You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/querier.go

526 lines
11 KiB

package tsdb
import (
"fmt"
"strings"
"github.com/fabxc/tsdb/chunks"
)
// Matcher matches a string.
type Matcher interface {
Name() string
// Match returns true if the matcher applies to the string value.
Match(v string) bool
}
type equalMatcher struct {
name string
value string
}
func MatchEquals(n, v string) Matcher {
return &equalMatcher{name: n, value: v}
}
func (m *equalMatcher) Name() string { return m.name }
func (m *equalMatcher) Match(v string) bool { return v == m.value }
// Querier provides querying access over time series data of a fixed
// time range.
type Querier interface {
// Select returns a set of series that matches the given label matchers.
Select(...Matcher) SeriesSet
// LabelValues returns all potential values for a label name.
LabelValues(string) ([]string, error)
// LabelValuesFor returns all potential values for a label name.
// under the constraint of another label.
LabelValuesFor(string, Label) ([]string, error)
// Close releases the resources of the Querier.
Close() error
}
// Series represents a single time series.
type Series interface {
// Labels returns the complete set of labels identifying the series.
Labels() Labels
// Iterator returns a new iterator of the data of the series.
Iterator() SeriesIterator
// Ref() uint32
}
func inRange(x, mint, maxt int64) bool {
return x >= mint && x <= maxt
}
// querier merges query results from a set of shard querieres.
type querier struct {
mint, maxt int64
shards []Querier
}
// Querier returns a new querier over the database for the given
// time range.
func (db *DB) Querier(mint, maxt int64) Querier {
q := &querier{
mint: mint,
maxt: maxt,
}
for _, s := range db.shards {
q.shards = append(q.shards, s.Querier(mint, maxt))
}
return q
}
// SeriesSet contains a set of series.
type SeriesSet interface {
Next() bool
Series() Series
Err() error
}
func (q *querier) Select(ms ...Matcher) SeriesSet {
// We gather the non-overlapping series from every shard and simply
// return their union.
r := &mergedSeriesSet{}
for _, s := range q.shards {
r.sets = append(r.sets, s.Select(ms...))
}
return r
}
func (q *querier) LabelValues(string) ([]string, error) {
return nil, nil
}
func (q *querier) LabelValuesFor(string, Label) ([]string, error) {
return nil, fmt.Errorf("not implemented")
}
func (q *querier) Close() error {
return nil
}
// shardQuerier aggregates querying results from time blocks within
// a single shard.
type shardQuerier struct {
blocks []Querier
}
// Querier returns a new querier over the data shard for the given
// time range.
func (s *SeriesShard) Querier(mint, maxt int64) Querier {
blocks := s.blocksForRange(mint, maxt)
sq := &shardQuerier{
blocks: make([]Querier, 0, len(blocks)),
}
for _, b := range blocks {
sq.blocks = append(sq.blocks, b.Querier(mint, maxt))
}
return sq
}
type mergedSeriesSet struct {
sets []SeriesSet
cur int
err error
}
func (s *mergedSeriesSet) Series() Series { return s.sets[s.cur].Series() }
func (s *mergedSeriesSet) Err() error { return s.sets[s.cur].Err() }
func (s *mergedSeriesSet) Next() bool {
// TODO(fabxc): We just emit the sets one after one. They are each
// lexicographically sorted. Should we emit their union sorted too?
if s.sets[s.cur].Next() {
return true
}
s.cur++
if s.cur == len(s.sets) {
return false
}
return s.Next()
}
type shardSeriesSet struct {
a, b SeriesSet
cur Series
as, bs Series // peek ahead of each set
}
func newShardSeriesSet(a, b SeriesSet) *shardSeriesSet {
s := &shardSeriesSet{a: a, b: b}
// Initialize first elements of both sets as Next() needs
// one element look-ahead.
s.advanceA()
s.advanceB()
return s
}
// compareLabels compares the two label sets.
