, nil
}
// NewVectorAggregation is a convenience function to create a new AST vector aggregation.
func NewVectorAggregation(aggrTypeStr string, vector ast.Node, groupBy clientmodel.LabelNames, keepExtraLabels bool) (*ast.VectorAggregation, error) {
if _, ok := vector.(ast.VectorNode); !ok {
return nil, fmt.Errorf("operand of %v aggregation must be of vector type", aggrTypeStr)
}
var aggrTypes = map[string]ast.AggrType{
"SUM": ast.Sum,
"MAX": ast.Max,
"MIN": ast.Min,
"AVG": ast.Avg,
"COUNT": ast.Count,
"STDVAR": ast.Stdvar,
"STDDEV": ast.Stddev,
}
aggrType, ok := aggrTypes[aggrTypeStr]
if !ok {
return nil, fmt.Errorf("unknown aggregation type %q", aggrTypeStr)
}
return ast.NewVectorAggregation(aggrType, vector.(ast.VectorNode), groupBy, keepExtraLabels), nil
}
// vectorMatching combines data used to match samples between vectors.
type vectorMatching struct {
matchCardinality ast.VectorMatchCardinality
matchOn clientmodel.LabelNames
includeLabels clientmodel.LabelNames
}
// newVectorMatching is a convenience function to create a new vectorMatching.
func newVectorMatching(card string, matchOn, include clientmodel.LabelNames) (*vectorMatching, error) {
var matchCardinalities = map[string]ast.VectorMatchCardinality{
"": ast.MatchOneToOne,
"GROUP_LEFT": ast.MatchManyToOne,
"GROUP_RIGHT": ast.MatchOneToMany,
}
matchCard, ok := matchCardinalities[card]
if !ok {
return nil, fmt.Errorf("invalid vector match cardinality %q", card)
}
if matchCard != ast.MatchOneToOne && len(include) == 0 {
return nil, fmt.Errorf("grouped vector matching must provide labels")
}
// There must be no overlap between both labelname lists.
for _, matchLabel := range matchOn {
for _, incLabel := range include {
if matchLabel == incLabel {
return nil, fmt.Errorf("use of label %s in ON and %s clauses not allowed", incLabel, card)
}
}
}
return &vectorMatching{matchCard, matchOn, include}, nil
}
// NewArithExpr is a convenience function to create a new AST arithmetic expression.
func NewArithExpr(opTypeStr string, lhs ast.Node, rhs ast.Node, vecMatching *vectorMatching) (ast.Node, error) {
var opTypes = map[string]ast.BinOpType{
"+": ast.Add,
"-": ast.Sub,
"*": ast.Mul,
"/": ast.Div,
"%": ast.Mod,
">": ast.GT,
"<": ast.LT,
"==": ast.EQ,
"!=": ast.NE,
">=": ast.GE,
"<=": ast.LE,
"AND": ast.And,
"OR": ast.Or,
}
opType, ok := opTypes[opTypeStr]
if !ok {
return nil, fmt.Errorf("invalid binary operator %q", opTypeStr)
}
var vm vectorMatching
if vecMatching != nil {
vm = *vecMatching
// And/or always do many-to-many matching.
if opType == ast.And || opType == ast.Or {
vm.matchCardinality = ast.MatchManyToMany
}
}
expr, err := ast.NewArithExpr(opType, lhs, rhs, vm.matchCardinality, vm.matchOn, vm.includeLabels)
if err != nil {
return nil, fmt.Errorf(err.Error())
}
return expr, nil
}
// NewVectorSelector is a convenience function to create a new AST vector selector.
func NewVectorSelector(m metric.LabelMatchers, offsetStr string) (ast.VectorNode, error) {
offset, err := utility.StringToDuration(offsetStr)
if err != nil {
return nil, err
}
return ast.NewVectorSelector(m, offset), nil
}
// NewMatrixSelector is a convenience function to create a new AST matrix selector.
func NewMatrixSelector(vector ast.Node, intervalStr string, offsetStr string) (ast.MatrixNode, error) {
interval, err := utility.StringToDuration(intervalStr)
if err != nil {
return nil, err
}
offset, err := utility.StringToDuration(offsetStr)
if err != nil {
return nil, err
}
vectorSelector, ok := vector.(*ast.VectorSelector)
if !ok {
return nil, fmt.Errorf("intervals are currently only supported for vector selectors")
}
return ast.NewMatrixSelector(vectorSelector, interval, offset), nil
}
func newLabelMatcher(matchTypeStr string, name clientmodel.LabelName, value clientmodel.LabelValue) (*metric.LabelMatcher, error) {
matchTypes := map[string]metric.MatchType{
"=": metric.Equal,
"!=": metric.NotEqual,
"=~": metric.RegexMatch,
"!~": metric.RegexNoMatch,
}
matchType, ok := matchTypes[matchTypeStr]
if !ok {
return nil, fmt.Errorf("invalid label matching operator %q", matchTypeStr)
}
return metric.NewLabelMatcher(matchType, name, value)
}
// TableLinkForExpression creates an escaped relative link to the table view of
// the provided expression.
func TableLinkForExpression(expr string) string {
// url.QueryEscape percent-escapes everything except spaces, for which it
// uses "+". However, in the non-query part of a URI, only percent-escaped
// spaces are legal, so we need to manually replace "+" with "%20" after
// query-escaping the string.
//
// See also:
// http://stackoverflow.com/questions/1634271/url-encoding-the-space-character-or-20.
urlData := url.QueryEscape(fmt.Sprintf(`[{"expr":%q,"tab":1}]`, expr))
return fmt.Sprintf("/graph#%s", strings.Replace(urlData, "+", "%20", -1))
}
// GraphLinkForExpression creates an escaped relative link to the graph view of
// the provided expression.
func GraphLinkForExpression(expr string) string {
urlData := url.QueryEscape(fmt.Sprintf(`[{"expr":%q,"tab":0}]`, expr))
return fmt.Sprintf("/graph#%s", strings.Replace(urlData, "+", "%20", -1))
}

View File

@ -1,118 +0,0 @@
/* Copyright 2013 The Prometheus Authors
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
%{
package rules
import (
"fmt"
"strconv"
"strings"
clientmodel "github.com/prometheus/client_golang/model"
)
// Lex is called by the parser generated by "go tool yacc" to obtain each
// token. The method is opened before the matching rules block and closed at
// the end of the file.
func (lexer *RulesLexer) Lex(lval *yySymType) int {
// Internal lexer states.
const (
S_INITIAL = iota
S_COMMENTS
)
// We simulate multiple start symbols for closely-related grammars via dummy tokens. See
// http://www.gnu.org/software/bison/manual/html_node/Multiple-start_002dsymbols.html
// Reason: we want to be able to parse lists of named rules as well as single expressions.
if lexer.startToken != 0 {
startToken := lexer.startToken
lexer.startToken = 0
return startToken
}
c := lexer.current
currentState := 0
if lexer.empty {
c, lexer.empty = lexer.getChar(), false
}
%}
D [0-9]
L [a-zA-Z_]
M [a-zA-Z_:]
U [smhdwy]
FLOAT ({D}*\.?{D}+|{D}+\.?{D}*){EXPONENT}?|[+-]?[iI][nN][fF]|[nN][aA][nN]
EXPONENT [eE][-+]?[0-9]+
STR \"(\\.|[^\\"])*\"|\'(\\.|[^\\'])*\'
%x S_COMMENTS
%yyc c
%yyn c = lexer.getChar()
%yyt currentState
%%
lexer.buf = lexer.buf[:0] // The code before the first rule executed before every scan cycle (rule #0 / state 0 action)
"/*" currentState = S_COMMENTS
<S_COMMENTS>"*/" currentState = S_INITIAL
<S_COMMENTS>.|\n /* ignore chars within multi-line comments */
\/\/[^\r\n]*\n /* gobble up one-line comments */
ALERT|alert return ALERT
IF|if return IF
FOR|for return FOR
WITH|with return WITH
SUMMARY|summary return SUMMARY
DESCRIPTION|description return DESCRIPTION
PERMANENT|permanent return PERMANENT
BY|by return GROUP_OP
ON|on return MATCH_OP
GROUP_LEFT|GROUP_RIGHT lval.str = lexer.token(); return MATCH_MOD
group_left|group_right lval.str = strings.ToUpper(lexer.token()); return MATCH_MOD
KEEPING_EXTRA|keeping_extra return KEEPING_EXTRA
OFFSET|offset return OFFSET
AVG|SUM|MAX|MIN|COUNT|STDVAR|STDDEV lval.str = lexer.token(); return AGGR_OP
avg|sum|max|min|count|stdvar|stddev lval.str = strings.ToUpper(lexer.token()); return AGGR_OP
\<|>|AND|OR|and|or lval.str = strings.ToUpper(lexer.token()); return CMP_OP
==|!=|>=|<=|=~|!~ lval.str = lexer.token(); return CMP_OP
[+\-] lval.str = lexer.token(); return ADDITIVE_OP
[*/%] lval.str = lexer.token(); return MULT_OP
{FLOAT} num, err := strconv.ParseFloat(lexer.token(), 64);
if (err != nil && err.(*strconv.NumError).Err == strconv.ErrSyntax) {
panic("Invalid float")
}
lval.num = clientmodel.SampleValue(num)
return NUMBER
{D}+{U} lval.str = lexer.token(); return DURATION
{L}({L}|{D})* lval.str = lexer.token(); return IDENTIFIER
{M}({M}|{D})* lval.str = lexer.token(); return METRICNAME
{STR} lval.str = lexer.token()[1:len(lexer.token()) - 1]; return STRING
[{}\[\]()=,] return int(lexer.buf[0])
[\t\n\r ] /* gobble up any whitespace */
%%
lexer.empty = true
return int(c)
}

