// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package remote
import (
"context"
"errors"
"math"
"strconv"
"sync"
"time"
"github.com/go-kit/log"
"github.com/go-kit/log/level"
"github.com/gogo/protobuf/proto"
"github.com/golang/snappy"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/common/model"
"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/attribute"
semconv "go.opentelemetry.io/otel/semconv/v1.17.0"
"go.uber.org/atomic"
"github.com/prometheus/prometheus/config"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/model/relabel"
"github.com/prometheus/prometheus/prompb"
"github.com/prometheus/prometheus/scrape"
"github.com/prometheus/prometheus/tsdb/chunks"
"github.com/prometheus/prometheus/tsdb/record"
"github.com/prometheus/prometheus/tsdb/wlog"
)
const (
// We track samples in/out and how long pushes take using an Exponentially
// Weighted Moving Average.
ewmaWeight = 0.2
shardUpdateDuration = 10 * time . Second
// Allow 30% too many shards before scaling down.
shardToleranceFraction = 0.3
)
type queueManagerMetrics struct {
reg prometheus . Registerer
samplesTotal prometheus . Counter
exemplarsTotal prometheus . Counter
histogramsTotal prometheus . Counter
metadataTotal prometheus . Counter
failedSamplesTotal prometheus . Counter
failedExemplarsTotal prometheus . Counter
failedHistogramsTotal prometheus . Counter
failedMetadataTotal prometheus . Counter
retriedSamplesTotal prometheus . Counter
retriedExemplarsTotal prometheus . Counter
retriedHistogramsTotal prometheus . Counter
retriedMetadataTotal prometheus . Counter
droppedSamplesTotal prometheus . Counter
droppedExemplarsTotal prometheus . Counter
droppedHistogramsTotal prometheus . Counter
enqueueRetriesTotal prometheus . Counter
sentBatchDuration prometheus . Histogram
highestSentTimestamp * maxTimestamp
pendingSamples prometheus . Gauge
pendingExemplars prometheus . Gauge
pendingHistograms prometheus . Gauge
shardCapacity prometheus . Gauge
numShards prometheus . Gauge
maxNumShards prometheus . Gauge
minNumShards prometheus . Gauge
desiredNumShards prometheus . Gauge
sentBytesTotal prometheus . Counter
metadataBytesTotal prometheus . Counter
maxSamplesPerSend prometheus . Gauge
}
func newQueueManagerMetrics ( r prometheus . Registerer , rn , e string ) * queueManagerMetrics {
m := & queueManagerMetrics {
reg : r ,
}
constLabels := prometheus . Labels {
remoteName : rn ,
endpoint : e ,
}
m . samplesTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "samples_total" ,
Help : "Total number of samples sent to remote storage." ,
ConstLabels : constLabels ,
} )
m . exemplarsTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "exemplars_total" ,
Help : "Total number of exemplars sent to remote storage." ,
ConstLabels : constLabels ,
} )
m . histogramsTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "histograms_total" ,
Help : "Total number of histograms sent to remote storage." ,
ConstLabels : constLabels ,
} )
m . metadataTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "metadata_total" ,
Help : "Total number of metadata entries sent to remote storage." ,
ConstLabels : constLabels ,
} )
m . failedSamplesTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "samples_failed_total" ,
Help : "Total number of samples which failed on send to remote storage, non-recoverable errors." ,
ConstLabels : constLabels ,
} )
m . failedExemplarsTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "exemplars_failed_total" ,
Help : "Total number of exemplars which failed on send to remote storage, non-recoverable errors." ,
ConstLabels : constLabels ,
} )
m . failedHistogramsTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "histograms_failed_total" ,
Help : "Total number of histograms which failed on send to remote storage, non-recoverable errors." ,
ConstLabels : constLabels ,
} )
m . failedMetadataTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "metadata_failed_total" ,
Help : "Total number of metadata entries which failed on send to remote storage, non-recoverable errors." ,
ConstLabels : constLabels ,
} )
m . retriedSamplesTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "samples_retried_total" ,
Help : "Total number of samples which failed on send to remote storage but were retried because the send error was recoverable." ,
ConstLabels : constLabels ,
} )
m . retriedExemplarsTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "exemplars_retried_total" ,
Help : "Total number of exemplars which failed on send to remote storage but were retried because the send error was recoverable." ,