// The result will be 0 if a==b, <0 if a < b, and >0 if a > b.
func compareLabels(a, b Labels) int {
l := len(a)
if len(b) < l {
l = len(b)
}
for i := 0; i < l; i++ {
if d := strings.Compare(a[i].Name, b[i].Name); d != 0 {
return d
}
}
// If all labels so far were in common, the set with fewer labels comes first.
return len(b) - len(a)
}
func (s *shardSeriesSet) Series() Series {
return s.cur
}
func (s *shardSeriesSet) Err() error {
if s.a.Err() != nil {
return s.a.Err()
}
return s.b.Err()
}
func (s *shardSeriesSet) compare() int {
if s.as == nil {
return 1
}
if s.bs == nil {
return -1
}
return compareLabels(s.as.Labels(), s.bs.Labels())
}
func (s *shardSeriesSet) advanceA() {
if s.a.Next() {
s.as = s.a.Series()
} else {
s.as = nil
}
}
func (s *shardSeriesSet) advanceB() {
if s.b.Next() {
s.bs = s.b.Series()
} else {
s.bs = nil
}
}
func (s *shardSeriesSet) Next() bool {
if s.as == nil && s.bs == nil {
return false
}
d := s.compare()
// Both sets contain the current series. Chain them into a single one.
if d > 0 {
s.cur = s.bs
s.advanceB()
} else if d < 0 {
s.cur = s.as
s.advanceA()
} else {
s.cur = &chainedSeries{series: []Series{s.as, s.bs}}
s.advanceA()
s.advanceB()
}
return true
}
func (q *shardQuerier) Select(ms ...Matcher) SeriesSet {
// Sets from different blocks have no time overlap. The reference numbers
// they emit point to series sorted in lexicographic order.
// We can fully connect partial series by simply comparing with the previous
// label set.
if len(q.blocks) == 0 {
return nil
}
r := q.blocks[0].Select(ms...)
for _, s := range q.blocks[1:] {
r = &shardSeriesSet{a: r, b: s.Select(ms...)}
}
return r
}
func (q *shardQuerier) LabelValues(string) ([]string, error) {
return nil, nil
}
func (q *shardQuerier) LabelValuesFor(string, Label) ([]string, error) {
return nil, fmt.Errorf("not implemented")
}
func (q *shardQuerier) Close() error {
return nil
}
// blockQuerier provides querying access to a single block database.
type blockQuerier struct {
index IndexReader
series SeriesReader
mint, maxt int64
}
func newBlockQuerier(ix IndexReader, s SeriesReader, mint, maxt int64) *blockQuerier {
return &blockQuerier{
mint: mint,
maxt: maxt,
index: ix,
series: s,
}
}
func (q *blockQuerier) Select(ms ...Matcher) SeriesSet {
var its []Iterator
for _, m := range ms {
its = append(its, q.selectSingle(m))
}
// TODO(fabxc): pass down time range so the series iterator
// can be instantiated with it?
return &blockSeriesSet{
index: q.index,
it: Intersect(its...),
}
}
func (q *blockQuerier) selectSingle(m Matcher) Iterator {
tpls, err := q.index.LabelValues(m.Name())
if err != nil {
return errIterator{err: err}
}
// TODO(fabxc): use interface upgrading to provide fast solution
// for equality and prefix matches. Tuples are lexicographically sorted.
var res []string
for i := 0; i < tpls.Len(); i++ {
vals, err := tpls.At(i)
if err != nil {
return errIterator{err: err}
}
if m.Match(vals[0]) {
res = append(res, vals[0])
}
}
var rit Iterator
for _, v := range res {
it, err := q.index.Postings(m.Name(), v)
if err != nil {
return errIterator{err: err}
}
rit = Intersect(rit, it)
}
return rit
}
func (q *blockQuerier) LabelValues(name string) ([]string, error) {
tpls, err := q.index.LabelValues(name)
if err != nil {
return nil, err
}
res := make([]string, 0, tpls.Len())
for i := 0; i < tpls.Len(); i++ {
vals, err := tpls.At(i)
if err != nil {
return nil, err
}
res = append(res, vals[0])
}
return nil, nil
}
func (q *blockQuerier) LabelValuesFor(string, Label) ([]string, error) {
return nil, fmt.Errorf("not implemented")
}
func (q *blockQuerier) Close() error {
return nil
}
// blockSeriesSet is a set of series from an inverted index query.