File diff suppressed because it is too large Load Diff

View File

@ -1,164 +0,0 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package rules
import (
"bufio"
"errors"
"fmt"
"io"
"os"
"strings"
"github.com/golang/glog"
"github.com/prometheus/prometheus/rules/ast"
)
// RulesLexer is the lexer for rule expressions.
type RulesLexer struct {
// Errors encountered during parsing.
errors []string
// Dummy token to simulate multiple start symbols (see below).
startToken int
// Parsed full rules.
parsedRules []Rule
// Parsed single expression.
parsedExpr ast.Node
// Current character.
current byte
// Current token buffer.
buf []byte
// Input text.
src *bufio.Reader
// Whether we have a current char.
empty bool
// Current input line.
line int
// Current character position within the current input line.
pos int
}
func (lexer *RulesLexer) Error(errorStr string) {
err := fmt.Sprintf("Error parsing rules at line %v, char %v: %v", lexer.line, lexer.pos, errorStr)
lexer.errors = append(lexer.errors, err)
}
func (lexer *RulesLexer) getChar() byte {
if lexer.current != 0 {
lexer.buf = append(lexer.buf, lexer.current)
}
lexer.current = 0
if b, err := lexer.src.ReadByte(); err == nil {
if b == '\n' {
lexer.line++
lexer.pos = 0
} else {
lexer.pos++
}
lexer.current = b
} else if err != io.EOF {
glog.Fatal(err)
}
return lexer.current
}
func (lexer *RulesLexer) token() string {
return string(lexer.buf)
}
func newRulesLexer(src io.Reader, singleExpr bool) *RulesLexer {
lexer := &RulesLexer{
startToken: START_RULES,
src: bufio.NewReader(src),
pos: 1,
line: 1,
}
if singleExpr {
lexer.startToken = START_EXPRESSION
}
lexer.getChar()
return lexer
}
func lexAndParse(rulesReader io.Reader, singleExpr bool) (*RulesLexer, error) {
lexer := newRulesLexer(rulesReader, singleExpr)
ret := yyParse(lexer)
if ret != 0 && len(lexer.errors) == 0 {
lexer.Error("unknown parser error")
}
if len(lexer.errors) > 0 {
err := errors.New(strings.Join(lexer.errors, "\n"))
return nil, err
}
return lexer, nil
}
// LoadRulesFromReader parses rules from the provided reader and returns them.
func LoadRulesFromReader(rulesReader io.Reader) ([]Rule, error) {
lexer, err := lexAndParse(rulesReader, false)
if err != nil {
return nil, err
}
return lexer.parsedRules, err
}
// LoadRulesFromString parses rules from the provided string returns them.
func LoadRulesFromString(rulesString string) ([]Rule, error) {
rulesReader := strings.NewReader(rulesString)
return LoadRulesFromReader(rulesReader)
}
// LoadRulesFromFile parses rules from the file of the provided name and returns
// them.
func LoadRulesFromFile(fileName string) ([]Rule, error) {
rulesReader, err := os.Open(fileName)
if err != nil {
return []Rule{}, err
}
defer rulesReader.Close()
return LoadRulesFromReader(rulesReader)
}
// LoadExprFromReader parses a single expression from the provided reader and
// returns it as an AST node.
func LoadExprFromReader(exprReader io.Reader) (ast.Node, error) {
lexer, err := lexAndParse(exprReader, true)
if err != nil {
return nil, err
}
return lexer.parsedExpr, err
}
// LoadExprFromString parses a single expression from the provided string and
// returns it as an AST node.
func LoadExprFromString(exprString string) (ast.Node, error) {
exprReader := strings.NewReader(exprString)
return LoadExprFromReader(exprReader)
}
// LoadExprFromFile parses a single expression from the file of the provided
// name and returns it as an AST node.
func LoadExprFromFile(fileName string) (ast.Node, error) {
exprReader, err := os.Open(fileName)
if err != nil {
return nil, err
}
defer exprReader.Close()
return LoadExprFromReader(exprReader)
}