ConstLabels : constLabels ,
} )
m . retriedHistogramsTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "histograms_retried_total" ,
Help : "Total number of histograms which failed on send to remote storage but were retried because the send error was recoverable." ,
ConstLabels : constLabels ,
} )
m . retriedMetadataTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "metadata_retried_total" ,
Help : "Total number of metadata entries which failed on send to remote storage but were retried because the send error was recoverable." ,
ConstLabels : constLabels ,
} )
m . droppedSamplesTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "samples_dropped_total" ,
Help : "Total number of samples which were dropped after being read from the WAL before being sent via remote write, either via relabelling or unintentionally because of an unknown reference ID." ,
ConstLabels : constLabels ,
} )
m . droppedExemplarsTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "exemplars_dropped_total" ,
Help : "Total number of exemplars which were dropped after being read from the WAL before being sent via remote write, either via relabelling or unintentionally because of an unknown reference ID." ,
ConstLabels : constLabels ,
} )
m . droppedHistogramsTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "histograms_dropped_total" ,
Help : "Total number of histograms which were dropped after being read from the WAL before being sent via remote write, either via relabelling or unintentionally because of an unknown reference ID." ,
ConstLabels : constLabels ,
} )
m . enqueueRetriesTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "enqueue_retries_total" ,
Help : "Total number of times enqueue has failed because a shards queue was full." ,
ConstLabels : constLabels ,
} )
m . sentBatchDuration = prometheus . NewHistogram ( prometheus . HistogramOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "sent_batch_duration_seconds" ,
Help : "Duration of send calls to the remote storage." ,
increase the remote write bucket range (#7323)
* increase the remote write bucket range
Increase the range of remote write buckets to capture times above 10s for laggy scenarios
Buckets had been: {.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
Buckets are now: {0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512}
Signed-off-by: Bert Hartmann <berthartm@gmail.com>
* revert back to DefBuckets with addons to be backwards compatible
Signed-off-by: Bert Hartmann <berthartm@gmail.com>
* shuffle the buckets to maintain 2-2.5x increases
Signed-off-by: Bert Hartmann <berthartm@gmail.com>
5 years ago
Buckets : append ( prometheus . DefBuckets , 25 , 60 , 120 , 300 ) ,
ConstLabels : constLabels ,
} )
m . highestSentTimestamp = & maxTimestamp {
Gauge : prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "queue_highest_sent_timestamp_seconds" ,
Help : "Timestamp from a WAL sample, the highest timestamp successfully sent by this queue, in seconds since epoch." ,
ConstLabels : constLabels ,
} ) ,
}
m . pendingSamples = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "samples_pending" ,
Help : "The number of samples pending in the queues shards to be sent to the remote storage." ,
ConstLabels : constLabels ,
} )
m . pendingExemplars = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "exemplars_pending" ,
Help : "The number of exemplars pending in the queues shards to be sent to the remote storage." ,
ConstLabels : constLabels ,
} )
m . pendingHistograms = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "histograms_pending" ,
Help : "The number of histograms pending in the queues shards to be sent to the remote storage." ,
ConstLabels : constLabels ,
} )
m . shardCapacity = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "shard_capacity" ,
Help : "The capacity of each shard of the queue used for parallel sending to the remote storage." ,
ConstLabels : constLabels ,
} )
m . numShards = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "shards" ,
Help : "The number of shards used for parallel sending to the remote storage." ,
ConstLabels : constLabels ,
} )
m . maxNumShards = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "shards_max" ,
Help : "The maximum number of shards that the queue is allowed to run." ,
ConstLabels : constLabels ,
} )
m . minNumShards = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "shards_min" ,
Help : "The minimum number of shards that the queue is allowed to run." ,
