diff --git a/promql/engine.go b/promql/engine.go index e2092a800..57a6e7b02 100644 --- a/promql/engine.go +++ b/promql/engine.go @@ -1143,7 +1143,11 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper) } } enh := &EvalNodeHelper{Out: make(Vector, 0, biggestLen)} - seriess := make(map[uint64]Series, biggestLen) // Output series by series hash. + type seriesAndTimestamp struct { + Series + ts int64 + } + seriess := make(map[uint64]seriesAndTimestamp, biggestLen) // Output series by series hash. tempNumSamples := ev.currentSamples var ( @@ -1228,9 +1232,6 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper) // Make the function call. enh.Ts = ts result, ws := funcCall(args, bufHelpers, enh) - if result.ContainsSameLabelset() { - ev.errorf("vector cannot contain metrics with the same labelset") - } enh.Out = result[:0] // Reuse result vector. warnings = append(warnings, ws...) @@ -1247,6 +1248,9 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper) // If this could be an instant query, shortcut so as not to change sort order. if ev.endTimestamp == ev.startTimestamp { + if result.ContainsSameLabelset() { + ev.errorf("vector cannot contain metrics with the same labelset") + } mat := make(Matrix, len(result)) for i, s := range result { if s.H == nil { @@ -1264,8 +1268,13 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper) for _, sample := range result { h := sample.Metric.Hash() ss, ok := seriess[h] - if !ok { - ss = Series{Metric: sample.Metric} + if ok { + if ss.ts == ts { // If we've seen this output series before at this timestamp, it's a duplicate. + ev.errorf("vector cannot contain metrics with the same labelset") + } + ss.ts = ts + } else { + ss = seriesAndTimestamp{Series{Metric: sample.Metric}, ts} } if sample.H == nil { if ss.Floats == nil { @@ -1292,7 +1301,7 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper) // Assemble the output matrix. By the time we get here we know we don't have too many samples. mat := make(Matrix, 0, len(seriess)) for _, ss := range seriess { - mat = append(mat, ss) + mat = append(mat, ss.Series) } ev.currentSamples = originalNumSamples + mat.TotalSamples() ev.samplesStats.UpdatePeak(ev.currentSamples)