prometheus/promql/engine.go

1255 lines
34 KiB
Go
Raw Normal View History

// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"encoding/json"
"fmt"
"math"
"runtime"
"sort"
"strconv"
"time"
"golang.org/x/net/context"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/storage/metric"
2015-05-29 11:30:30 +00:00
"github.com/prometheus/prometheus/util/stats"
)
// SampleStream is a stream of Values belonging to an attached COWMetric.
type SampleStream struct {
Metric clientmodel.COWMetric `json:"metric"`
Values metric.Values `json:"values"`
}
// Sample is a single sample belonging to a COWMetric.
type Sample struct {
Metric clientmodel.COWMetric `json:"metric"`
Value clientmodel.SampleValue `json:"value"`
Timestamp clientmodel.Timestamp `json:"timestamp"`
}
// MarshalJSON implements json.Marshaler.
func (s *Sample) MarshalJSON() ([]byte, error) {
v := struct {
Metric clientmodel.COWMetric `json:"metric"`
Value metric.SamplePair `json:"value"`
}{
Metric: s.Metric,
Value: metric.SamplePair{
Timestamp: s.Timestamp,
Value: s.Value,
},
}
return json.Marshal(&v)
}
// Scalar is a scalar value evaluated at the set timestamp.
type Scalar struct {
Value clientmodel.SampleValue `json:"value"`
Timestamp clientmodel.Timestamp `json:"timestamp"`
}
func (s *Scalar) String() string {
return fmt.Sprintf("scalar: %v @[%v]", s.Value, s.Timestamp)
}
// MarshalJSON implements json.Marshaler.
func (s *Scalar) MarshalJSON() ([]byte, error) {
v := strconv.FormatFloat(float64(s.Value), 'f', -1, 64)
return json.Marshal([]interface{}{s.Timestamp, string(v)})
}
// String is a string value evaluated at the set timestamp.
type String struct {
Value string `json:"value"`
Timestamp clientmodel.Timestamp `json:"timestamp"`
}
// MarshalJSON implements json.Marshaler.
func (s *String) MarshalJSON() ([]byte, error) {
return json.Marshal([]interface{}{s.Timestamp, s.Value})
}
func (s *String) String() string {
return s.Value
}
// Vector is basically only an alias for clientmodel.Samples, but the
// contract is that in a Vector, all Samples have the same timestamp.
type Vector []*Sample
// Matrix is a slice of SampleStreams that implements sort.Interface and
// has a String method.
type Matrix []*SampleStream
// Len implements sort.Interface.
func (matrix Matrix) Len() int {
return len(matrix)
}
// Less implements sort.Interface.
func (matrix Matrix) Less(i, j int) bool {
return matrix[i].Metric.String() < matrix[j].Metric.String()
}
// Swap implements sort.Interface.
func (matrix Matrix) Swap(i, j int) {
matrix[i], matrix[j] = matrix[j], matrix[i]
}
// Value is a generic interface for values resulting from a query evaluation.
type Value interface {
Type() ExprType
String() string
}
func (Matrix) Type() ExprType { return ExprMatrix }
func (Vector) Type() ExprType { return ExprVector }
func (*Scalar) Type() ExprType { return ExprScalar }
func (*String) Type() ExprType { return ExprString }
// Result holds the resulting value of an execution or an error
// if any occurred.
type Result struct {
Err error
Value Value
}
// Vector returns a vector if the result value is one. An error is returned if
// the result was an error or the result value is not a vector.
func (r *Result) Vector() (Vector, error) {
if r.Err != nil {
return nil, r.Err
}
v, ok := r.Value.(Vector)
if !ok {
return nil, fmt.Errorf("query result is not a vector")
}
return v, nil
}
// Matrix returns a matrix. An error is returned if
// the result was an error or the result value is not a matrix.
func (r *Result) Matrix() (Matrix, error) {
if r.Err != nil {
return nil, r.Err
}
v, ok := r.Value.(Matrix)
if !ok {
return nil, fmt.Errorf("query result is not a matrix")
}
return v, nil
}
// Scalar returns a scalar value. An error is returned if
// the result was an error or the result value is not a scalar.
func (r *Result) Scalar() (*Scalar, error) {
if r.Err != nil {
return nil, r.Err
}
v, ok := r.Value.(*Scalar)
if !ok {
return nil, fmt.Errorf("query result is not a scalar")
}
return v, nil
}
func (r *Result) String() string {
if r.Err != nil {
return r.Err.Error()
}
if r.Value == nil {
return ""
}
return r.Value.String()
}
type (
// ErrQueryTimeout is returned if a query timed out during processing.