ConstLabels : constLabels ,
} )
m . desiredNumShards = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "shards_desired" ,
Help : "The number of shards that the queues shard calculation wants to run based on the rate of samples in vs. samples out." ,
ConstLabels : constLabels ,
} )
m . sentBytesTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "bytes_total" ,
Help : "The total number of bytes of data (not metadata) sent by the queue after compression. Note that when exemplars over remote write is enabled the exemplars included in a remote write request count towards this metric." ,
ConstLabels : constLabels ,
} )
m . metadataBytesTotal = prometheus . NewCounter ( prometheus . CounterOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "metadata_bytes_total" ,
Help : "The total number of bytes of metadata sent by the queue after compression." ,
ConstLabels : constLabels ,
} )
m . maxSamplesPerSend = prometheus . NewGauge ( prometheus . GaugeOpts {
Namespace : namespace ,
Subsystem : subsystem ,
Name : "max_samples_per_send" ,
Help : "The maximum number of samples to be sent, in a single request, to the remote storage. Note that, when sending of exemplars over remote write is enabled, exemplars count towards this limt." ,
ConstLabels : constLabels ,
} )
return m
}
func ( m * queueManagerMetrics ) register ( ) {
if m . reg != nil {
m . reg . MustRegister (
m . samplesTotal ,
m . exemplarsTotal ,
m . histogramsTotal ,
m . metadataTotal ,
m . failedSamplesTotal ,
m . failedExemplarsTotal ,
m . failedHistogramsTotal ,
m . failedMetadataTotal ,
m . retriedSamplesTotal ,
m . retriedExemplarsTotal ,
m . retriedHistogramsTotal ,
m . retriedMetadataTotal ,
m . droppedSamplesTotal ,
m . droppedExemplarsTotal ,
m . droppedHistogramsTotal ,
m . enqueueRetriesTotal ,
m . sentBatchDuration ,
m . highestSentTimestamp ,
m . pendingSamples ,
m . pendingExemplars ,
m . pendingHistograms ,
m . shardCapacity ,
m . numShards ,
m . maxNumShards ,
m . minNumShards ,
m . desiredNumShards ,
m . sentBytesTotal ,
m . metadataBytesTotal ,
m . maxSamplesPerSend ,
)
}
}
func ( m * queueManagerMetrics ) unregister ( ) {
if m . reg != nil {
m . reg . Unregister ( m . samplesTotal )
m . reg . Unregister ( m . exemplarsTotal )
m . reg . Unregister ( m . histogramsTotal )
m . reg . Unregister ( m . metadataTotal )
m . reg . Unregister ( m . failedSamplesTotal )
m . reg . Unregister ( m . failedExemplarsTotal )
m . reg . Unregister ( m . failedHistogramsTotal )
m . reg . Unregister ( m . failedMetadataTotal )
m . reg . Unregister ( m . retriedSamplesTotal )
m . reg . Unregister ( m . retriedExemplarsTotal )
m . reg . Unregister ( m . retriedHistogramsTotal )
m . reg . Unregister ( m . retriedMetadataTotal )
m . reg . Unregister ( m . droppedSamplesTotal )
m . reg . Unregister ( m . droppedExemplarsTotal )
m . reg . Unregister ( m . droppedHistogramsTotal )
m . reg . Unregister ( m . enqueueRetriesTotal )
m . reg . Unregister ( m . sentBatchDuration )
m . reg . Unregister ( m . highestSentTimestamp )
m . reg . Unregister ( m . pendingSamples )
m . reg . Unregister ( m . pendingExemplars )
m . reg . Unregister ( m . pendingHistograms )
m . reg . Unregister ( m . shardCapacity )
m . reg . Unregister ( m . numShards )
m . reg . Unregister ( m . maxNumShards )
m . reg . Unregister ( m . minNumShards )
m . reg . Unregister ( m . desiredNumShards )
m . reg . Unregister ( m . sentBytesTotal )
m . reg . Unregister ( m . metadataBytesTotal )
m . reg . Unregister ( m . maxSamplesPerSend )
}
}
// WriteClient defines an interface for sending a batch of samples to an
// external timeseries database.
type WriteClient interface {
// Store stores the given samples in the remote storage.
Store ( context . Context , [ ] byte ) error
// Name uniquely identifies the remote storage.
Name ( ) string
// Endpoint is the remote read or write endpoint for the storage client.
Endpoint ( ) string
}
// QueueManager manages a queue of samples to be sent to the Storage
// indicated by the provided WriteClient. Implements writeTo interface
// used by WAL Watcher.
type QueueManager struct {
lastSendTimestamp atomic . Int64
logger log . Logger
flushDeadline time . Duration
cfg config . QueueConfig
mcfg config . MetadataConfig
externalLabels [ ] labels . Label
relabelConfigs [ ] * relabel . Config
sendExemplars bool
sendNativeHistograms bool
watcher * wlog . Watcher
metadataWatcher * MetadataWatcher
clientMtx sync . RWMutex
storeClient WriteClient
seriesMtx sync . Mutex // Covers seriesLabels and droppedSeries.