type blockSeriesSet struct {
index IndexReader
it Iterator
err error
cur Series
}
func (s *blockSeriesSet) Next() bool {
// Get next reference from postings iterator.
if !s.it.Next() {
s.err = s.it.Err()
return false
}
// Resolve reference to series.
series, err := s.index.Series(s.it.Value())
if err != nil {
s.err = err
return false
}
s.cur = series
return true
}
func (s *blockSeriesSet) Series() Series { return s.cur }
func (s *blockSeriesSet) Err() error { return s.err }
// SeriesIterator iterates over the data of a time series.
type SeriesIterator interface {
// Seek advances the iterator forward to the given timestamp.
// If there's no value exactly at ts, it advances to the last value
// before tt.
Seek(t int64) bool
// Values returns the current timestamp/value pair.
Values() (t int64, v float64)
// Next advances the iterator by one.
Next() bool
// Err returns the current error.
Err() error
}
type chainedSeries struct {
series []Series
}
func (s *chainedSeries) Labels() Labels {
return s.series[0].Labels()
}
func (s *chainedSeries) Iterator() SeriesIterator {
it := &chainedSeriesIterator{
series: make([]SeriesIterator, 0, len(s.series)),
}
for _, series := range s.series {
it.series = append(it.series, series.Iterator())
}
return it
}
// chainedSeriesIterator implements a series iterater over a list
// of time-sorted, non-overlapping chunks.
type chainedSeriesIterator struct {
series []SeriesIterator
}
func (it *chainedSeriesIterator) Seek(t int64) bool {
return false
}
func (it *chainedSeriesIterator) Values() (t int64, v float64) {
return 0, 0
}
func (it *chainedSeriesIterator) Next() bool {
return false
}
func (it *chainedSeriesIterator) Err() error {
return nil
}
// chunkSeriesIterator implements a series iterator on top
// of a list of time-sorted, non-overlapping chunks.
type chunkSeriesIterator struct {
// minTimes []int64
chunks []chunks.Chunk
i int
cur chunks.Iterator
err error
}
func newChunkSeriesIterator(cs []chunks.Chunk) *chunkSeriesIterator {
return &chunkSeriesIterator{
chunks: cs,
i: 0,
cur: cs[0].Iterator(),
}
}
func (it *chunkSeriesIterator) Seek(t int64) (ok bool) {
// TODO(fabxc): skip to relevant chunk.
for it.Next() {
if ts, _ := it.Values(); ts >= t {
return true
}
}
return false
}
func (it *chunkSeriesIterator) Values() (t int64, v float64) {
return it.cur.Values()
}
func (it *chunkSeriesIterator) Next() bool {
if it.cur.Next() {
return true
}
if err := it.cur.Err(); err != nil {
return false
}
if it.i == len(it.chunks)-1 {
return false
}
it.i++
it.cur = it.chunks[it.i].Iterator()
return it.Next()
}
func (it *chunkSeriesIterator) Err() error {
return it.cur.Err()
}
type bufferedSeriesIterator struct {
// TODO(fabxc): time-based look back buffer for time-aggregating
// queries such as rate. It should allow us to re-use an iterator
// within a range query while calculating time-aggregates at any point.
//
// It also allows looking up/seeking at-or-before without modifying
// the simpler interface.
//
// Consider making this the main external interface.
SeriesIterator
buf []sample // lookback buffer
i int // current head
}
type sample struct {
t int64
v float64
}
func (b *bufferedSeriesIterator) PeekBack(i int) (t int64, v float64, ok bool) {
return 0, 0, false
}