ErrQueryTimeout string
// ErrQueryCanceled is returned if a query was canceled during processing.
ErrQueryCanceled string
)
2015-05-01 15:58:58 +00:00
func (e ErrQueryTimeout) Error() string { return fmt.Sprintf("query timed out in %s", string(e)) }
func (e ErrQueryCanceled) Error() string { return fmt.Sprintf("query was canceled in %s", string(e)) }
// A Query is derived from an a raw query string and can be run against an engine
// it is associated with.
type Query interface {
// Exec processes the query and
Exec() *Result
// Statements returns the parsed statements of the query.
Statements() Statements
// Stats returns statistics about the lifetime of the query.
Stats() *stats.TimerGroup
// Cancel signals that a running query execution should be aborted.
Cancel()
}
// query implements the Query interface.
type query struct {
// The original query string.
q string
// Statements of the parsed query.
stmts Statements
// Timer stats for the query execution.
stats *stats.TimerGroup
// Cancelation function for the query.
cancel func()
// The engine against which the query is executed.
ng *Engine
}
// Statements implements the Query interface.
func (q *query) Statements() Statements {
return q.stmts
}
// Stats implements the Query interface.
func (q *query) Stats() *stats.TimerGroup {
return q.stats
}
// Cancel implements the Query interface.
func (q *query) Cancel() {
if q.cancel != nil {
q.cancel()
}
}
// Exec implements the Query interface.
func (q *query) Exec() *Result {
res, err := q.ng.exec(q)
return &Result{Err: err, Value: res}
}
// contextDone returns an error if the context was canceled or timed out.
func contextDone(ctx context.Context, env string) error {
select {
case <-ctx.Done():
err := ctx.Err()
switch err {
case context.Canceled:
return ErrQueryCanceled(env)
case context.DeadlineExceeded:
return ErrQueryTimeout(env)
default:
return err
}
default:
return nil
}
}
// Engine handles the liftetime of queries from beginning to end.
// It is connected to a storage.
type Engine struct {
// The storage on which the engine operates.
storage local.Storage
// The base context for all queries and its cancellation function.
baseCtx context.Context
cancelQueries func()
// The gate limiting the maximum number of concurrent and waiting queries.
gate *queryGate
2015-06-15 10:49:11 +00:00
options *EngineOptions
}
// NewEngine returns a new engine.
2015-06-15 10:49:11 +00:00
func NewEngine(storage local.Storage, o *EngineOptions) *Engine {
if o == nil {
o = DefaultEngineOptions
}
ctx, cancel := context.WithCancel(context.Background())
return &Engine{
storage: storage,
baseCtx: ctx,
cancelQueries: cancel,
2015-06-15 10:49:11 +00:00
gate: newQueryGate(o.MaxConcurrentQueries),
options: o,
}
}
2015-06-15 10:49:11 +00:00
// EngineOptions contains configuration parameters for an Engine.
type EngineOptions struct {
MaxConcurrentQueries int
Timeout time.Duration
}
// DefaultEngineOptions are the default engine options.
var DefaultEngineOptions = &EngineOptions{
MaxConcurrentQueries: 20,
Timeout: 2 * time.Minute,
}
// Stop the engine and cancel all running queries.
func (ng *Engine) Stop() {
ng.cancelQueries()
}
// NewInstantQuery returns an evaluation query for the given expression at the given time.
func (ng *Engine) NewInstantQuery(qs string, ts clientmodel.Timestamp) (Query, error) {
expr, err := ParseExpr(qs)
if err != nil {
return nil, err
}
qry := ng.newQuery(expr, ts, ts, 0)
qry.q = qs
return qry, nil
}
// NewRangeQuery returns an evaluation query for the given time range and with
// the resolution set by the interval.
func (ng *Engine) NewRangeQuery(qs string, start, end clientmodel.Timestamp, interval time.Duration) (Query, error) {
expr, err := ParseExpr(qs)
if err != nil {
return nil, err
}
if expr.Type() != ExprVector && expr.Type() != ExprScalar {
return nil, fmt.Errorf("invalid expression type %q for range query, must be scalar or vector", expr.Type())
}
qry := ng.newQuery(expr, start, end, interval)
qry.q = qs
return qry, nil
}
func (ng *Engine) newQuery(expr Expr, start, end clientmodel.Timestamp, interval time.Duration) *query {
es := &EvalStmt{
Expr: expr,
Start: start,
End: end,
Interval: interval,
}
qry := &query{
stmts: Statements{es},
ng: ng,
stats: stats.NewTimerGroup(),
}
return qry
}
// testStmt is an internal helper statement that allows execution
// of an arbitrary function during handling. It is used to test the Engine.
type testStmt func(context.Context) error
func (testStmt) String() string { return "test statement" }
func (testStmt) DotGraph() string { return "test statement" }
func (testStmt) stmt() {}
func (ng *Engine) newTestQuery(stmts ...Statement) Query {
qry := &query{
q: "test statement",
stmts: Statements(stmts),
ng: ng,
stats: stats.NewTimerGroup(),
}
return qry
}
// exec executes the query.