seriesLabels map [ chunks . HeadSeriesRef ] labels . Labels
droppedSeries map [ chunks . HeadSeriesRef ] struct { }
seriesSegmentMtx sync . Mutex // Covers seriesSegmentIndexes - if you also lock seriesMtx, take seriesMtx first.
seriesSegmentIndexes map [ chunks . HeadSeriesRef ] int
shards * shards
numShards int
reshardChan chan int
quit chan struct { }
wg sync . WaitGroup
dataIn , dataDropped , dataOut , dataOutDuration * ewmaRate
metrics * queueManagerMetrics
interner * pool
highestRecvTimestamp * maxTimestamp
}
// NewQueueManager builds a new QueueManager and starts a new
// WAL watcher with queue manager as the WriteTo destination.
// The WAL watcher takes the dir parameter as the base directory
// for where the WAL shall be located. Note that the full path to
// the WAL directory will be constructed as <dir>/wal.
func NewQueueManager (
metrics * queueManagerMetrics ,
watcherMetrics * wlog . WatcherMetrics ,
readerMetrics * wlog . LiveReaderMetrics ,
logger log . Logger ,
dir string ,
samplesIn * ewmaRate ,
cfg config . QueueConfig ,
mCfg config . MetadataConfig ,
externalLabels labels . Labels ,
relabelConfigs [ ] * relabel . Config ,
client WriteClient ,
flushDeadline time . Duration ,
interner * pool ,
highestRecvTimestamp * maxTimestamp ,
sm ReadyScrapeManager ,
enableExemplarRemoteWrite bool ,
enableNativeHistogramRemoteWrite bool ,
) * QueueManager {
if logger == nil {
logger = log . NewNopLogger ( )
}
// Copy externalLabels into a slice, which we need for processExternalLabels.
extLabelsSlice := make ( [ ] labels . Label , 0 , externalLabels . Len ( ) )
externalLabels . Range ( func ( l labels . Label ) {
extLabelsSlice = append ( extLabelsSlice , l )
} )
logger = log . With ( logger , remoteName , client . Name ( ) , endpoint , client . Endpoint ( ) )
t := & QueueManager {
logger : logger ,
flushDeadline : flushDeadline ,
cfg : cfg ,
mcfg : mCfg ,
externalLabels : extLabelsSlice ,
relabelConfigs : relabelConfigs ,
storeClient : client ,
sendExemplars : enableExemplarRemoteWrite ,
sendNativeHistograms : enableNativeHistogramRemoteWrite ,
seriesLabels : make ( map [ chunks . HeadSeriesRef ] labels . Labels ) ,
seriesSegmentIndexes : make ( map [ chunks . HeadSeriesRef ] int ) ,
droppedSeries : make ( map [ chunks . HeadSeriesRef ] struct { } ) ,
numShards : cfg . MinShards ,
reshardChan : make ( chan int ) ,
quit : make ( chan struct { } ) ,
dataIn : samplesIn ,
dataDropped : newEWMARate ( ewmaWeight , shardUpdateDuration ) ,
dataOut : newEWMARate ( ewmaWeight , shardUpdateDuration ) ,
dataOutDuration : newEWMARate ( ewmaWeight , shardUpdateDuration ) ,
metrics : metrics ,
interner : interner ,
highestRecvTimestamp : highestRecvTimestamp ,
}
t . watcher = wlog . NewWatcher ( watcherMetrics , readerMetrics , logger , client . Name ( ) , t , dir , enableExemplarRemoteWrite , enableNativeHistogramRemoteWrite )
if t . mcfg . Send {
t . metadataWatcher = NewMetadataWatcher ( logger , sm , client . Name ( ) , t , t . mcfg . SendInterval , flushDeadline )
}
t . shards = t . newShards ( )
return t
}
// AppendMetadata sends metadata to the remote storage. Metadata is sent in batches, but is not parallelized.
