mirror of https://github.com/prometheus/prometheus
371 lines
9.7 KiB
Go
371 lines
9.7 KiB
Go
|
// Copyright 2023 The Prometheus Authors
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package main
|
||
|
|
||
|
import (
|
||
|
"context"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"io"
|
||
|
"math"
|
||
|
"net/http"
|
||
|
"net/url"
|
||
|
"os"
|
||
|
"sort"
|
||
|
"strconv"
|
||
|
"strings"
|
||
|
"time"
|
||
|
|
||
|
v1 "github.com/prometheus/client_golang/api/prometheus/v1"
|
||
|
"github.com/prometheus/common/model"
|
||
|
|
||
|
"github.com/prometheus/prometheus/model/labels"
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
errNotNativeHistogram = fmt.Errorf("not a native histogram")
|
||
|
errNotEnoughData = fmt.Errorf("not enough data")
|
||
|
|
||
|
outputHeader = `Bucket stats for each histogram series over time
|
||
|
------------------------------------------------
|
||
|
First the min, avg, and max number of populated buckets, followed by the total
|
||
|
number of buckets (only if different from the max number of populated buckets
|
||
|
which is typical for classic but not native histograms).`
|
||
|
outputFooter = `Aggregated bucket stats
|
||
|
-----------------------
|
||
|
Each line shows min/avg/max over the series above.`
|
||
|
)
|
||
|
|
||
|
type QueryAnalyzeConfig struct {
|
||
|
metricType string
|
||
|
duration time.Duration
|
||
|
time string
|
||
|
matchers []string
|
||
|
}
|
||
|
|
||
|
// run retrieves metrics that look like conventional histograms (i.e. have _bucket
|
||
|
// suffixes) or native histograms, depending on metricType flag.
|
||
|
func (c *QueryAnalyzeConfig) run(url *url.URL, roundtripper http.RoundTripper) error {
|
||
|
if c.metricType != "histogram" {
|
||
|
return fmt.Errorf("analyze type is %s, must be 'histogram'", c.metricType)
|
||
|
}
|
||
|
|
||
|
ctx := context.Background()
|
||
|
|
||
|
api, err := newAPI(url, roundtripper, nil)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
var endTime time.Time
|
||
|
if c.time != "" {
|
||
|
endTime, err = parseTime(c.time)
|
||
|
if err != nil {
|
||
|
return fmt.Errorf("error parsing time '%s': %w", c.time, err)
|
||
|
}
|
||
|
} else {
|
||
|
endTime = time.Now()
|
||
|
}
|
||
|
|
||
|
return c.getStatsFromMetrics(ctx, api, endTime, os.Stdout, c.matchers)
|
||
|
}
|
||
|
|
||
|
func (c *QueryAnalyzeConfig) getStatsFromMetrics(ctx context.Context, api v1.API, endTime time.Time, out io.Writer, matchers []string) error {
|
||
|
fmt.Fprintf(out, "%s\n\n", outputHeader)
|
||
|
metastatsNative := newMetaStatistics()
|
||
|
metastatsClassic := newMetaStatistics()
|
||
|
for _, matcher := range matchers {
|
||
|
seriesSel := seriesSelector(matcher, c.duration)
|
||
|
matrix, err := querySamples(ctx, api, seriesSel, endTime)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
matrices := make(map[string]model.Matrix)
|
||
|
for _, series := range matrix {
|
||
|
// We do not handle mixed types. If there are float values, we assume it is a
|
||
|
// classic histogram, otherwise we assume it is a native histogram, and we
|
||
|
// ignore series with errors if they do not match the expected type.