//
// At this point per query only one EvalStmt is evaluated. Alert and record
// statements are not handled by the Engine.
func (ng *Engine) exec(q *query) (Value, error) {
const env = "query execution"
2015-06-15 10:49:11 +00:00
ctx, cancel := context.WithTimeout(q.ng.baseCtx, ng.options.Timeout)
q.cancel = cancel
queueTimer := q.stats.GetTimer(stats.ExecQueueTime).Start()
if err := ng.gate.Start(ctx); err != nil {
return nil, err
}
defer ng.gate.Done()
queueTimer.Stop()
// Cancel when execution is done or an error was raised.
defer q.cancel()
evalTimer := q.stats.GetTimer(stats.TotalEvalTime).Start()
defer evalTimer.Stop()
for _, stmt := range q.stmts {
// The base context might already be canceled on the first iteration (e.g. during shutdown).
if err := contextDone(ctx, env); err != nil {
return nil, err
}
switch s := stmt.(type) {
case *EvalStmt:
// Currently, only one execution statement per query is allowed.
return ng.execEvalStmt(ctx, q, s)
case testStmt:
if err := s(ctx); err != nil {
return nil, err
}
default:
panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", stmt))
}
}
return nil, nil
}
// execEvalStmt evaluates the expression of an evaluation statement for the given time range.
func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, error) {
prepareTimer := query.stats.GetTimer(stats.TotalQueryPreparationTime).Start()
analyzeTimer := query.stats.GetTimer(stats.QueryAnalysisTime).Start()
// Only one execution statement per query is allowed.
analyzer := &Analyzer{
Storage: ng.storage,
Expr: s.Expr,
Start: s.Start,
End: s.End,
}
err := analyzer.Analyze(ctx)
if err != nil {
analyzeTimer.Stop()
prepareTimer.Stop()
return nil, err
}
analyzeTimer.Stop()
preloadTimer := query.stats.GetTimer(stats.PreloadTime).Start()
closer, err := analyzer.Prepare(ctx)
if err != nil {
preloadTimer.Stop()
prepareTimer.Stop()
return nil, err
}
defer closer.Close()
preloadTimer.Stop()
prepareTimer.Stop()
evalTimer := query.stats.GetTimer(stats.InnerEvalTime).Start()
// Instant evaluation.
if s.Start == s.End && s.Interval == 0 {
evaluator := &evaluator{
Timestamp: s.Start,
ctx: ctx,
}
val, err := evaluator.Eval(s.Expr)
if err != nil {
return nil, err
}
evalTimer.Stop()
return val, nil
}
numSteps := int(s.End.Sub(s.Start) / s.Interval)
// Range evaluation.
sampleStreams := map[clientmodel.Fingerprint]*SampleStream{}
for ts := s.Start; !ts.After(s.End); ts = ts.Add(s.Interval) {
if err := contextDone(ctx, "range evaluation"); err != nil {
return nil, err
}
evaluator := &evaluator{
Timestamp: ts,
ctx: ctx,
}
val, err := evaluator.Eval(s.Expr)
if err != nil {
return nil, err
}
switch v := val.(type) {
case *Scalar:
// As the expression type does not change we can safely default to 0
// as the fingerprint for scalar expressions.