View File

@ -11,10 +11,11 @@
// See the License for the specific language governing permissions and
// limitations under the License.
package manager
package rules
import (
"fmt"
"io/ioutil"
"sync"
"time"
@ -23,12 +24,11 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/config"
"github.com/prometheus/prometheus/notification"
"github.com/prometheus/prometheus/rules"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/templates"
"github.com/prometheus/prometheus/utility"
)
// Constants for instrumentation.
@ -70,30 +70,16 @@ func init() {
prometheus.MustRegister(evalDuration)
}
// A RuleManager manages recording and alerting rules. Create instances with
// NewRuleManager.
type RuleManager interface {
// Load and add rules from rule files specified in the configuration.
AddRulesFromConfig(config config.Config) error
// Start the rule manager's periodic rule evaluation.
Run()
// Stop the rule manager's rule evaluation cycles.
Stop()
// Return all rules.
Rules() []rules.Rule
// Return all alerting rules.
AlertingRules() []*rules.AlertingRule
}
type ruleManager struct {
// The Manager manages recording and alerting rules.
type Manager struct {
// Protects the rules list.
sync.Mutex
rules []rules.Rule
rules []Rule
done chan bool
interval time.Duration
storage local.Storage
interval time.Duration
queryEngine *promql.Engine
sampleAppender storage.SampleAppender
notificationHandler *notification.NotificationHandler
@ -102,10 +88,10 @@ type ruleManager struct {
pathPrefix string
}
// RuleManagerOptions bundles options for the RuleManager.
type RuleManagerOptions struct {
// ManagerOptions bundles options for the Manager.
type ManagerOptions struct {
EvaluationInterval time.Duration
Storage local.Storage
QueryEngine *promql.Engine
NotificationHandler *notification.NotificationHandler
SampleAppender storage.SampleAppender
@ -114,23 +100,24 @@ type RuleManagerOptions struct {
PathPrefix string
}
// NewRuleManager returns an implementation of RuleManager, ready to be started
// NewManager returns an implementation of Manager, ready to be started
// by calling the Run method.
func NewRuleManager(o *RuleManagerOptions) RuleManager {
manager := &ruleManager{
rules: []rules.Rule{},
func NewManager(o *ManagerOptions) *Manager {
manager := &Manager{
rules: []Rule{},
done: make(chan bool),
interval: o.EvaluationInterval,
storage: o.Storage,
sampleAppender: o.SampleAppender,
queryEngine: o.QueryEngine,
notificationHandler: o.NotificationHandler,
prometheusURL: o.PrometheusURL,
}
return manager
}
func (m *ruleManager) Run() {
// Run the rule manager's periodic rule evaluation.
func (m *Manager) Run() {
defer glog.Info("Rule manager stopped.")
ticker := time.NewTicker(m.interval)
@ -157,12 +144,13 @@ func (m *ruleManager) Run() {
}
}
func (m *ruleManager) Stop() {
// Stop the rule manager's rule evaluation cycles.
func (m *Manager) Stop() {
glog.Info("Stopping rule manager...")
m.done <- true
}
func (m *ruleManager) queueAlertNotifications(rule *rules.AlertingRule, timestamp clientmodel.Timestamp) {
func (m *Manager) queueAlertNotifications(rule *AlertingRule, timestamp clientmodel.Timestamp) {
activeAlerts := rule.ActiveAlerts()
if len(activeAlerts) == 0 {
return
@ -170,7 +158,7 @@ func (m *ruleManager) queueAlertNotifications(rule *rules.AlertingRule, timestam
notifications := make(notification.NotificationReqs, 0, len(activeAlerts))
for _, aa := range activeAlerts {
if aa.State != rules.Firing {
if aa.State != Firing {
// BUG: In the future, make AlertManager support pending alerts?
continue
}
@ -192,7 +180,7 @@ func (m *ruleManager) queueAlertNotifications(rule *rules.AlertingRule, timestam
defs := "{{$labels := .Labels}}{{$value := .Value}}"
expand := func(text string) string {
template := templates.NewTemplateExpander(defs+text, "__alert_"+rule.Name(), tmplData, timestamp, m.storage, m.pathPrefix)
template := templates.NewTemplateExpander(defs+text, "__alert_"+rule.Name(), tmplData, timestamp, m.queryEngine, m.pathPrefix)
result, err := template.Expand()
if err != nil {
result = err.Error()
@ -205,34 +193,34 @@ func (m *ruleManager) queueAlertNotifications(rule *rules.AlertingRule, timestam
Summary: expand(rule.Summary),
Description: expand(rule.Description),
Labels: aa.Labels.Merge(clientmodel.LabelSet{
rules.AlertNameLabel: clientmodel.LabelValue(rule.Name()),
AlertNameLabel: clientmodel.LabelValue(rule.Name()),
}),
Value: aa.Value,
ActiveSince: aa.ActiveSince.Time(),
RuleString: rule.String(),
GeneratorURL: m.prometheusURL + rules.GraphLinkForExpression(rule.Vector.String()),
GeneratorURL: m.prometheusURL + utility.GraphLinkForExpression(rule.Vector.String()),
})
}
m.notificationHandler.SubmitReqs(notifications)
}
func (m *ruleManager) runIteration() {
func (m *Manager) runIteration() {
now := clientmodel.Now()
wg := sync.WaitGroup{}
m.Lock()
rulesSnapshot := make([]rules.Rule, len(m.rules))
rulesSnapshot := make([]Rule, len(m.rules))
copy(rulesSnapshot, m.rules)
m.Unlock()
for _, rule := range rulesSnapshot {
wg.Add(1)
// BUG(julius): Look at fixing thundering herd.
go func(rule rules.Rule) {
go func(rule Rule) {
defer wg.Done()
start := time.Now()
vector, err := rule.Eval(now, m.storage)
vector, err := rule.Eval(now, m.queryEngine)
duration := time.Since(start)
if err != nil {
@ -242,17 +230,17 @@ func (m *ruleManager) runIteration() {
}
switch r := rule.(type) {
case *rules.AlertingRule:
case *AlertingRule:
m.queueAlertNotifications(r, now)
evalDuration.WithLabelValues(alertingRuleType).Observe(
float64(duration / time.Millisecond),
)
case *rules.RecordingRule:
case *RecordingRule:
evalDuration.WithLabelValues(recordingRuleType).Observe(
float64(duration / time.Millisecond),
)
default:
panic(fmt.Sprintf("Unknown rule type: %T", rule))
panic(fmt.Errorf("Unknown rule type: %T", rule))
}
for _, s := range vector {
@ -267,35 +255,54 @@ func (m *ruleManager) runIteration() {
wg.Wait()
}
func (m *ruleManager) AddRulesFromConfig(config config.Config) error {
for _, ruleFile := range config.Global.RuleFile {
newRules, err := rules.LoadRulesFromFile(ruleFile)
// LoadRuleFiles loads alerting and recording rules from the given files.
func (m *Manager) LoadRuleFiles(filenames ...string) error {
m.Lock()
defer m.Unlock()
for _, fn := range filenames {
content, err := ioutil.ReadFile(fn)
if err != nil {
return fmt.Errorf("%s: %s", ruleFile, err)
return err
}
stmts, err := promql.ParseStmts(string(content))
if err != nil {
return fmt.Errorf("error parsing %s: %s", fn, err)
}
for _, stmt := range stmts {
switch r := stmt.(type) {
case *promql.AlertStmt:
rule := NewAlertingRule(r.Name, r.Expr, r.Duration, r.Labels, r.Summary, r.Description)
m.rules = append(m.rules, rule)
case *promql.RecordStmt:
rule := &RecordingRule{r.Name, r.Expr, r.Labels}
m.rules = append(m.rules, rule)
default:
panic("retrieval.Manager.LoadRuleFiles: unknown statement type")
}
}
m.Lock()
m.rules = append(m.rules, newRules...)
m.Unlock()
}
return nil
}
func (m *ruleManager) Rules() []rules.Rule {
// Rules returns the list of the manager's rules.
func (m *Manager) Rules() []Rule {
m.Lock()
defer m.Unlock()
rules := make([]rules.Rule, len(m.rules))
rules := make([]Rule, len(m.rules))
copy(rules, m.rules)
return rules
}
func (m *ruleManager) AlertingRules() []*rules.AlertingRule {
// AlertingRules returns the list of the manager's alerting rules.
func (m *Manager) AlertingRules() []*AlertingRule {
m.Lock()
defer m.Unlock()
alerts := []*rules.AlertingRule{}
alerts := []*AlertingRule{}
for _, rule := range m.rules {
if alertingRule, ok := rule.(*rules.AlertingRule); ok {
if alertingRule, ok := rule.(*AlertingRule); ok {
alerts = append(alerts, alertingRule)
}
}