|
||
|
if len(series.Values) == 0 {
|
||
|
stats, err := calcNativeBucketStatistics(series)
|
||
|
if err != nil {
|
||
|
if errors.Is(err, errNotNativeHistogram) || errors.Is(err, errNotEnoughData) {
|
||
|
continue
|
||
|
}
|
||
|
return err
|
||
|
}
|
||
|
fmt.Fprintf(out, "- %s (native): %v\n", series.Metric, *stats)
|
||
|
metastatsNative.update(stats)
|
||
|
} else {
|
||
|
lbs := model.LabelSet(series.Metric).Clone()
|
||
|
if _, ok := lbs["le"]; !ok {
|
||
|
continue
|
||
|
}
|
||
|
metricName := string(lbs[labels.MetricName])
|
||
|
if !strings.HasSuffix(metricName, "_bucket") {
|
||
|
continue
|
||
|
}
|
||
|
delete(lbs, labels.MetricName)
|
||
|
delete(lbs, "le")
|
||
|
key := formatSeriesName(metricName, lbs)
|
||
|
matrices[key] = append(matrices[key], series)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for key, matrix := range matrices {
|
||
|
stats, err := calcClassicBucketStatistics(matrix)
|
||
|
if err != nil {
|
||
|
if errors.Is(err, errNotEnoughData) {
|
||
|
continue
|
||
|
}
|
||
|
return err
|
||
|
}
|
||
|
fmt.Fprintf(out, "- %s (classic): %v\n", key, *stats)
|
||
|
metastatsClassic.update(stats)
|
||
|
}
|
||
|
}
|
||
|
fmt.Fprintf(out, "\n%s\n", outputFooter)
|
||
|
if metastatsNative.Count() > 0 {
|
||
|
fmt.Fprintf(out, "\nNative %s\n", metastatsNative)
|
||
|
}
|
||
|
if metastatsClassic.Count() > 0 {
|
||
|
fmt.Fprintf(out, "\nClassic %s\n", metastatsClassic)
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func seriesSelector(metricName string, duration time.Duration) string {
|
||
|
builder := strings.Builder{}
|
||
|
builder.WriteString(metricName)
|
||
|
builder.WriteRune('[')
|
||
|
builder.WriteString(duration.String())
|
||
|
builder.WriteRune(']')
|
||
|
return builder.String()
|
||
|
}
|
||
|
|
||
|
func formatSeriesName(metricName string, lbs model.LabelSet) string {
|
||
|
builder := strings.Builder{}
|
||
|
builder.WriteString(metricName)
|
||
|
builder.WriteString(lbs.String())
|
||
|
return builder.String()
|
||
|
}
|
||
|
|
||
|
func querySamples(ctx context.Context, api v1.API, query string, end time.Time) (model.Matrix, error) {
|
||
|
values, _, err := api.Query(ctx, query, end)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
matrix, ok := values.(model.Matrix)
|
||
|
if !ok {
|
||
|
return nil, fmt.Errorf("query of buckets resulted in non-Matrix")
|
||
|
}
|
||
|
|
||
|
return matrix, nil
|
||
|
}
|
||
|
|
||
|
// minPop/avgPop/maxPop is for the number of populated (non-zero) buckets.
|
||
|
// total is the total number of buckets across all samples in the series,
|
||
|
// populated or not.
|
||
|
type statistics struct {
|
||
|
minPop, maxPop, total int
|
||
|
avgPop float64
|
||
|
}
|
||
|
|
||
|
func (s statistics) String() string {
|
||
|
if s.maxPop == s.total {
|
||
|
return fmt.Sprintf("%d/%.3f/%d", s.minPop, s.avgPop, s.maxPop)
|
||
|
}
|
||
|
return fmt.Sprintf("%d/%.3f/%d/%d", s.minPop, s.avgPop, s.maxPop, s.total)
|
||
|
}
|
||
|
|
||
|
func calcClassicBucketStatistics(matrix model.Matrix) (*statistics, error) {
|
||
|
numBuckets := len(matrix)
|
||
|
|
||
|
stats := &statistics{
|
||
|
minPop: math.MaxInt,
|
||
|
total: numBuckets,
|
||
|
}
|
||
|
|
||
|
if numBuckets == 0 || len(matrix[0].Values) < 2 {
|
||
|
return stats, errNotEnoughData
|
||
|
}
|
||
|
|
||
|
numSamples := len(matrix[0].Values)
|
||
|
|
||
|
sortMatrix(matrix)
|
||
|
|
||
|
totalPop := 0
|
||
|
for timeIdx := 0; timeIdx < numSamples; timeIdx++ {
|
||
|
curr, err := getBucketCountsAtTime(matrix, numBuckets, timeIdx)
|
||
|
if err != nil {
|
||
|
return stats, err
|
||
|
}
|
||
|
countPop := 0
|
||
|
for _, b := range curr {
|
||
|
if b != 0 {
|
||
|
countPop++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
totalPop += countPop
|
||
|
if stats.minPop > countPop {
|
||
|
stats.minPop = countPop
|
||
|
}
|
||
|
if stats.maxPop < countPop {
|
||
|
stats.maxPop = countPop
|
||
|
}
|
||
|
}
|
||
|
stats.avgPop = float64(totalPop) / float64(numSamples)
|
||
|
return stats, nil
|
||
|
}
|
||
|
|
||
|
func sortMatrix(matrix model.Matrix) {
|
||
|
sort.SliceStable(matrix, func(i, j int) bool {
|
||
|
return getLe(matrix[i]) < getLe(matrix[j])
|
||
|
})
|
||
|
}
|
||
|
|
||
|
func getLe(series *model.SampleStream) float64 {
|
||
|
lbs := model.LabelSet(series.Metric)
|
||
|
le, _ := strconv.ParseFloat(string(lbs["le"]), 64)
|
||
|
return le
|
||
|
}
|
||
|
|
||
|
func getBucketCountsAtTime(matrix model.Matrix, numBuckets, timeIdx int) ([]int, error) {
|
||
|
counts := make([]int, numBuckets)
|
||
|
if timeIdx >= len(matrix[0].Values) {
|
||
|
// Just return zeroes instead of erroring out so we can get partial results.