ss := sampleStreams[0]
if ss == nil {
ss = &SampleStream{Values: make(metric.Values, 0, numSteps)}
sampleStreams[0] = ss
}
ss.Values = append(ss.Values, metric.SamplePair{
Value: v.Value,
Timestamp: v.Timestamp,
})
case Vector:
for _, sample := range v {
fp := sample.Metric.Metric.Fingerprint()
ss := sampleStreams[fp]
if ss == nil {
ss = &SampleStream{
Metric: sample.Metric,
Values: make(metric.Values, 0, numSteps),
}
sampleStreams[fp] = ss
}
ss.Values = append(ss.Values, metric.SamplePair{
Value: sample.Value,
Timestamp: sample.Timestamp,
})
}
default:
panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type()))
}
}
evalTimer.Stop()
if err := contextDone(ctx, "expression evaluation"); err != nil {
return nil, err
}
appendTimer := query.stats.GetTimer(stats.ResultAppendTime).Start()
matrix := Matrix{}
for _, sampleStream := range sampleStreams {
matrix = append(matrix, sampleStream)
}
appendTimer.Stop()
if err := contextDone(ctx, "expression evaluation"); err != nil {
return nil, err
}
sortTimer := query.stats.GetTimer(stats.ResultSortTime).Start()
sort.Sort(matrix)
sortTimer.Stop()
return matrix, nil
}
// An evaluator evaluates given expressions at a fixed timestamp. It is attached to an
// engine through which it connects to a storage and reports errors. On timeout or
// cancellation of its context it terminates.
type evaluator struct {
ctx context.Context
Timestamp clientmodel.Timestamp
}
// fatalf causes a panic with the input formatted into an error.
func (ev *evaluator) errorf(format string, args ...interface{}) {
ev.error(fmt.Errorf(format, args...))
}
// fatal causes a panic with the given error.
func (ev *evaluator) error(err error) {
panic(err)
}
// recover is the handler that turns panics into returns from the top level of evaluation.
func (ev *evaluator) recover(errp *error) {
e := recover()
if e != nil {
// Do not recover from runtime errors.
if _, ok := e.(runtime.Error); ok {
panic(e)
}
*errp = e.(error)
}
}
// evalScalar attempts to evaluate e to a scalar value and errors otherwise.
func (ev *evaluator) evalScalar(e Expr) *Scalar {
val := ev.eval(e)
sv, ok := val.(*Scalar)
if !ok {
ev.errorf("expected scalar but got %s", val.Type())
}
return sv
}
// evalVector attempts to evaluate e to a vector value and errors otherwise.
func (ev *evaluator) evalVector(e Expr) Vector {
val := ev.eval(e)
vec, ok := val.(Vector)
if !ok {
ev.errorf("expected vector but got %s", val.Type())
}
return vec
}
// evalInt attempts to evaluate e into an integer and errors otherwise.
func (ev *evaluator) evalInt(e Expr) int {
sc := ev.evalScalar(e)
return int(sc.Value)
}
// evalFloat attempts to evaluate e into a float and errors otherwise.
func (ev *evaluator) evalFloat(e Expr) float64 {
sc := ev.evalScalar(e)
return float64(sc.Value)
}
// evalMatrix attempts to evaluate e into a matrix and errors otherwise.
func (ev *evaluator) evalMatrix(e Expr) Matrix {
val := ev.eval(e)
mat, ok := val.(Matrix)
if !ok {
ev.errorf("expected matrix but got %s", val.Type())
}
return mat
}
// evalMatrixBounds attempts to evaluate e to matrix boundaries and errors otherwise.
func (ev *evaluator) evalMatrixBounds(e Expr) Matrix {
ms, ok := e.(*MatrixSelector)
if !ok {
ev.errorf("matrix bounds can only be evaluated for matrix selectors, got %T", e)
}
return ev.matrixSelectorBounds(ms)
}
// evalOneOf evaluates e and errors unless the result is of one of the given types.
func (ev *evaluator) evalOneOf(e Expr, t1, t2 ExprType) Value {
val := ev.eval(e)
if val.Type() != t1 && val.Type() != t2 {
ev.errorf("expected %s or %s but got %s", t1, t2, val.Type())
}
return val
}
func (ev *evaluator) Eval(expr Expr) (v Value, err error) {
defer ev.recover(&err)
return ev.eval(expr), nil
}
// eval evaluates the given expression as the given AST expression node requires.
func (ev *evaluator) eval(expr Expr) Value {
// This is the top-level evaluation method.
// Thus, we check for timeout/cancellation here.