View File

@ -1,281 +0,0 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
%{
package rules
import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/storage/metric"
)
%}
%union {
num clientmodel.SampleValue
str string
ruleNode ast.Node
ruleNodeSlice []ast.Node
boolean bool
labelNameSlice clientmodel.LabelNames
labelSet clientmodel.LabelSet
labelMatcher *metric.LabelMatcher
labelMatchers metric.LabelMatchers
vectorMatching *vectorMatching
}
/* We simulate multiple start symbols for closely-related grammars via dummy tokens. See
http://www.gnu.org/software/bison/manual/html_node/Multiple-start_002dsymbols.html
Reason: we want to be able to parse lists of named rules as well as single expressions.
*/
%token START_RULES START_EXPRESSION
%token <str> IDENTIFIER STRING DURATION METRICNAME
%token <num> NUMBER
%token PERMANENT GROUP_OP KEEPING_EXTRA OFFSET MATCH_OP
%token <str> AGGR_OP CMP_OP ADDITIVE_OP MULT_OP MATCH_MOD
%token ALERT IF FOR WITH SUMMARY DESCRIPTION
%type <ruleNodeSlice> func_arg_list
%type <labelNameSlice> label_list grouping_opts
%type <labelSet> label_assign label_assign_list rule_labels
%type <labelMatcher> label_match
%type <labelMatchers> label_match_list label_matches
%type <vectorMatching> vector_matching
%type <ruleNode> rule_expr func_arg
%type <boolean> qualifier extra_labels_opts
%type <str> for_duration metric_name label_match_type offset_opts
%right '='
%left CMP_OP
%left ADDITIVE_OP
%left MULT_OP
%start start
%%
start : START_RULES rules_stat_list
| START_EXPRESSION saved_rule_expr
;
rules_stat_list : /* empty */
| rules_stat_list rules_stat
;
saved_rule_expr : rule_expr
{ yylex.(*RulesLexer).parsedExpr = $1 }
;
rules_stat : qualifier metric_name rule_labels '=' rule_expr
{
rule, err := CreateRecordingRule($2, $3, $5, $1)
if err != nil { yylex.Error(err.Error()); return 1 }
yylex.(*RulesLexer).parsedRules = append(yylex.(*RulesLexer).parsedRules, rule)
}
| ALERT IDENTIFIER IF rule_expr for_duration WITH rule_labels SUMMARY STRING DESCRIPTION STRING
{
rule, err := CreateAlertingRule($2, $4, $5, $7, $9, $11)
if err != nil { yylex.Error(err.Error()); return 1 }
yylex.(*RulesLexer).parsedRules = append(yylex.(*RulesLexer).parsedRules, rule)
}
;
for_duration : /* empty */
{ $$ = "0s" }
| FOR DURATION
{ $$ = $2 }
;
qualifier : /* empty */
{ $$ = false }
| PERMANENT
{ $$ = true }
;
metric_name : METRICNAME
{ $$ = $1 }
| IDENTIFIER
{ $$ = $1 }
;
rule_labels : /* empty */
{ $$ = clientmodel.LabelSet{} }
| '{' label_assign_list '}'
{ $$ = $2 }
| '{' '}'
{ $$ = clientmodel.LabelSet{} }
label_assign_list : label_assign
{ $$ = $1 }
| label_assign_list ',' label_assign
{ for k, v := range $3 { $$[k] = v } }
;
label_assign : IDENTIFIER '=' STRING
{ $$ = clientmodel.LabelSet{ clientmodel.LabelName($1): clientmodel.LabelValue($3) } }
;
label_matches : /* empty */
{ $$ = metric.LabelMatchers{} }
| '{' '}'
{ $$ = metric.LabelMatchers{} }
| '{' label_match_list '}'
{ $$ = $2 }
;
label_match_list : label_match
{ $$ = metric.LabelMatchers{$1} }
| label_match_list ',' label_match
{ $$ = append($$, $3) }
;
label_match : IDENTIFIER label_match_type STRING
{
var err error
$$, err = newLabelMatcher($2, clientmodel.LabelName($1), clientmodel.LabelValue($3))
if err != nil { yylex.Error(err.Error()); return 1 }
}
;
label_match_type : '='
{ $$ = "=" }
| CMP_OP
{ $$ = $1 }
;
offset_opts : /* empty */
{ $$ = "0s" }
| OFFSET DURATION
{ $$ = $2 }
;
rule_expr : '(' rule_expr ')'
{ $$ = $2 }
| '{' label_match_list '}' offset_opts
{
var err error
$$, err = NewVectorSelector($2, $4)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| metric_name label_matches offset_opts
{
var err error
m, err := metric.NewLabelMatcher(metric.Equal, clientmodel.MetricNameLabel, clientmodel.LabelValue($1))
if err != nil { yylex.Error(err.Error()); return 1 }
$2 = append($2, m)
$$, err = NewVectorSelector($2, $3)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| IDENTIFIER '(' func_arg_list ')'
{
var err error
$$, err = NewFunctionCall($1, $3)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| IDENTIFIER '(' ')'
{
var err error
$$, err = NewFunctionCall($1, []ast.Node{})
if err != nil { yylex.Error(err.Error()); return 1 }
}
| rule_expr '[' DURATION ']' offset_opts
{
var err error
$$, err = NewMatrixSelector($1, $3, $5)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| AGGR_OP '(' rule_expr ')' grouping_opts extra_labels_opts
{
var err error
$$, err = NewVectorAggregation($1, $3, $5, $6)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| AGGR_OP grouping_opts extra_labels_opts '(' rule_expr ')'
{
var err error
$$, err = NewVectorAggregation($1, $5, $2, $3)
if err != nil { yylex.Error(err.Error()); return 1 }
}
/* Yacc can only attach associativity to terminals, so we
* have to list all operators here. */
| rule_expr ADDITIVE_OP vector_matching rule_expr
{
var err error
$$, err = NewArithExpr($2, $1, $4, $3)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| rule_expr MULT_OP vector_matching rule_expr
{
var err error
$$, err = NewArithExpr($2, $1, $4, $3)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| rule_expr CMP_OP vector_matching rule_expr
{
var err error
$$, err = NewArithExpr($2, $1, $4, $3)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| NUMBER
{ $$ = NewScalarLiteral($1, "+")}
| ADDITIVE_OP NUMBER
{ $$ = NewScalarLiteral($2, $1)}
;
extra_labels_opts : /* empty */
{ $$ = false }
| KEEPING_EXTRA
{ $$ = true }
;
vector_matching : /* empty */
{ $$ = nil }
| MATCH_OP '(' label_list ')'
{
var err error
$$, err = newVectorMatching("", $3, nil)
if err != nil { yylex.Error(err.Error()); return 1 }
}
| MATCH_OP '(' label_list ')' MATCH_MOD '(' label_list ')'
{
var err error
$$, err = newVectorMatching($5, $3, $7)
if err != nil { yylex.Error(err.Error()); return 1 }
}
;
grouping_opts :
{ $$ = clientmodel.LabelNames{} }
| GROUP_OP '(' label_list ')'
{ $$ = $3 }
;
label_list : IDENTIFIER
{ $$ = clientmodel.LabelNames{clientmodel.LabelName($1)} }
| label_list ',' IDENTIFIER
{ $$ = append($$, clientmodel.LabelName($3)) }
;
func_arg_list : func_arg
{ $$ = []ast.Node{$1} }
| func_arg_list ',' func_arg
{ $$ = append($$, $3) }
;
func_arg : rule_expr
{ $$ = $1 }
| STRING
{ $$ = ast.NewStringLiteral($1) }
;
%%