func ( t * QueueManager ) AppendMetadata ( ctx context . Context , metadata [ ] scrape . MetricMetadata ) {
mm := make ( [ ] prompb . MetricMetadata , 0 , len ( metadata ) )
for _ , entry := range metadata {
mm = append ( mm , prompb . MetricMetadata {
MetricFamilyName : entry . Metric ,
Help : entry . Help ,
Type : metricTypeToMetricTypeProto ( entry . Type ) ,
Unit : entry . Unit ,
} )
}
pBuf := proto . NewBuffer ( nil )
numSends := int ( math . Ceil ( float64 ( len ( metadata ) ) / float64 ( t . mcfg . MaxSamplesPerSend ) ) )
for i := 0 ; i < numSends ; i ++ {
last := ( i + 1 ) * t . mcfg . MaxSamplesPerSend
if last > len ( metadata ) {
last = len ( metadata )
}
err := t . sendMetadataWithBackoff ( ctx , mm [ i * t . mcfg . MaxSamplesPerSend : last ] , pBuf )
if err != nil {
t . metrics . failedMetadataTotal . Add ( float64 ( last - ( i * t . mcfg . MaxSamplesPerSend ) ) )
level . Error ( t . logger ) . Log ( "msg" , "non-recoverable error while sending metadata" , "count" , last - ( i * t . mcfg . MaxSamplesPerSend ) , "err" , err )
}
}
}
func ( t * QueueManager ) sendMetadataWithBackoff ( ctx context . Context , metadata [ ] prompb . MetricMetadata , pBuf * proto . Buffer ) error {
// Build the WriteRequest with no samples.
req , _ , err := buildWriteRequest ( nil , metadata , pBuf , nil )
if err != nil {
return err
}
metadataCount := len ( metadata )
attemptStore := func ( try int ) error {
ctx , span := otel . Tracer ( "" ) . Start ( ctx , "Remote Metadata Send Batch" )
defer span . End ( )
span . SetAttributes (
attribute . Int ( "metadata" , metadataCount ) ,
attribute . Int ( "try" , try ) ,
attribute . String ( "remote_name" , t . storeClient . Name ( ) ) ,
attribute . String ( "remote_url" , t . storeClient . Endpoint ( ) ) ,
)
// Attributes defined by OpenTelemetry semantic conventions.
if try > 0 {
span . SetAttributes ( semconv . HTTPResendCount ( try ) )
}
begin := time . Now ( )
err := t . storeClient . Store ( ctx , req )
t . metrics . sentBatchDuration . Observe ( time . Since ( begin ) . Seconds ( ) )
if err != nil {
span . RecordError ( err )
return err
}
return nil
}
retry := func ( ) {
t . metrics . retriedMetadataTotal . Add ( float64 ( len ( metadata ) ) )
}
err = sendWriteRequestWithBackoff ( ctx , t . cfg , t . logger , attemptStore , retry )
if err != nil {
return err
}
t . metrics . metadataTotal . Add ( float64 ( len ( metadata ) ) )
t . metrics . metadataBytesTotal . Add ( float64 ( len ( req ) ) )
return nil
}
// Append queues a sample to be sent to the remote storage. Blocks until all samples are
// enqueued on their shards or a shutdown signal is received.
func ( t * QueueManager ) Append ( samples [ ] record . RefSample ) bool {
outer :
for _ , s := range samples {
t . seriesMtx . Lock ( )
lbls , ok := t . seriesLabels [ s . Ref ]
if ! ok {
t . metrics . droppedSamplesTotal . Inc ( )
t . dataDropped . incr ( 1 )
if _ , ok := t . droppedSeries [ s . Ref ] ; ! ok {
level . Info ( t . logger ) . Log ( "msg" , "Dropped sample for series that was not explicitly dropped via relabelling" , "ref" , s . Ref )
}
t . seriesMtx . Unlock ( )
continue
}
t . seriesMtx . Unlock ( )
// Start with a very small backoff. This should not be t.cfg.MinBackoff
// as it can happen without errors, and we want to pickup work after
// filling a queue/resharding as quickly as possible.
// TODO: Consider using the average duration of a request as the backoff.
backoff := model . Duration ( 5 * time . Millisecond )
for {
select {
case <- t . quit :
return false
default :
}
if t . shards . enqueue ( s . Ref , timeSeries {
seriesLabels : lbls ,
timestamp : s . T ,
value : s . V ,
sType : tSample ,
} ) {
continue outer
}
t . metrics . enqueueRetriesTotal . Inc ( )
time . Sleep ( time . Duration ( backoff ) )
backoff *= 2
// It is reasonable to use t.cfg.MaxBackoff here, as if we have hit
// the full backoff we are likely waiting for external resources.