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
ev.error(err)
}
switch e := expr.(type) {
case *AggregateExpr:
vector := ev.evalVector(e.Expr)
return ev.aggregation(e.Op, e.Grouping, e.KeepExtraLabels, vector)
case *BinaryExpr:
lhs := ev.evalOneOf(e.LHS, ExprScalar, ExprVector)
rhs := ev.evalOneOf(e.RHS, ExprScalar, ExprVector)
switch lt, rt := lhs.Type(), rhs.Type(); {
case lt == ExprScalar && rt == ExprScalar:
return &Scalar{
Value: scalarBinop(e.Op, lhs.(*Scalar).Value, rhs.(*Scalar).Value),
Timestamp: ev.Timestamp,
}
case lt == ExprVector && rt == ExprVector:
switch e.Op {
case itemLAND:
return ev.vectorAnd(lhs.(Vector), rhs.(Vector), e.VectorMatching)
case itemLOR:
return ev.vectorOr(lhs.(Vector), rhs.(Vector), e.VectorMatching)
default:
return ev.vectorBinop(e.Op, lhs.(Vector), rhs.(Vector), e.VectorMatching)
}
case lt == ExprVector && rt == ExprScalar:
return ev.vectorScalarBinop(e.Op, lhs.(Vector), rhs.(*Scalar), false)
case lt == ExprScalar && rt == ExprVector:
return ev.vectorScalarBinop(e.Op, rhs.(Vector), lhs.(*Scalar), true)
}
case *Call:
return e.Func.Call(ev, e.Args)
case *MatrixSelector:
return ev.matrixSelector(e)
case *NumberLiteral:
return &Scalar{Value: e.Val, Timestamp: ev.Timestamp}
case *ParenExpr:
return ev.eval(e.Expr)
case *StringLiteral:
return &String{Value: e.Val, Timestamp: ev.Timestamp}
case *UnaryExpr:
smpl := ev.evalScalar(e.Expr)
if e.Op == itemSUB {
smpl.Value = -smpl.Value
}
return smpl
case *VectorSelector:
return ev.vectorSelector(e)
}
panic(fmt.Errorf("unhandled expression of type: %T", expr))
}
// vectorSelector evaluates a *VectorSelector expression.
func (ev *evaluator) vectorSelector(node *VectorSelector) Vector {
vec := Vector{}
for fp, it := range node.iterators {
sampleCandidates := it.ValueAtTime(ev.Timestamp.Add(-node.Offset))
samplePair := chooseClosestSample(sampleCandidates, ev.Timestamp.Add(-node.Offset))
if samplePair != nil {
vec = append(vec, &Sample{
Metric: node.metrics[fp],
Value: samplePair.Value,
Timestamp: ev.Timestamp,
})
}
}
return vec
}
// matrixSelector evaluates a *MatrixSelector expression.
func (ev *evaluator) matrixSelector(node *MatrixSelector) Matrix {
interval := metric.Interval{
OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset),
NewestInclusive: ev.Timestamp.Add(-node.Offset),
}
sampleStreams := make([]*SampleStream, 0, len(node.iterators))
for fp, it := range node.iterators {
samplePairs := it.RangeValues(interval)
if len(samplePairs) == 0 {
continue
}
if node.Offset != 0 {
for _, sp := range samplePairs {
sp.Timestamp = sp.Timestamp.Add(node.Offset)
}
}
sampleStream := &SampleStream{
Metric: node.metrics[fp],
Values: samplePairs,
}
sampleStreams = append(sampleStreams, sampleStream)
}
return Matrix(sampleStreams)
}
// matrixSelectorBounds evaluates the boundaries of a *MatrixSelector.
func (ev *evaluator) matrixSelectorBounds(node *MatrixSelector) Matrix {
interval := metric.Interval{
OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset),
NewestInclusive: ev.Timestamp.Add(-node.Offset),
}
sampleStreams := make([]*SampleStream, 0, len(node.iterators))
for fp, it := range node.iterators {
samplePairs := it.BoundaryValues(interval)
if len(samplePairs) == 0 {
continue
}
sampleStream := &SampleStream{
Metric: node.metrics[fp],
Values: samplePairs,
}
sampleStreams = append(sampleStreams, sampleStream)
}
return Matrix(sampleStreams)
}
func (ev *evaluator) vectorAnd(lhs, rhs Vector, matching *VectorMatching) Vector {
if matching.Card != CardManyToMany {
panic("logical operations must always be many-to-many matching")
}
// If no matching labels are specified, match by all labels.
sigf := signatureFunc(matching.On...)
var result Vector
// The set of signatures for the right-hand side vector.
rightSigs := map[uint64]struct{}{}
// Add all rhs samples to a map so we can easily find matches later.
for _, rs := range rhs {
rightSigs[sigf(rs.Metric)] = struct{}{}
}
for _, ls := range lhs {
// If there's a matching entry in the right-hand side vector, add the sample.
if _, ok := rightSigs[sigf(ls.Metric)]; ok {
result = append(result, ls)
}
}
return result
}
func (ev *evaluator) vectorOr(lhs, rhs Vector, matching *VectorMatching) Vector {
if matching.Card != CardManyToMany {
panic("logical operations must always be many-to-many matching")
}
sigf := signatureFunc(matching.On...)
