prometheus/rules/helpers_test.go

429 lines
12 KiB
Go
Raw Normal View History

// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package rules
import (
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/rules/ast"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/storage/metric"
)
var testSampleInterval = time.Duration(5) * time.Minute
Use custom timestamp type for sample timestamps and related code. So far we've been using Go's native time.Time for anything related to sample timestamps. Since the range of time.Time is much bigger than what we need, this has created two problems: - there could be time.Time values which were out of the range/precision of the time type that we persist to disk, therefore causing incorrectly ordered keys. One bug caused by this was: https://github.com/prometheus/prometheus/issues/367 It would be good to use a timestamp type that's more closely aligned with what the underlying storage supports. - sizeof(time.Time) is 192, while Prometheus should be ok with a single 64-bit Unix timestamp (possibly even a 32-bit one). Since we store samples in large numbers, this seriously affects memory usage. Furthermore, copying/working with the data will be faster if it's smaller. *MEMORY USAGE RESULTS* Initial memory usage comparisons for a running Prometheus with 1 timeseries and 100,000 samples show roughly a 13% decrease in total (VIRT) memory usage. In my tests, this advantage for some reason decreased a bit the more samples the timeseries had (to 5-7% for millions of samples). This I can't fully explain, but perhaps garbage collection issues were involved. *WHEN TO USE THE NEW TIMESTAMP TYPE* The new clientmodel.Timestamp type should be used whenever time calculations are either directly or indirectly related to sample timestamps. For example: - the timestamp of a sample itself - all kinds of watermarks - anything that may become or is compared to a sample timestamp (like the timestamp passed into Target.Scrape()). When to still use time.Time: - for measuring durations/times not related to sample timestamps, like duration telemetry exporting, timers that indicate how frequently to execute some action, etc. *NOTE ON OPERATOR OPTIMIZATION TESTS* We don't use operator optimization code anymore, but it still lives in the code as dead code. It still has tests, but I couldn't get all of them to pass with the new timestamp format. I commented out the failing cases for now, but we should probably remove the dead code soon. I just didn't want to do that in the same change as this. Change-Id: I821787414b0debe85c9fffaeb57abd453727af0f
2013-10-28 13:35:02 +00:00
var testStartTime = clientmodel.Timestamp(0)
Use custom timestamp type for sample timestamps and related code. So far we've been using Go's native time.Time for anything related to sample timestamps. Since the range of time.Time is much bigger than what we need, this has created two problems: - there could be time.Time values which were out of the range/precision of the time type that we persist to disk, therefore causing incorrectly ordered keys. One bug caused by this was: https://github.com/prometheus/prometheus/issues/367 It would be good to use a timestamp type that's more closely aligned with what the underlying storage supports. - sizeof(time.Time) is 192, while Prometheus should be ok with a single 64-bit Unix timestamp (possibly even a 32-bit one). Since we store samples in large numbers, this seriously affects memory usage. Furthermore, copying/working with the data will be faster if it's smaller. *MEMORY USAGE RESULTS* Initial memory usage comparisons for a running Prometheus with 1 timeseries and 100,000 samples show roughly a 13% decrease in total (VIRT) memory usage. In my tests, this advantage for some reason decreased a bit the more samples the timeseries had (to 5-7% for millions of samples). This I can't fully explain, but perhaps garbage collection issues were involved. *WHEN TO USE THE NEW TIMESTAMP TYPE* The new clientmodel.Timestamp type should be used whenever time calculations are either directly or indirectly related to sample timestamps. For example: - the timestamp of a sample itself - all kinds of watermarks - anything that may become or is compared to a sample timestamp (like the timestamp passed into Target.Scrape()). When to still use time.Time: - for measuring durations/times not related to sample timestamps, like duration telemetry exporting, timers that indicate how frequently to execute some action, etc. *NOTE ON OPERATOR OPTIMIZATION TESTS* We don't use operator optimization code anymore, but it still lives in the code as dead code. It still has tests, but I couldn't get all of them to pass with the new timestamp format. I commented out the failing cases for now, but we should probably remove the dead code soon. I just didn't want to do that in the same change as this. Change-Id: I821787414b0debe85c9fffaeb57abd453727af0f
2013-10-28 13:35:02 +00:00
func getTestValueStream(startVal clientmodel.SampleValue, endVal clientmodel.SampleValue, stepVal clientmodel.SampleValue, startTime clientmodel.Timestamp) (resultValues metric.Values) {
currentTime := startTime
for currentVal := startVal; currentVal <= endVal; currentVal += stepVal {
sample := metric.SamplePair{
Value: currentVal,
Timestamp: currentTime,
}
resultValues = append(resultValues, sample)
currentTime = currentTime.Add(testSampleInterval)
}
return resultValues
}
func getTestVectorFromTestMatrix(matrix ast.Matrix) ast.Vector {
vector := ast.Vector{}
for _, sampleStream := range matrix {
lastSample := sampleStream.Values[len(sampleStream.Values)-1]
vector = append(vector, &ast.Sample{
Metric: sampleStream.Metric,
Value: lastSample.Value,
Timestamp: lastSample.Timestamp,
})
}
return vector
}
func storeMatrix(storage local.Storage, matrix ast.Matrix) {
pendingSamples := clientmodel.Samples{}
for _, sampleStream := range matrix {
for _, sample := range sampleStream.Values {
pendingSamples = append(pendingSamples, &clientmodel.Sample{
Metric: sampleStream.Metric.Metric,
Value: sample.Value,
Timestamp: sample.Timestamp,
})
}
}
storage.AppendSamples(pendingSamples)
storage.WaitForIndexing()
}
var testMatrix = ast.Matrix{
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "0",
"group": "production",
},
},
Values: getTestValueStream(0, 100, 10, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "1",
"group": "production",
},
},
Values: getTestValueStream(0, 200, 20, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "0",
"group": "canary",
},
},
Values: getTestValueStream(0, 300, 30, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "1",
"group": "canary",
},
},
Values: getTestValueStream(0, 400, 40, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "app-server",
"instance": "0",
"group": "production",
},
},
Values: getTestValueStream(0, 500, 50, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "app-server",
"instance": "1",
"group": "production",
},
},
Values: getTestValueStream(0, 600, 60, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "app-server",
"instance": "0",
"group": "canary",
},
},
Values: getTestValueStream(0, 700, 70, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "app-server",
"instance": "1",
"group": "canary",
},
},
Values: getTestValueStream(0, 800, 80, testStartTime),
},
// Single-letter metric and label names.