View File

@ -1,784 +0,0 @@
//line parser.y:15
package rules
import __yyfmt__ "fmt"
//line parser.y:15
import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/storage/metric"
)
//line parser.y:25
type yySymType struct {
yys int
num clientmodel.SampleValue
str string
ruleNode ast.Node
ruleNodeSlice []ast.Node
boolean bool
labelNameSlice clientmodel.LabelNames
labelSet clientmodel.LabelSet
labelMatcher *metric.LabelMatcher
labelMatchers metric.LabelMatchers
vectorMatching *vectorMatching
}
const START_RULES = 57346
const START_EXPRESSION = 57347
const IDENTIFIER = 57348
const STRING = 57349
const DURATION = 57350
const METRICNAME = 57351
const NUMBER = 57352
const PERMANENT = 57353
const GROUP_OP = 57354
const KEEPING_EXTRA = 57355
const OFFSET = 57356
const MATCH_OP = 57357
const AGGR_OP = 57358
const CMP_OP = 57359
const ADDITIVE_OP = 57360
const MULT_OP = 57361
const MATCH_MOD = 57362
const ALERT = 57363
const IF = 57364
const FOR = 57365
const WITH = 57366
const SUMMARY = 57367
const DESCRIPTION = 57368
var yyToknames = []string{
"START_RULES",
"START_EXPRESSION",
"IDENTIFIER",
"STRING",
"DURATION",
"METRICNAME",
"NUMBER",
"PERMANENT",
"GROUP_OP",
"KEEPING_EXTRA",
"OFFSET",
"MATCH_OP",
"AGGR_OP",
"CMP_OP",
"ADDITIVE_OP",
"MULT_OP",
"MATCH_MOD",
"ALERT",
"IF",
"FOR",
"WITH",
"SUMMARY",
"DESCRIPTION",
"'='",
}
var yyStatenames = []string{}
const yyEofCode = 1
const yyErrCode = 2
const yyMaxDepth = 200
//line parser.y:281
//line yacctab:1
var yyExca = []int{
-1, 1,
1, -1,
-2, 0,
-1, 4,
1, 1,
-2, 10,
}
const yyNprod = 56
const yyPrivate = 57344
var yyTokenNames []string
var yyStates []string
const yyLast = 159
var yyAct = []int{
78, 61, 83, 58, 55, 54, 31, 48, 6, 25,
20, 21, 23, 21, 10, 56, 64, 14, 12, 10,
56, 19, 14, 12, 11, 19, 13, 19, 92, 11,
113, 13, 22, 20, 21, 57, 8, 32, 109, 7,
53, 8, 77, 65, 7, 67, 68, 101, 19, 22,
20, 21, 70, 69, 10, 98, 30, 14, 12, 22,
20, 21, 94, 95, 11, 19, 13, 87, 85, 92,
96, 99, 86, 84, 76, 19, 8, 66, 60, 7,
29, 88, 90, 89, 24, 93, 22, 20, 21, 22,
20, 21, 92, 100, 91, 75, 82, 74, 103, 73,
43, 42, 19, 44, 43, 19, 26, 108, 62, 47,
111, 28, 80, 51, 114, 110, 38, 105, 63, 46,
18, 107, 39, 9, 49, 59, 32, 33, 35, 50,
17, 14, 106, 72, 37, 115, 112, 104, 40, 41,
34, 71, 79, 84, 102, 26, 36, 2, 3, 15,
5, 4, 1, 45, 97, 16, 27, 81, 52,
}
var yyPact = []int{
143, -1000, -1000, 48, 109, -1000, 72, 48, 139, 83,
49, 25, -1000, 117, -1000, -1000, 122, 140, -1000, 126,
107, 107, 107, 69, 74, -1000, 92, 110, 100, 8,
48, 112, 47, -1000, 80, -1000, 96, -18, 48, 46,
48, 48, -1000, 139, 110, 134, -1000, -1000, -1000, 125,
-1000, 70, 65, -1000, -1000, 72, -1000, 42, 11, -1000,
136, 85, 67, 48, 110, -6, 136, -12, -8, -1000,
-1000, -1000, -1000, -1000, -1000, 13, 114, 48, 62, -1000,
48, 33, -1000, -1000, 43, 32, -1000, 39, -1000, 112,
15, -1000, 138, 72, -1000, 137, 130, 93, 124, 101,
-1000, -1000, -1000, -1000, -1000, 80, -1000, 7, 90, 136,
129, -2, 88, -1000, 128, -1000,
}
var yyPgo = []int{
0, 158, 0, 6, 2, 157, 1, 9, 84, 156,
116, 4, 5, 155, 3, 154, 123, 153, 7, 152,
151, 150, 149,
}
var yyR1 = []int{
0, 19, 19, 20, 20, 21, 22, 22, 15, 15,
13, 13, 16, 16, 6, 6, 6, 5, 5, 4,
9, 9, 9, 8, 8, 7, 17, 17, 18, 18,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 14, 14, 10, 10, 10, 3, 3,
2, 2, 1, 1, 12, 12,
}
var yyR2 = []int{
0, 2, 2, 0, 2, 1, 5, 11, 0, 2,
0, 1, 1, 1, 0, 3, 2, 1, 3, 3,
0, 2, 3, 1, 3, 3, 1, 1, 0, 2,
3, 4, 3, 4, 3, 5, 6, 6, 4, 4,
4, 1, 2, 0, 1, 0, 4, 8, 0, 4,
1, 3, 1, 3, 1, 1,
}
var yyChk = []int{
-1000, -19, 4, 5, -20, -21, -11, 31, 28, -16,
6, 16, 10, 18, 9, -22, -13, 21, 11, 33,
18, 19, 17, -11, -8, -7, 6, -9, 28, 31,
31, -3, 12, 10, -16, 6, 6, 8, -10, 15,
-10, -10, 32, 30, 29, -17, 27, 17, -18, 14,
29, -8, -1, 32, -12, -11, 7, -11, -14, 13,
31, -6, 28, 22, 34, -11, 31, -11, -11, -7,
-18, 7, 8, 29, 32, 30, 32, 31, -2, 6,
27, -5, 29, -4, 6, -11, -18, -2, -12, -3,
-11, 32, 30, -11, 29, 30, 27, -15, 23, 32,
-14, 32, 6, -4, 7, 24, 8, 20, -6, 31,
25, -2, 7, 32, 26, 7,
}
var yyDef = []int{
0, -2, 3, 0, -2, 2, 5, 0, 0, 20,
13, 48, 41, 0, 12, 4, 0, 0, 11, 0,
45, 45, 45, 0, 0, 23, 0, 28, 0, 0,
0, 43, 0, 42, 14, 13, 0, 0, 0, 0,
0, 0, 30, 0, 28, 0, 26, 27, 32, 0,
21, 0, 0, 34, 52, 54, 55, 0, 0, 44,
0, 0, 0, 0, 28, 38, 0, 39, 40, 24,
31, 25, 29, 22, 33, 0, 48, 0, 0, 50,
0, 0, 16, 17, 0, 8, 35, 0, 53, 43,
0, 49, 0, 6, 15, 0, 0, 0, 0, 46,
36, 37, 51, 18, 19, 14, 9, 0, 0, 0,
0, 0, 0, 47, 0, 7,
}
var yyTok1 = []int{
1, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
31, 32, 3, 3, 30, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 27, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 33, 3, 34, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 28, 3, 29,
}
var yyTok2 = []int{
2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26,
}
var yyTok3 = []int{
0,
}
//line yaccpar:1
/* parser for yacc output */
var yyDebug = 0
type yyLexer interface {
Lex(lval *yySymType) int
Error(s string)
}
const yyFlag = -1000
func yyTokname(c int) string {
// 4 is TOKSTART above
if c >= 4 && c-4 < len(yyToknames) {
if yyToknames[c-4] != "" {
return yyToknames[c-4]
}
}
return __yyfmt__.Sprintf("tok-%v", c)
}
func yyStatname(s int) string {
if s >= 0 && s < len(yyStatenames) {
if yyStatenames[s] != "" {
return yyStatenames[s]
}
}
return __yyfmt__.Sprintf("state-%v", s)
}
func yylex1(lex yyLexer, lval *yySymType) int {
c := 0
char := lex.Lex(lval)
if char <= 0 {
c = yyTok1[0]
goto out
}
if char < len(yyTok1) {
c = yyTok1[char]
goto out
}
if char >= yyPrivate {
if char < yyPrivate+len(yyTok2) {
c = yyTok2[char-yyPrivate]
goto out
}
}
for i := 0; i < len(yyTok3); i += 2 {
c = yyTok3[i+0]
if c == char {
c = yyTok3[i+1]
goto out
}
}
out:
if c == 0 {
c = yyTok2[1] /* unknown char */
}
if yyDebug >= 3 {
__yyfmt__.Printf("lex %s(%d)\n", yyTokname(c), uint(char))
}
return c
}
func yyParse(yylex yyLexer) int {
var yyn int
var yylval yySymType
var yyVAL yySymType
yyS := make([]yySymType, yyMaxDepth)
Nerrs := 0 /* number of errors */
Errflag := 0 /* error recovery flag */
yystate := 0
yychar := -1
yyp := -1
goto yystack
ret0:
return 0
ret1:
return 1
yystack:
/* put a state and value onto the stack */
if yyDebug >= 4 {
__yyfmt__.Printf("char %v in %v\n", yyTokname(yychar), yyStatname(yystate))
}
yyp++
if yyp >= len(yyS) {
nyys := make([]yySymType, len(yyS)*2)
copy(nyys, yyS)
yyS = nyys
}
yyS[yyp] = yyVAL
yyS[yyp].yys = yystate
yynewstate:
yyn = yyPact[yystate]
if yyn <= yyFlag {
goto yydefault /* simple state */
}
if yychar < 0 {
yychar = yylex1(yylex, &yylval)
}
yyn += yychar
if yyn < 0 || yyn >= yyLast {
goto yydefault
}
yyn = yyAct[yyn]
if yyChk[yyn] == yychar { /* valid shift */
yychar = -1
yyVAL = yylval
yystate = yyn
if Errflag > 0 {
Errflag--
}
goto yystack
}
yydefault:
/* default state action */
yyn = yyDef[yystate]
if yyn == -2 {
if yychar < 0 {
yychar = yylex1(yylex, &yylval)
}
/* look through exception table */
xi := 0
for {
if yyExca[xi+0] == -1 && yyExca[xi+1] == yystate {
break
}
xi += 2
}
for xi += 2; ; xi += 2 {
yyn = yyExca[xi+0]
if yyn < 0 || yyn == yychar {
break
}
}
yyn = yyExca[xi+1]
if yyn < 0 {
goto ret0
}
}
if yyn == 0 {
/* error ... attempt to resume parsing */
switch Errflag {
case 0: /* brand new error */
yylex.Error("syntax error")
Nerrs++
if yyDebug >= 1 {
__yyfmt__.Printf("%s", yyStatname(yystate))
__yyfmt__.Printf(" saw %s\n", yyTokname(yychar))
}
fallthrough
case 1, 2: /* incompletely recovered error ... try again */
Errflag = 3
/* find a state where "error" is a legal shift action */
for yyp >= 0 {