var result Vector
leftSigs := map[uint64]struct{}{}
// Add everything from the left-hand-side vector.
for _, ls := range lhs {
leftSigs[sigf(ls.Metric)] = struct{}{}
result = append(result, ls)
}
// Add all right-hand side elements which have not been added from the left-hand side.
for _, rs := range rhs {
if _, ok := leftSigs[sigf(rs.Metric)]; !ok {
result = append(result, rs)
}
}
return result
}
// vectorBinop evaluates a binary operation between two vector, excluding AND and OR.
func (ev *evaluator) vectorBinop(op itemType, lhs, rhs Vector, matching *VectorMatching) Vector {
if matching.Card == CardManyToMany {
panic("many-to-many only allowed for AND and OR")
}
var (
result = Vector{}
sigf = signatureFunc(matching.On...)
resultLabels = append(matching.On, matching.Include...)
)
// The control flow below handles one-to-one or many-to-one matching.
// For one-to-many, swap sidedness and account for the swap when calculating
// values.
if matching.Card == CardOneToMany {
lhs, rhs = rhs, lhs
}
// All samples from the rhs hashed by the matching label/values.
rightSigs := map[uint64]*Sample{}
// Add all rhs samples to a map so we can easily find matches later.
for _, rs := range rhs {
sig := sigf(rs.Metric)
// The rhs is guaranteed to be the 'one' side. Having multiple samples
// with the same signature means that the matching is many-to-many.
if _, found := rightSigs[sig]; found {
// Many-to-many matching not allowed.
ev.errorf("many-to-many matching not allowed: matching labels must be unique on one side")
}
rightSigs[sig] = rs
}
// Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one
// the value is a set of signatures to detect duplicated result elements.
matchedSigs := map[uint64]map[uint64]struct{}{}
// For all lhs samples find a respective rhs sample and perform
// the binary operation.
for _, ls := range lhs {
sig := sigf(ls.Metric)
rs, found := rightSigs[sig] // Look for a match in the rhs vector.
if !found {
continue
}
// Account for potentially swapped sidedness.
vl, vr := ls.Value, rs.Value
if matching.Card == CardOneToMany {
vl, vr = vr, vl
}
value, keep := vectorElemBinop(op, vl, vr)
if !keep {
continue
}
metric := resultMetric(ls.Metric, op, resultLabels...)
insertedSigs, exists := matchedSigs[sig]
if matching.Card == CardOneToOne {
if exists {
ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)")
}
matchedSigs[sig] = nil // Set existance to true.
} else {
// In many-to-one matching the grouping labels have to ensure a unique metric
// for the result vector. Check whether those labels have already been added for
// the same matching labels.
insertSig := clientmodel.SignatureForLabels(metric.Metric, matching.Include)
if !exists {
insertedSigs = map[uint64]struct{}{}
matchedSigs[sig] = insertedSigs
} else if _, duplicate := insertedSigs[insertSig]; duplicate {
ev.errorf("multiple matches for labels: grouping labels must ensure unique matches")
}
insertedSigs[insertSig] = struct{}{}
}
result = append(result, &Sample{
Metric: metric,
Value: value,
Timestamp: ev.Timestamp,
})
}
return result
}
// signatureFunc returns a function that calculates the signature for a metric
// based on the provided labels.
func signatureFunc(labels ...clientmodel.LabelName) func(m clientmodel.COWMetric) uint64 {
if len(labels) == 0 {
return func(m clientmodel.COWMetric) uint64 {
m.Delete(clientmodel.MetricNameLabel)
return uint64(m.Metric.Fingerprint())
}
}
return func(m clientmodel.COWMetric) uint64 {
return clientmodel.SignatureForLabels(m.Metric, labels)
}
}
// resultMetric returns the metric for the given sample(s) based on the vector
// binary operation and the matching options.
func resultMetric(met clientmodel.COWMetric, op itemType, labels ...clientmodel.LabelName) clientmodel.COWMetric {
if len(labels) == 0 {
if shouldDropMetricName(op) {
met.Delete(clientmodel.MetricNameLabel)
}
return met
}
// As we definitly write, creating a new metric is the easiest solution.
m := clientmodel.Metric{}
for _, ln := range labels {
// Included labels from the `group_x` modifier are taken from the "many"-side.
if v, ok := met.Metric[ln]; ok {
m[ln] = v
}
}
return clientmodel.COWMetric{Metric: m, Copied: false}
}
// vectorScalarBinop evaluates a binary operation between a vector and a scalar.