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "x",
"y": "testvalue",
},
},
Values: getTestValueStream(0, 100, 10, testStartTime),
},
// Counter reset in the middle of range.
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testcounter_reset_middle",
},
},
Values: append(getTestValueStream(0, 40, 10, testStartTime), getTestValueStream(0, 50, 10, testStartTime.Add(testSampleInterval*5))...),
},
// Counter reset at the end of range.
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testcounter_reset_end",
},
},
Values: append(getTestValueStream(0, 90, 10, testStartTime), getTestValueStream(0, 0, 10, testStartTime.Add(testSampleInterval*10))...),
},
// For label-key grouping regression test.
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "label_grouping_test",
"a": "aa",
"b": "bb",
},
},
Values: getTestValueStream(0, 100, 10, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "label_grouping_test",
"a": "a",
"b": "abb",
},
},
Values: getTestValueStream(0, 200, 20, testStartTime),
},
// Two histogram with 4 buckets each (*_sum and *_count not included,
// only buckets). Lowest bucket for one histogram < 0, for the other >
// 0. They have the same name, just separated by label. Not useful in
// practice, but can happen (if clients change bucketing), and the
// server has to cope with it.
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testhistogram_bucket",
"le": "0.1",
"start": "positive",
},
},
Values: getTestValueStream(0, 50, 5, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testhistogram_bucket",
"le": ".2",
"start": "positive",
},
},
Values: getTestValueStream(0, 70, 7, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testhistogram_bucket",
"le": "1e0",
"start": "positive",
},
},
Values: getTestValueStream(0, 110, 11, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testhistogram_bucket",
"le": "+Inf",
"start": "positive",
},
},
Values: getTestValueStream(0, 120, 12, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testhistogram_bucket",
"le": "-.2",
"start": "negative",
},
},
Values: getTestValueStream(0, 10, 1, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testhistogram_bucket",
"le": "-0.1",
"start": "negative",
},
},
Values: getTestValueStream(0, 20, 2, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testhistogram_bucket",
"le": "0.3",
"start": "negative",
},
},
Values: getTestValueStream(0, 20, 2, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "testhistogram_bucket",
"le": "+Inf",
"start": "negative",
},
},
Values: getTestValueStream(0, 30, 3, testStartTime),
},
// Now a more realistic histogram per job and instance to test aggregation.
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job1",
"instance": "ins1",
"le": "0.1",
},
},
Values: getTestValueStream(0, 10, 1, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job1",
"instance": "ins1",
"le": "0.2",
},
},
Values: getTestValueStream(0, 30, 3, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job1",
"instance": "ins1",
"le": "+Inf",
},
},
Values: getTestValueStream(0, 40, 4, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job1",
"instance": "ins2",
"le": "0.1",
},
},
Values: getTestValueStream(0, 20, 2, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job1",
"instance": "ins2",
"le": "0.2",
},
},
Values: getTestValueStream(0, 50, 5, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job1",
"instance": "ins2",
"le": "+Inf",
},
},
Values: getTestValueStream(0, 60, 6, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job2",
"instance": "ins1",
"le": "0.1",
},
},
Values: getTestValueStream(0, 30, 3, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job2",
"instance": "ins1",
"le": "0.2",
},
},
Values: getTestValueStream(0, 40, 4, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job2",
"instance": "ins1",
"le": "+Inf",
},
},
Values: getTestValueStream(0, 60, 6, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job2",
"instance": "ins2",
"le": "0.1",
},
},
Values: getTestValueStream(0, 40, 4, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job2",
"instance": "ins2",
"le": "0.2",
},
},
Values: getTestValueStream(0, 70, 7, testStartTime),
},
{
Metric: clientmodel.COWMetric{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "request_duration_seconds_bucket",
clientmodel.JobLabel: "job2",
"instance": "ins2",
"le": "+Inf",
},
},
Values: getTestValueStream(0, 90, 9, testStartTime),
},
}
var testVector = getTestVectorFromTestMatrix(testMatrix)