if backoff > t . cfg . MaxBackoff {
backoff = t . cfg . MaxBackoff
}
}
}
return true
}
func ( t * QueueManager ) AppendExemplars ( exemplars [ ] record . RefExemplar ) bool {
if ! t . sendExemplars {
return true
}
outer :
for _ , e := range exemplars {
t . seriesMtx . Lock ( )
lbls , ok := t . seriesLabels [ e . Ref ]
if ! ok {
t . metrics . droppedExemplarsTotal . Inc ( )
// Track dropped exemplars in the same EWMA for sharding calc.
t . dataDropped . incr ( 1 )
if _ , ok := t . droppedSeries [ e . Ref ] ; ! ok {
level . Info ( t . logger ) . Log ( "msg" , "Dropped exemplar for series that was not explicitly dropped via relabelling" , "ref" , e . Ref )
}
t . seriesMtx . Unlock ( )
continue
}
t . seriesMtx . Unlock ( )
// This will only loop if the queues are being resharded.
backoff := t . cfg . MinBackoff
for {
select {
case <- t . quit :
return false
default :
}
if t . shards . enqueue ( e . Ref , timeSeries {
seriesLabels : lbls ,
timestamp : e . T ,
value : e . V ,
exemplarLabels : e . Labels ,
sType : tExemplar ,
} ) {
continue outer
}
t . metrics . enqueueRetriesTotal . Inc ( )
time . Sleep ( time . Duration ( backoff ) )
backoff *= 2
if backoff > t . cfg . MaxBackoff {
backoff = t . cfg . MaxBackoff
}
}
}
return true
}
func ( t * QueueManager ) AppendHistograms ( histograms [ ] record . RefHistogramSample ) bool {
if ! t . sendNativeHistograms {
return true
}
outer :
for _ , h := range histograms {
t . seriesMtx . Lock ( )
lbls , ok := t . seriesLabels [ h . Ref ]
if ! ok {
t . metrics . droppedHistogramsTotal . Inc ( )
t . dataDropped . incr ( 1 )
if _ , ok := t . droppedSeries [ h . Ref ] ; ! ok {
level . Info ( t . logger ) . Log ( "msg" , "Dropped histogram for series that was not explicitly dropped via relabelling" , "ref" , h . Ref )
}
t . seriesMtx . Unlock ( )
continue
}
t . seriesMtx . Unlock ( )
backoff := model . Duration ( 5 * time . Millisecond )
for {
select {
case <- t . quit :
return false
default :
}
if t . shards . enqueue ( h . Ref , timeSeries {
seriesLabels : lbls ,
timestamp : h . T ,
histogram : h . H ,
sType : tHistogram ,
} ) {
continue outer
}
t . metrics . enqueueRetriesTotal . Inc ( )
time . Sleep ( time . Duration ( backoff ) )
backoff *= 2
if backoff > t . cfg . MaxBackoff {
backoff = t . cfg . MaxBackoff
}
}
}
return true
}
func ( t * QueueManager ) AppendFloatHistograms ( floatHistograms [ ] record . RefFloatHistogramSample ) bool {
if ! t . sendNativeHistograms {
return true
}
outer :
for _ , h := range floatHistograms {
t . seriesMtx . Lock ( )
lbls , ok := t . seriesLabels [ h . Ref ]
if ! ok {
t . metrics . droppedHistogramsTotal . Inc ( )
t . dataDropped . incr ( 1 )
if _ , ok := t . droppedSeries [ h . Ref ] ; ! ok {
level . Info ( t . logger ) . Log ( "msg" , "Dropped histogram for series that was not explicitly dropped via relabelling" , "ref" , h . Ref )
}
t . seriesMtx . Unlock ( )
continue
}
t . seriesMtx . Unlock ( )
backoff := model . Duration ( 5 * time . Millisecond )
for {
select {
case <- t . quit :
return false
default :
}
if t . shards . enqueue ( h . Ref , timeSeries {
seriesLabels : lbls ,
timestamp : h . T ,
floatHistogram : h . FH ,
sType : tFloatHistogram ,
} ) {
continue outer
}
t . metrics . enqueueRetriesTotal . Inc ( )
time . Sleep ( time . Duration ( backoff ) )
backoff *= 2
if backoff > t . cfg . MaxBackoff {
backoff = t . cfg . MaxBackoff
}
}
}
return true
}
// Start the queue manager sending samples to the remote storage.