func (ev *evaluator) vectorScalarBinop(op itemType, lhs Vector, rhs *Scalar, swap bool) Vector {
vector := make(Vector, 0, len(lhs))
for _, lhsSample := range lhs {
lv, rv := lhsSample.Value, rhs.Value
// lhs always contains the vector. If the original position was different
// swap for calculating the value.
if swap {
lv, rv = rv, lv
}
value, keep := vectorElemBinop(op, lv, rv)
if keep {
lhsSample.Value = value
if shouldDropMetricName(op) {
lhsSample.Metric.Delete(clientmodel.MetricNameLabel)
}
vector = append(vector, lhsSample)
}
}
return vector
}
// scalarBinop evaluates a binary operation between two scalars.
func scalarBinop(op itemType, lhs, rhs clientmodel.SampleValue) clientmodel.SampleValue {
switch op {
case itemADD:
return lhs + rhs
case itemSUB:
return lhs - rhs
case itemMUL:
return lhs * rhs
case itemDIV:
return lhs / rhs
case itemMOD:
if rhs != 0 {
return clientmodel.SampleValue(int(lhs) % int(rhs))
}
return clientmodel.SampleValue(math.NaN())
case itemEQL:
return btos(lhs == rhs)
case itemNEQ:
return btos(lhs != rhs)
case itemGTR:
return btos(lhs > rhs)
case itemLSS:
return btos(lhs < rhs)
case itemGTE:
return btos(lhs >= rhs)
case itemLTE:
return btos(lhs <= rhs)
}
panic(fmt.Errorf("operator %q not allowed for scalar operations", op))
}
// vectorElemBinop evaluates a binary operation between two vector elements.
func vectorElemBinop(op itemType, lhs, rhs clientmodel.SampleValue) (clientmodel.SampleValue, bool) {
switch op {
case itemADD:
return lhs + rhs, true
case itemSUB:
return lhs - rhs, true
case itemMUL:
return lhs * rhs, true
case itemDIV:
return lhs / rhs, true
case itemMOD:
if rhs != 0 {
return clientmodel.SampleValue(int(lhs) % int(rhs)), true
}
return clientmodel.SampleValue(math.NaN()), true
case itemEQL:
return lhs, lhs == rhs
case itemNEQ:
return lhs, lhs != rhs
case itemGTR:
return lhs, lhs > rhs
case itemLSS:
return lhs, lhs < rhs
case itemGTE:
return lhs, lhs >= rhs
case itemLTE:
return lhs, lhs <= rhs
}
panic(fmt.Errorf("operator %q not allowed for operations between vectors", op))
}
// labelIntersection returns the metric of common label/value pairs of two input metrics.
func labelIntersection(metric1, metric2 clientmodel.COWMetric) clientmodel.COWMetric {
for label, value := range metric1.Metric {
if metric2.Metric[label] != value {
metric1.Delete(label)
}
}
return metric1
}
type groupedAggregation struct {
labels clientmodel.COWMetric
value clientmodel.SampleValue
valuesSquaredSum clientmodel.SampleValue
groupCount int
}
// aggregation evaluates an aggregation operation on a vector.
func (ev *evaluator) aggregation(op itemType, grouping clientmodel.LabelNames, keepExtra bool, vector Vector) Vector {
result := map[uint64]*groupedAggregation{}
for _, sample := range vector {
groupingKey := clientmodel.SignatureForLabels(sample.Metric.Metric, grouping)
groupedResult, ok := result[groupingKey]
// Add a new group if it doesn't exist.
if !ok {
var m clientmodel.COWMetric
if keepExtra {
m = sample.Metric
m.Delete(clientmodel.MetricNameLabel)
} else {
m = clientmodel.COWMetric{
Metric: clientmodel.Metric{},
Copied: true,
}
for _, l := range grouping {
if v, ok := sample.Metric.Metric[l]; ok {
m.Set(l, v)
}
}
}
result[groupingKey] = &groupedAggregation{
labels: m,
value: sample.Value,
valuesSquaredSum: sample.Value * sample.Value,
groupCount: 1,
}
continue
}
// Add the sample to the existing group.
if keepExtra {
groupedResult.labels = labelIntersection(groupedResult.labels, sample.Metric)
}
switch op {
case itemSum:
groupedResult.value += sample.Value
case itemAvg:
groupedResult.value += sample.Value
groupedResult.groupCount++
case itemMax:
if groupedResult.value < sample.Value {
groupedResult.value = sample.Value
}
case itemMin:
if groupedResult.value > sample.Value {
groupedResult.value = sample.Value
}
case itemCount:
groupedResult.groupCount++
case itemStdvar, itemStddev:
groupedResult.value += sample.Value
groupedResult.valuesSquaredSum += sample.Value * sample.Value
groupedResult.groupCount++
default:
panic(fmt.Errorf("expected aggregation operator but got %q", op))
}
}
// Construct the result vector from the aggregated groups.