yyn = yyPact[yyS[yyp].yys] + yyErrCode
if yyn >= 0 && yyn < yyLast {
yystate = yyAct[yyn] /* simulate a shift of "error" */
if yyChk[yystate] == yyErrCode {
goto yystack
}
}
/* the current p has no shift on "error", pop stack */
if yyDebug >= 2 {
__yyfmt__.Printf("error recovery pops state %d\n", yyS[yyp].yys)
}
yyp--
}
/* there is no state on the stack with an error shift ... abort */
goto ret1
case 3: /* no shift yet; clobber input char */
if yyDebug >= 2 {
__yyfmt__.Printf("error recovery discards %s\n", yyTokname(yychar))
}
if yychar == yyEofCode {
goto ret1
}
yychar = -1
goto yynewstate /* try again in the same state */
}
}
/* reduction by production yyn */
if yyDebug >= 2 {
__yyfmt__.Printf("reduce %v in:\n\t%v\n", yyn, yyStatname(yystate))
}
yynt := yyn
yypt := yyp
_ = yypt // guard against "declared and not used"
yyp -= yyR2[yyn]
yyVAL = yyS[yyp+1]
/* consult goto table to find next state */
yyn = yyR1[yyn]
yyg := yyPgo[yyn]
yyj := yyg + yyS[yyp].yys + 1
if yyj >= yyLast {
yystate = yyAct[yyg]
} else {
yystate = yyAct[yyj]
if yyChk[yystate] != -yyn {
yystate = yyAct[yyg]
}
}
// dummy call; replaced with literal code
switch yynt {
case 5:
//line parser.y:76
{
yylex.(*RulesLexer).parsedExpr = yyS[yypt-0].ruleNode
}
case 6:
//line parser.y:81
{
rule, err := CreateRecordingRule(yyS[yypt-3].str, yyS[yypt-2].labelSet, yyS[yypt-0].ruleNode, yyS[yypt-4].boolean)
if err != nil {
yylex.Error(err.Error())
return 1
}
yylex.(*RulesLexer).parsedRules = append(yylex.(*RulesLexer).parsedRules, rule)
}
case 7:
//line parser.y:87
{
rule, err := CreateAlertingRule(yyS[yypt-9].str, yyS[yypt-7].ruleNode, yyS[yypt-6].str, yyS[yypt-4].labelSet, yyS[yypt-2].str, yyS[yypt-0].str)
if err != nil {
yylex.Error(err.Error())
return 1
}
yylex.(*RulesLexer).parsedRules = append(yylex.(*RulesLexer).parsedRules, rule)
}
case 8:
//line parser.y:95
{
yyVAL.str = "0s"
}
case 9:
//line parser.y:97
{
yyVAL.str = yyS[yypt-0].str
}
case 10:
//line parser.y:101
{
yyVAL.boolean = false
}
case 11:
//line parser.y:103
{
yyVAL.boolean = true
}
case 12:
//line parser.y:107
{
yyVAL.str = yyS[yypt-0].str
}
case 13:
//line parser.y:109
{
yyVAL.str = yyS[yypt-0].str
}
case 14:
//line parser.y:113
{
yyVAL.labelSet = clientmodel.LabelSet{}
}
case 15:
//line parser.y:115
{
yyVAL.labelSet = yyS[yypt-1].labelSet
}
case 16:
//line parser.y:117
{
yyVAL.labelSet = clientmodel.LabelSet{}
}
case 17:
//line parser.y:120
{
yyVAL.labelSet = yyS[yypt-0].labelSet
}
case 18:
//line parser.y:122
{
for k, v := range yyS[yypt-0].labelSet {
yyVAL.labelSet[k] = v
}
}
case 19:
//line parser.y:126
{
yyVAL.labelSet = clientmodel.LabelSet{clientmodel.LabelName(yyS[yypt-2].str): clientmodel.LabelValue(yyS[yypt-0].str)}
}
case 20:
//line parser.y:130
{
yyVAL.labelMatchers = metric.LabelMatchers{}
}
case 21:
//line parser.y:132
{
yyVAL.labelMatchers = metric.LabelMatchers{}
}
case 22:
//line parser.y:134
{
yyVAL.labelMatchers = yyS[yypt-1].labelMatchers
}
case 23:
//line parser.y:138
{
yyVAL.labelMatchers = metric.LabelMatchers{yyS[yypt-0].labelMatcher}
}
case 24:
//line parser.y:140
{
yyVAL.labelMatchers = append(yyVAL.labelMatchers, yyS[yypt-0].labelMatcher)
}
case 25:
//line parser.y:144
{
var err error
yyVAL.labelMatcher, err = newLabelMatcher(yyS[yypt-1].str, clientmodel.LabelName(yyS[yypt-2].str), clientmodel.LabelValue(yyS[yypt-0].str))
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 26:
//line parser.y:152
{
yyVAL.str = "="
}
case 27:
//line parser.y:154
{
yyVAL.str = yyS[yypt-0].str
}
case 28:
//line parser.y:158
{
yyVAL.str = "0s"
}
case 29:
//line parser.y:160
{
yyVAL.str = yyS[yypt-0].str
}
case 30:
//line parser.y:164
{
yyVAL.ruleNode = yyS[yypt-1].ruleNode
}
case 31:
//line parser.y:166
{
var err error
yyVAL.ruleNode, err = NewVectorSelector(yyS[yypt-2].labelMatchers, yyS[yypt-0].str)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 32:
//line parser.y:172
{
var err error
m, err := metric.NewLabelMatcher(metric.Equal, clientmodel.MetricNameLabel, clientmodel.LabelValue(yyS[yypt-2].str))
if err != nil {
yylex.Error(err.Error())
return 1
}
yyS[yypt-1].labelMatchers = append(yyS[yypt-1].labelMatchers, m)
yyVAL.ruleNode, err = NewVectorSelector(yyS[yypt-1].labelMatchers, yyS[yypt-0].str)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 33:
//line parser.y:181
{
var err error
yyVAL.ruleNode, err = NewFunctionCall(yyS[yypt-3].str, yyS[yypt-1].ruleNodeSlice)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 34:
//line parser.y:187
{
var err error
yyVAL.ruleNode, err = NewFunctionCall(yyS[yypt-2].str, []ast.Node{})
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 35:
//line parser.y:193
{
var err error
yyVAL.ruleNode, err = NewMatrixSelector(yyS[yypt-4].ruleNode, yyS[yypt-2].str, yyS[yypt-0].str)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 36:
//line parser.y:199
{
var err error
yyVAL.ruleNode, err = NewVectorAggregation(yyS[yypt-5].str, yyS[yypt-3].ruleNode, yyS[yypt-1].labelNameSlice, yyS[yypt-0].boolean)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 37:
//line parser.y:205
{
var err error
yyVAL.ruleNode, err = NewVectorAggregation(yyS[yypt-5].str, yyS[yypt-1].ruleNode, yyS[yypt-4].labelNameSlice, yyS[yypt-3].boolean)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 38:
//line parser.y:213
{
var err error
yyVAL.ruleNode, err = NewArithExpr(yyS[yypt-2].str, yyS[yypt-3].ruleNode, yyS[yypt-0].ruleNode, yyS[yypt-1].vectorMatching)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 39:
//line parser.y:219
{
var err error
yyVAL.ruleNode, err = NewArithExpr(yyS[yypt-2].str, yyS[yypt-3].ruleNode, yyS[yypt-0].ruleNode, yyS[yypt-1].vectorMatching)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 40:
//line parser.y:225
{
var err error
yyVAL.ruleNode, err = NewArithExpr(yyS[yypt-2].str, yyS[yypt-3].ruleNode, yyS[yypt-0].ruleNode, yyS[yypt-1].vectorMatching)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 41:
//line parser.y:231
{
yyVAL.ruleNode = NewScalarLiteral(yyS[yypt-0].num, "+")
}
case 42:
//line parser.y:233
{
yyVAL.ruleNode = NewScalarLiteral(yyS[yypt-0].num, yyS[yypt-1].str)
}
case 43:
//line parser.y:237
{
yyVAL.boolean = false
}
case 44:
//line parser.y:239
{
yyVAL.boolean = true
}
case 45:
//line parser.y:243
{
yyVAL.vectorMatching = nil
}
case 46:
//line parser.y:245
{
var err error
yyVAL.vectorMatching, err = newVectorMatching("", yyS[yypt-1].labelNameSlice, nil)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 47:
//line parser.y:251
{
var err error
yyVAL.vectorMatching, err = newVectorMatching(yyS[yypt-3].str, yyS[yypt-5].labelNameSlice, yyS[yypt-1].labelNameSlice)
if err != nil {
yylex.Error(err.Error())
return 1
}
}
case 48:
//line parser.y:259
{
yyVAL.labelNameSlice = clientmodel.LabelNames{}
}
case 49:
//line parser.y:261
{
yyVAL.labelNameSlice = yyS[yypt-1].labelNameSlice
}
case 50:
//line parser.y:265
{
yyVAL.labelNameSlice = clientmodel.LabelNames{clientmodel.LabelName(yyS[yypt-0].str)}
}
case 51:
//line parser.y:267
{
yyVAL.labelNameSlice = append(yyVAL.labelNameSlice, clientmodel.LabelName(yyS[yypt-0].str))
}
case 52:
//line parser.y:271
{
yyVAL.ruleNodeSlice = []ast.Node{yyS[yypt-0].ruleNode}
}
case 53:
//line parser.y:273
{
yyVAL.ruleNodeSlice = append(yyVAL.ruleNodeSlice, yyS[yypt-0].ruleNode)
}
case 54:
//line parser.y:277
{
yyVAL.ruleNode = yyS[yypt-0].ruleNode
}
case 55:
//line parser.y:279
{
yyVAL.ruleNode = ast.NewStringLiteral(yyS[yypt-0].str)
}
}
goto yystack /* stack new state and value */
}