// Does not block.
func ( t * QueueManager ) Start ( ) {
// Register and initialise some metrics.
t . metrics . register ( )
t . metrics . shardCapacity . Set ( float64 ( t . cfg . Capacity ) )
t . metrics . maxNumShards . Set ( float64 ( t . cfg . MaxShards ) )
t . metrics . minNumShards . Set ( float64 ( t . cfg . MinShards ) )
t . metrics . desiredNumShards . Set ( float64 ( t . cfg . MinShards ) )
t . metrics . maxSamplesPerSend . Set ( float64 ( t . cfg . MaxSamplesPerSend ) )
t . shards . start ( t . numShards )
t . watcher . Start ( )
if t . mcfg . Send {
t . metadataWatcher . Start ( )
}
t . wg . Add ( 2 )
go t . updateShardsLoop ( )
go t . reshardLoop ( )
}
// Stop stops sending samples to the remote storage and waits for pending
// sends to complete.
func ( t * QueueManager ) Stop ( ) {
level . Info ( t . logger ) . Log ( "msg" , "Stopping remote storage..." )
defer level . Info ( t . logger ) . Log ( "msg" , "Remote storage stopped." )
close ( t . quit )
t . wg . Wait ( )
// Wait for all QueueManager routines to end before stopping shards, metadata watcher, and WAL watcher. This
// is to ensure we don't end up executing a reshard and shards.stop() at the same time, which
// causes a closed channel panic.
t . shards . stop ( )
t . watcher . Stop ( )
if t . mcfg . Send {
t . metadataWatcher . Stop ( )
}
// On shutdown, release the strings in the labels from the intern pool.
t . seriesMtx . Lock ( )
for _ , labels := range t . seriesLabels {
t . releaseLabels ( labels )
}
t . seriesMtx . Unlock ( )
t . metrics . unregister ( )
}
// StoreSeries keeps track of which series we know about for lookups when sending samples to remote.
func ( t * QueueManager ) StoreSeries ( series [ ] record . RefSeries , index int ) {
t . seriesMtx . Lock ( )
defer t . seriesMtx . Unlock ( )
t . seriesSegmentMtx . Lock ( )
defer t . seriesSegmentMtx . Unlock ( )
for _ , s := range series {
// Just make sure all the Refs of Series will insert into seriesSegmentIndexes map for tracking.
t . seriesSegmentIndexes [ s . Ref ] = index
ls := processExternalLabels ( s . Labels , t . externalLabels )
lbls , keep := relabel . Process ( ls , t . relabelConfigs ... )
if ! keep || lbls . IsEmpty ( ) {
t . droppedSeries [ s . Ref ] = struct { } { }
continue
}
t . internLabels ( lbls )
// We should not ever be replacing a series labels in the map, but just
// in case we do we need to ensure we do not leak the replaced interned
// strings.
if orig , ok := t . seriesLabels [ s . Ref ] ; ok {
t . releaseLabels ( orig )
}
t . seriesLabels [ s . Ref ] = lbls
}
}
// UpdateSeriesSegment updates the segment number held against the series,
// so we can trim older ones in SeriesReset.
func ( t * QueueManager ) UpdateSeriesSegment ( series [ ] record . RefSeries , index int ) {
t . seriesSegmentMtx . Lock ( )
defer t . seriesSegmentMtx . Unlock ( )
for _ , s := range series {
t . seriesSegmentIndexes [ s . Ref ] = index
}
}
// SeriesReset is used when reading a checkpoint. WAL Watcher should have
// stored series records with the checkpoints index number, so we can now
// delete any ref ID's lower than that # from the two maps.
func ( t * QueueManager ) SeriesReset ( index int ) {
t . seriesMtx . Lock ( )
defer t . seriesMtx . Unlock ( )
t . seriesSegmentMtx . Lock ( )
defer t . seriesSegmentMtx . Unlock ( )
// Check for series that are in segments older than the checkpoint
// that were not also present in the checkpoint.
for k , v := range t . seriesSegmentIndexes {
if v < index {
delete ( t . seriesSegmentIndexes , k )
t . releaseLabels ( t . seriesLabels [ k ] )
delete ( t . seriesLabels , k )
delete ( t . droppedSeries , k )
}
}
}
// SetClient updates the client used by a queue. Used when only client specific
// fields are updated to avoid restarting the queue.