|
||
|
return counts, nil
|
||
|
}
|
||
|
counts[0] = int(matrix[0].Values[timeIdx].Value)
|
||
|
for i, bucket := range matrix[1:] {
|
||
|
if timeIdx >= len(bucket.Values) {
|
||
|
// Just return zeroes instead of erroring out so we can get partial results.
|
||
|
return counts, nil
|
||
|
}
|
||
|
curr := bucket.Values[timeIdx]
|
||
|
prev := matrix[i].Values[timeIdx]
|
||
|
// Assume the results are nicely aligned.
|
||
|
if curr.Timestamp != prev.Timestamp {
|
||
|
return counts, fmt.Errorf("matrix result is not time aligned")
|
||
|
}
|
||
|
counts[i+1] = int(curr.Value - prev.Value)
|
||
|
}
|
||
|
return counts, nil
|
||
|
}
|
||
|
|
||
|
type bucketBounds struct {
|
||
|
boundaries int32
|
||
|
upper, lower float64
|
||
|
}
|
||
|
|
||
|
func makeBucketBounds(b *model.HistogramBucket) bucketBounds {
|
||
|
return bucketBounds{
|
||
|
boundaries: b.Boundaries,
|
||
|
upper: float64(b.Upper),
|
||
|
lower: float64(b.Lower),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func calcNativeBucketStatistics(series *model.SampleStream) (*statistics, error) {
|
||
|
stats := &statistics{
|
||
|
minPop: math.MaxInt,
|
||
|
}
|
||
|
|
||
|
overall := make(map[bucketBounds]struct{})
|
||
|
totalPop := 0
|
||
|
if len(series.Histograms) == 0 {
|
||
|
return nil, errNotNativeHistogram
|
||
|
}
|
||
|
if len(series.Histograms) == 1 {
|
||
|
return nil, errNotEnoughData
|
||
|
}
|
||
|
for _, histogram := range series.Histograms {
|
||
|
for _, bucket := range histogram.Histogram.Buckets {
|
||
|
bb := makeBucketBounds(bucket)
|
||
|
overall[bb] = struct{}{}
|
||
|
}
|
||
|
countPop := len(histogram.Histogram.Buckets)
|
||
|
|
||
|
totalPop += countPop
|
||
|
if stats.minPop > countPop {
|
||
|
stats.minPop = countPop
|
||
|
}
|
||
|
if stats.maxPop < countPop {
|
||
|
stats.maxPop = countPop
|
||
|
}
|
||
|
}
|
||
|
stats.avgPop = float64(totalPop) / float64(len(series.Histograms))
|
||
|
stats.total = len(overall)
|
||
|
return stats, nil
|
||
|
}
|
||
|
|
||
|
type distribution struct {
|
||
|
min, max, count int
|
||
|
avg float64
|
||
|
}
|
||
|
|
||
|
func newDistribution() distribution {
|
||
|
return distribution{
|
||
|
min: math.MaxInt,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (d *distribution) update(num int) {
|
||
|
if d.min > num {
|
||
|
d.min = num
|
||
|
}
|
||
|
if d.max < num {
|
||
|
d.max = num
|
||
|
}
|
||
|
d.count++
|
||
|
d.avg += float64(num)/float64(d.count) - d.avg/float64(d.count)
|
||
|
}
|
||
|
|
||
|
func (d distribution) String() string {
|
||
|
return fmt.Sprintf("%d/%.3f/%d", d.min, d.avg, d.max)
|
||
|
}
|
||
|
|
||
|
type metaStatistics struct {
|
||
|
minPop, avgPop, maxPop, total distribution
|
||
|
}
|
||
|
|
||
|
func newMetaStatistics() *metaStatistics {
|
||
|
return &metaStatistics{
|
||
|
minPop: newDistribution(),
|
||
|
avgPop: newDistribution(),
|
||
|
maxPop: newDistribution(),
|
||
|
total: newDistribution(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (ms metaStatistics) Count() int {
|
||
|
return ms.minPop.count
|
||
|
}
|
||
|
|
||
|
func (ms metaStatistics) String() string {
|
||
|
if ms.maxPop == ms.total {
|
||
|
return fmt.Sprintf("histogram series (%d in total):\n- min populated: %v\n- avg populated: %v\n- max populated: %v", ms.Count(), ms.minPop, ms.avgPop, ms.maxPop)
|
||
|
}
|
||
|
return fmt.Sprintf("histogram series (%d in total):\n- min populated: %v\n- avg populated: %v\n- max populated: %v\n- total: %v", ms.Count(), ms.minPop, ms.avgPop, ms.maxPop, ms.total)
|
||
|
}
|
||
|
|
||
|
func (ms *metaStatistics) update(s *statistics) {
|
||
|
ms.minPop.update(s.minPop)
|
||
|
ms.avgPop.update(int(s.avgPop))
|
||
|
ms.maxPop.update(s.maxPop)
|
||
|
ms.total.update(s.total)
|
||
|
}
|