View File

@ -20,30 +20,32 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/stats"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/utility"
)
// A RecordingRule records its vector expression into new timeseries.
type RecordingRule struct {
name string
vector ast.VectorNode
labels clientmodel.LabelSet
permanent bool
name string
vector promql.Expr
labels clientmodel.LabelSet
}
// Name returns the rule name.
func (rule RecordingRule) Name() string { return rule.name }
// EvalRaw returns the raw value of the rule expression.
func (rule RecordingRule) EvalRaw(timestamp clientmodel.Timestamp, storage local.Storage) (ast.Vector, error) {
return ast.EvalVectorInstant(rule.vector, timestamp, storage, stats.NewTimerGroup())
func (rule RecordingRule) EvalRaw(timestamp clientmodel.Timestamp, engine *promql.Engine) (promql.Vector, error) {
query, err := engine.NewInstantQuery(rule.vector.String(), timestamp)
if err != nil {
return nil, err
}
return query.Exec().Vector()
}
// Eval evaluates the rule and then overrides the metric names and labels accordingly.
func (rule RecordingRule) Eval(timestamp clientmodel.Timestamp, storage local.Storage) (ast.Vector, error) {
vector, err := rule.EvalRaw(timestamp, storage)
func (rule RecordingRule) Eval(timestamp clientmodel.Timestamp, engine *promql.Engine) (promql.Vector, error) {
vector, err := rule.EvalRaw(timestamp, engine)
if err != nil {
return nil, err
}
@ -63,8 +65,8 @@ func (rule RecordingRule) Eval(timestamp clientmodel.Timestamp, storage local.St
return vector, nil
}
// ToDotGraph returns the text representation of a dot graph.
func (rule RecordingRule) ToDotGraph() string {
// DotGraph returns the text representation of a dot graph.
func (rule RecordingRule) DotGraph() string {
graph := fmt.Sprintf(
`digraph "Rules" {
%#p[shape="box",label="%s = "];
@ -73,7 +75,7 @@ func (rule RecordingRule) ToDotGraph() string {
}`,
&rule, rule.name,
&rule, reflect.ValueOf(rule.vector).Pointer(),
rule.vector.NodeTreeToDotGraph(),
rule.vector.DotGraph(),
)
return graph
}
@ -87,9 +89,9 @@ func (rule RecordingRule) HTMLSnippet() template.HTML {
ruleExpr := rule.vector.String()
return template.HTML(fmt.Sprintf(
`<a href="%s">%s</a>%s = <a href="%s">%s</a>`,
GraphLinkForExpression(rule.name),
utility.GraphLinkForExpression(rule.name),
rule.name,
rule.labels,
GraphLinkForExpression(ruleExpr),
utility.GraphLinkForExpression(ruleExpr),
ruleExpr))
}

View File

@ -18,8 +18,7 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/promql"
)
// A Rule encapsulates a vector expression which is evaluated at a specified
@ -29,11 +28,11 @@ type Rule interface {
Name() string
// EvalRaw evaluates the rule's vector expression without triggering any
// other actions, like recording or alerting.
EvalRaw(timestamp clientmodel.Timestamp, storage local.Storage) (ast.Vector, error)
EvalRaw(clientmodel.Timestamp, *promql.Engine) (promql.Vector, error)
// Eval evaluates the rule, including any associated recording or alerting actions.
Eval(timestamp clientmodel.Timestamp, storage local.Storage) (ast.Vector, error)
// ToDotGraph returns a Graphviz dot graph of the rule.
ToDotGraph() string
Eval(clientmodel.Timestamp, *promql.Engine) (promql.Vector, error)
// DotGraph returns a Graphviz dot graph of the rule.
DotGraph() string
// String returns a human-readable string representation of the rule.
String() string
// HTMLSnippet returns a human-readable string representation of the rule,

File diff suppressed because it is too large Load Diff

View File

@ -31,7 +31,7 @@ const (
GetValueAtTimeTime
GetBoundaryValuesTime
GetRangeValuesTime
ViewQueueTime
ExecQueueTime
ViewDiskPreparationTime
ViewDataExtractionTime
ViewDiskExtractionTime
@ -64,8 +64,8 @@ func (s QueryTiming) String() string {
return "GetBoundaryValues() time"
case GetRangeValuesTime:
return "GetRangeValues() time"
case ViewQueueTime:
return "View queue wait time"
case ExecQueueTime:
return "Exec queue wait time"
case ViewDiskPreparationTime:
return "View building disk preparation time"
case ViewDataExtractionTime:

View File

@ -14,6 +14,7 @@
package metric
import (
"fmt"
"regexp"
clientmodel "github.com/prometheus/client_golang/model"
@ -71,6 +72,10 @@ func NewLabelMatcher(matchType MatchType, name clientmodel.LabelName, value clie
return m, nil
}
func (m *LabelMatcher) String() string {
return fmt.Sprintf("%s%s%q", m.Name, m.Type, m.Value)
}
// Match returns true if the label matcher matches the supplied label value.
func (m *LabelMatcher) Match(v clientmodel.LabelValue) bool {
switch m.Type {

View File

@ -27,10 +27,8 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/stats"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/utility"
)
// A version of vector that's easier to use from templates.
@ -57,18 +55,17 @@ func (q queryResultByLabelSorter) Swap(i, j int) {
q.results[i], q.results[j] = q.results[j], q.results[i]
}
func query(q string, timestamp clientmodel.Timestamp, storage local.Storage) (queryResult, error) {
exprNode, err := rules.LoadExprFromString(q)
func query(q string, timestamp clientmodel.Timestamp, queryEngine *promql.Engine) (queryResult, error) {
query, err := queryEngine.NewInstantQuery(q, timestamp)
if err != nil {
return nil, err
}
queryStats := stats.NewTimerGroup()
vector, err := ast.EvalToVector(exprNode, timestamp, storage, queryStats)
vector, err := query.Exec().Vector()
if err != nil {
return nil, err
}
// ast.Vector is hard to work with in templates, so convert to
// promql.Vector is hard to work with in templates, so convert to
// base data types.
var result = make(queryResult, len(vector))
for n, v := range vector {
@ -92,14 +89,14 @@ type templateExpander struct {
}
// NewTemplateExpander returns a template expander ready to use.
func NewTemplateExpander(text string, name string, data interface{}, timestamp clientmodel.Timestamp, storage local.Storage, pathPrefix string) *templateExpander {
func NewTemplateExpander(text string, name string, data interface{}, timestamp clientmodel.Timestamp, queryEngine *promql.Engine, pathPrefix string) *templateExpander {
return &templateExpander{
text: text,
name: name,
data: data,
funcMap: text_template.FuncMap{
"query": func(q string) (queryResult, error) {
return query(q, timestamp, storage)
return query(q, timestamp, queryEngine)
},
"first": func(v queryResult) (*sample, error) {
if len(v) > 0 {
@ -132,8 +129,8 @@ func NewTemplateExpander(text string, name string, data interface{}, timestamp c
},
"match": regexp.MatchString,
"title": strings.Title,
"graphLink": rules.GraphLinkForExpression,
"tableLink": rules.TableLinkForExpression,
"graphLink": utility.GraphLinkForExpression,
"tableLink": utility.TableLinkForExpression,
"sortByLabel": func(label string, v queryResult) queryResult {
sorter := queryResultByLabelSorter{v[:], label}
sort.Stable(sorter)

View File

@ -19,6 +19,7 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/storage/local"
)
@ -175,10 +176,12 @@ func TestTemplateExpansion(t *testing.T) {
})
storage.WaitForIndexing()
engine := promql.NewEngine(storage)
for i, s := range scenarios {
var result string
var err error
expander := NewTemplateExpander(s.text, "test", s.input, time, storage, "/")
expander := NewTemplateExpander(s.text, "test", s.input, time, engine, "/")
if s.html {
result, err = expander.ExpandHTML(nil)
} else {

View File

@ -20,9 +20,10 @@ import (
"flag"
"fmt"
"io"
"io/ioutil"
"os"
"github.com/prometheus/prometheus/rules"
"github.com/prometheus/prometheus/promql"
)
var (
@ -33,7 +34,12 @@ var (
// checkRules reads rules from in. Sucessfully read rules
// are printed to out.
func checkRules(filename string, in io.Reader, out io.Writer) error {
rules, err := rules.LoadRulesFromReader(in)
content, err := ioutil.ReadAll(in)
if err != nil {
return err
}
rules, err := promql.ParseStmts(string(content))
if err != nil {
return err
}

View File

@ -15,8 +15,10 @@ package utility
import (
"fmt"
"net/url"
"regexp"
"strconv"
"strings"
"time"
)
@ -80,3 +82,24 @@ func StringToDuration(durationStr string) (duration time.Duration, err error) {
}
return
}
// TableLinkForExpression creates an escaped relative link to the table view of
// the provided expression.
func TableLinkForExpression(expr string) string {
// url.QueryEscape percent-escapes everything except spaces, for which it
// uses "+". However, in the non-query part of a URI, only percent-escaped
// spaces are legal, so we need to manually replace "+" with "%20" after
// query-escaping the string.
//
// See also:
// http://stackoverflow.com/questions/1634271/url-encoding-the-space-character-or-20.
urlData := url.QueryEscape(fmt.Sprintf(`[{"expr":%q,"tab":1}]`, expr))
return fmt.Sprintf("/graph#%s", strings.Replace(urlData, "+", "%20", -1))
}
// GraphLinkForExpression creates an escaped relative link to the graph view of
// the provided expression.
func GraphLinkForExpression(expr string) string {
urlData := url.QueryEscape(fmt.Sprintf(`[{"expr":%q,"tab":0}]`, expr))
return fmt.Sprintf("/graph#%s", strings.Replace(urlData, "+", "%20", -1))
}

View File

@ -19,7 +19,6 @@ import (
"sync"
"github.com/prometheus/prometheus/rules"
"github.com/prometheus/prometheus/rules/manager"
)
// AlertStatus bundles alerting rules and the mapping of alert states to row
@ -47,9 +46,10 @@ func (s byAlertStateSorter) Swap(i, j int) {
// AlertsHandler implements http.Handler.
type AlertsHandler struct {
mutex sync.Mutex
RuleManager manager.RuleManager
RuleManager *rules.Manager
PathPrefix string
mutex sync.Mutex
}
func (h *AlertsHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {

View File

@ -20,14 +20,16 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/web/httputils"
)
// MetricsService manages the /api HTTP endpoint.
type MetricsService struct {
Now func() clientmodel.Timestamp
Storage local.Storage
Now func() clientmodel.Timestamp
Storage local.Storage
QueryEngine *promql.Engine
}
// RegisterHandler registers the handler for the various endpoints below /api.