resultVector := make(Vector, 0, len(result))
for _, aggr := range result {
switch op {
case itemAvg:
aggr.value = aggr.value / clientmodel.SampleValue(aggr.groupCount)
case itemCount:
aggr.value = clientmodel.SampleValue(aggr.groupCount)
case itemStdvar:
avg := float64(aggr.value) / float64(aggr.groupCount)
aggr.value = clientmodel.SampleValue(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg)
case itemStddev:
avg := float64(aggr.value) / float64(aggr.groupCount)
aggr.value = clientmodel.SampleValue(math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg))
default:
// For other aggregations, we already have the right value.
}
sample := &Sample{
Metric: aggr.labels,
Value: aggr.value,
Timestamp: ev.Timestamp,
}
resultVector = append(resultVector, sample)
}
return resultVector
}
// btos returns 1 if b is true, 0 otherwise.
func btos(b bool) clientmodel.SampleValue {
if b {
return 1
}
return 0
}
// shouldDropMetricName returns whether the metric name should be dropped in the
// result of the op operation.
func shouldDropMetricName(op itemType) bool {
switch op {
case itemADD, itemSUB, itemDIV, itemMUL, itemMOD:
return true
default:
return false
}
}
2015-06-15 10:49:11 +00:00
// StalenessDelta determines the time since the last sample after which a time
// series is considered stale.
var StalenessDelta = 5 * time.Minute
// chooseClosestSample chooses the closest sample of a list of samples
// surrounding a given target time. If samples are found both before and after
// the target time, the sample value is interpolated between these. Otherwise,
// the single closest sample is returned verbatim.
func chooseClosestSample(samples metric.Values, timestamp clientmodel.Timestamp) *metric.SamplePair {
var closestBefore *metric.SamplePair
var closestAfter *metric.SamplePair
for _, candidate := range samples {
delta := candidate.Timestamp.Sub(timestamp)
// Samples before target time.
if delta < 0 {
// Ignore samples outside of staleness policy window.
2015-06-15 10:49:11 +00:00
if -delta > StalenessDelta {
continue
}
// Ignore samples that are farther away than what we've seen before.
if closestBefore != nil && candidate.Timestamp.Before(closestBefore.Timestamp) {
continue
}
sample := candidate
closestBefore = &sample
}
// Samples after target time.
if delta >= 0 {
// Ignore samples outside of staleness policy window.
2015-06-15 10:49:11 +00:00
if delta > StalenessDelta {
continue
}
// Ignore samples that are farther away than samples we've seen before.
if closestAfter != nil && candidate.Timestamp.After(closestAfter.Timestamp) {
continue
}
sample := candidate
closestAfter = &sample
}
}
switch {
case closestBefore != nil && closestAfter != nil:
return interpolateSamples(closestBefore, closestAfter, timestamp)
case closestBefore != nil:
return closestBefore
default:
return closestAfter
}
}
// interpolateSamples interpolates a value at a target time between two
// provided sample pairs.
func interpolateSamples(first, second *metric.SamplePair, timestamp clientmodel.Timestamp) *metric.SamplePair {
dv := second.Value - first.Value
dt := second.Timestamp.Sub(first.Timestamp)
dDt := dv / clientmodel.SampleValue(dt)
offset := clientmodel.SampleValue(timestamp.Sub(first.Timestamp))
return &metric.SamplePair{
Value: first.Value + (offset * dDt),
Timestamp: timestamp,
}
}
// A queryGate controls the maximum number of concurrently running and waiting queries.
type queryGate struct {
ch chan struct{}
}
// newQueryGate returns a query gate that limits the number of queries
// being concurrently executed.
func newQueryGate(length int) *queryGate {
return &queryGate{
ch: make(chan struct{}, length),
}
}
// Start blocks until the gate has a free spot or the context is done.
func (g *queryGate) Start(ctx context.Context) error {
select {
case <-ctx.Done():
return contextDone(ctx, "query queue")
case g.ch <- struct{}{}:
return nil
}
}
// Done releases a single spot in the gate.
func (g *queryGate) Done() {
select {
case <-g.ch:
default:
panic("engine.queryGate.Done: more operations done than started")
}
}