View File

@ -23,6 +23,7 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/storage/local"
)
@ -51,7 +52,7 @@ func TestQuery(t *testing.T) {
{
queryStr: "",
status: http.StatusOK,
bodyRe: "syntax error",
bodyRe: `{"type":"error","value":"Parse error at char 1: no expression found in input","version":1}`,
},
{
queryStr: "expr=testmetric",
@ -76,7 +77,7 @@ func TestQuery(t *testing.T) {
{
queryStr: "expr=(badexpression",
status: http.StatusOK,
bodyRe: "syntax error",
bodyRe: `{"type":"error","value":"Parse error at char 15: unclosed left parenthesis","version":1}`,
},
}
@ -92,8 +93,9 @@ func TestQuery(t *testing.T) {
storage.WaitForIndexing()
api := MetricsService{
Now: testNow,
Storage: storage,
Now: testNow,
Storage: storage,
QueryEngine: promql.NewEngine(storage),
}
api.RegisterHandler("/")

View File

@ -26,9 +26,6 @@ import (
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/stats"
"github.com/prometheus/prometheus/web/httputils"
)
@ -41,9 +38,8 @@ func setAccessControlHeaders(w http.ResponseWriter) {
}
func httpJSONError(w http.ResponseWriter, err error, code int) {
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(code)
fmt.Fprintln(w, ast.ErrorToJSON(err))
httputils.ErrorJSON(w, err)
}
func parseTimestampOrNow(t string, now clientmodel.Timestamp) (clientmodel.Timestamp, error) {
@ -80,16 +76,19 @@ func (serv MetricsService) Query(w http.ResponseWriter, r *http.Request) {
return
}
exprNode, err := rules.LoadExprFromString(expr)
query, err := serv.QueryEngine.NewInstantQuery(expr, timestamp)
if err != nil {
fmt.Fprint(w, ast.ErrorToJSON(err))
httpJSONError(w, err, http.StatusOK)
return
}
res := query.Exec()
if res.Err != nil {
httpJSONError(w, res.Err, http.StatusOK)
return
}
glog.V(1).Infof("Instant query: %s\nQuery stats:\n%s\n", expr, query.Stats())
queryStats := stats.NewTimerGroup()
result := ast.EvalToString(exprNode, timestamp, ast.JSON, serv.Storage, queryStats)
glog.V(1).Infof("Instant query: %s\nQuery stats:\n%s\n", expr, queryStats)
fmt.Fprint(w, result)
httputils.RespondJSON(w, res.Value)
}
// QueryRange handles the /api/query_range endpoint.
@ -125,50 +124,31 @@ func (serv MetricsService) QueryRange(w http.ResponseWriter, r *http.Request) {
end = serv.Now()
}
exprNode, err := rules.LoadExprFromString(expr)
if err != nil {
fmt.Fprint(w, ast.ErrorToJSON(err))
return
}
if exprNode.Type() != ast.VectorType {
fmt.Fprint(w, ast.ErrorToJSON(errors.New("expression does not evaluate to vector type")))
return
}
// For safety, limit the number of returned points per timeseries.
// This is sufficient for 60s resolution for a week or 1h resolution for a year.
if duration/step > 11000 {
fmt.Fprint(w, ast.ErrorToJSON(errors.New("exceeded maximum resolution of 11,000 points per timeseries. Try decreasing the query resolution (?step=XX)")))
err := errors.New("exceeded maximum resolution of 11,000 points per timeseries. Try decreasing the query resolution (?step=XX)")
httpJSONError(w, err, http.StatusBadRequest)
return
}
// Align the start to step "tick" boundary.
end = end.Add(-time.Duration(end.UnixNano() % int64(step)))
start := end.Add(-duration)
queryStats := stats.NewTimerGroup()
matrix, err := ast.EvalVectorRange(
exprNode.(ast.VectorNode),
end.Add(-duration),
end,
step,
serv.Storage,
queryStats)
query, err := serv.QueryEngine.NewRangeQuery(expr, start, end, step)
if err != nil {
fmt.Fprint(w, ast.ErrorToJSON(err))
httpJSONError(w, err, http.StatusOK)
return
}
matrix, err := query.Exec().Matrix()
if err != nil {
httpJSONError(w, err, http.StatusOK)
return
}
sortTimer := queryStats.GetTimer(stats.ResultSortTime).Start()
sort.Sort(matrix)
sortTimer.Stop()
jsonTimer := queryStats.GetTimer(stats.JSONEncodeTime).Start()
result := ast.TypedValueToJSON(matrix, "matrix")
jsonTimer.Stop()
glog.V(1).Infof("Range query: %s\nQuery stats:\n%s\n", expr, queryStats)
fmt.Fprint(w, result)
glog.V(1).Infof("Range query: %s\nQuery stats:\n%s\n", expr, query.Stats())
httputils.RespondJSON(w, matrix)
}
// Metrics handles the /api/metrics endpoint.

View File

@ -22,7 +22,7 @@ import (
"path/filepath"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/promql"
"github.com/prometheus/prometheus/templates"
)
@ -33,8 +33,8 @@ var (
// ConsolesHandler implements http.Handler.
type ConsolesHandler struct {
Storage local.Storage
PathPrefix string
QueryEngine *promql.Engine
PathPrefix string
}
func (h *ConsolesHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
@ -70,7 +70,7 @@ func (h *ConsolesHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
Path: r.URL.Path,
}
template := templates.NewTemplateExpander(string(text), "__console_"+r.URL.Path, data, clientmodel.Now(), h.Storage, h.PathPrefix)
template := templates.NewTemplateExpander(string(text), "__console_"+r.URL.Path, data, clientmodel.Now(), h.QueryEngine, h.PathPrefix)
filenames, err := filepath.Glob(*consoleLibrariesPath + "/*.lib")
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)

View File

@ -14,8 +14,12 @@
package httputils
import (
"encoding/json"
"io"
"net/http"
"net/url"
"github.com/prometheus/prometheus/promql"
)
// GetQueryParams calls r.ParseForm and returns r.Form.
@ -23,3 +27,39 @@ func GetQueryParams(r *http.Request) url.Values {
r.ParseForm()
return r.Form
}
var jsonFormatVersion = 1
// ErrorJSON writes the given error JSON-formatted to w.
func ErrorJSON(w io.Writer, err error) error {
data := struct {
Type string `json:"type"`
Value string `json:"value"`
Version int `json:"version"`
}{
Type: "error",
Value: err.Error(),
Version: jsonFormatVersion,
}
enc := json.NewEncoder(w)
return enc.Encode(data)
}
// RespondJSON converts the given data value to JSON and writes it to w.
func RespondJSON(w io.Writer, val promql.Value) error {
data := struct {
Type string `json:"type"`
Value interface{} `json:"value"`
Version int `json:"version"`
}{
Type: val.Type().String(),
Value: val,
Version: jsonFormatVersion,
}
// TODO(fabxc): Adding MarshalJSON to promql.Values might be a good idea.
if sc, ok := val.(*promql.Scalar); ok {
data.Value = sc.Value
}
enc := json.NewEncoder(w)
return enc.Encode(data)
}

View File

@ -19,7 +19,7 @@ import (
"time"
"github.com/prometheus/prometheus/retrieval"
"github.com/prometheus/prometheus/rules/manager"
"github.com/prometheus/prometheus/rules"
)
// PrometheusStatusHandler implements http.Handler.
@ -29,7 +29,7 @@ type PrometheusStatusHandler struct {
BuildInfo map[string]string
Config string
Flags map[string]string
RuleManager manager.RuleManager
RuleManager *rules.Manager
TargetPools map[string]*retrieval.TargetPool
Birth time.Time