func ( t * QueueManager ) SetClient ( c WriteClient ) {
t . clientMtx . Lock ( )
t . storeClient = c
t . clientMtx . Unlock ( )
}
func ( t * QueueManager ) client ( ) WriteClient {
t . clientMtx . RLock ( )
defer t . clientMtx . RUnlock ( )
return t . storeClient
}
func ( t * QueueManager ) internLabels ( lbls labels . Labels ) {
lbls . InternStrings ( t . interner . intern )
}
func ( t * QueueManager ) releaseLabels ( ls labels . Labels ) {
ls . ReleaseStrings ( t . interner . release )
}
// processExternalLabels merges externalLabels into ls. If ls contains
// a label in externalLabels, the value in ls wins.
func processExternalLabels ( ls labels . Labels , externalLabels [ ] labels . Label ) labels . Labels {
if len ( externalLabels ) == 0 {
return ls
}
b := labels . NewScratchBuilder ( ls . Len ( ) + len ( externalLabels ) )
j := 0
ls . Range ( func ( l labels . Label ) {
for j < len ( externalLabels ) && l . Name > externalLabels [ j ] . Name {
b . Add ( externalLabels [ j ] . Name , externalLabels [ j ] . Value )
j ++
}
if j < len ( externalLabels ) && l . Name == externalLabels [ j ] . Name {
j ++
}
b . Add ( l . Name , l . Value )
} )
for ; j < len ( externalLabels ) ; j ++ {
b . Add ( externalLabels [ j ] . Name , externalLabels [ j ] . Value )
}
return b . Labels ( )
}
func ( t * QueueManager ) updateShardsLoop ( ) {
defer t . wg . Done ( )
ticker := time . NewTicker ( shardUpdateDuration )
defer ticker . Stop ( )
for {
select {
case <- ticker . C :
desiredShards := t . calculateDesiredShards ( )
if ! t . shouldReshard ( desiredShards ) {
continue
}
// Resharding can take some time, and we want this loop
// to stay close to shardUpdateDuration.
select {
case t . reshardChan <- desiredShards :
level . Info ( t . logger ) . Log ( "msg" , "Remote storage resharding" , "from" , t . numShards , "to" , desiredShards )
t . numShards = desiredShards
default :
level . Info ( t . logger ) . Log ( "msg" , "Currently resharding, skipping." )
}
case <- t . quit :
return
}
}
}
// shouldReshard returns whether resharding should occur.
func ( t * QueueManager ) shouldReshard ( desiredShards int ) bool {
if desiredShards == t . numShards {
return false
}
// We shouldn't reshard if Prometheus hasn't been able to send to the
// remote endpoint successfully within some period of time.
minSendTimestamp := time . Now ( ) . Add ( - 2 * time . Duration ( t . cfg . BatchSendDeadline ) ) . Unix ( )
lsts := t . lastSendTimestamp . Load ( )
if lsts < minSendTimestamp {
level . Warn ( t . logger ) . Log ( "msg" , "Skipping resharding, last successful send was beyond threshold" , "lastSendTimestamp" , lsts , "minSendTimestamp" , minSendTimestamp )
return false
}
return true
}
// calculateDesiredShards returns the number of desired shards, which will be
// the current QueueManager.numShards if resharding should not occur for reasons
// outlined in this functions implementation. It is up to the caller to reshard, or not,
// based on the return value.
func ( t * QueueManager ) calculateDesiredShards ( ) int {
t . dataOut . tick ( )
t . dataDropped . tick ( )
t . dataOutDuration . tick ( )
// We use the number of incoming samples as a prediction of how much work we
// will need to do next iteration. We add to this any pending samples
// (received - send) so we can catch up with any backlog. We use the average
// outgoing batch latency to work out how many shards we need.
var (
dataInRate = t . dataIn . rate ( )
dataOutRate = t . dataOut . rate ( )
dataKeptRatio = dataOutRate / ( t . dataDropped . rate ( ) + dataOutRate )
dataOutDuration = t . dataOutDuration . rate ( ) / float64 ( time . Second )
dataPendingRate = dataInRate * dataKeptRatio - dataOutRate
highestSent = t . metrics . highestSentTimestamp . Get ( )
highestRecv = t . highestRecvTimestamp . Get ( )
delay = highestRecv - highestSent
dataPending = delay * dataInRate * dataKeptRatio
)
if dataOutRate <= 0 {
return t . numShards
}
var (
// When behind we will try to catch up on 5% of samples per second.
backlogCatchup = 0.05 * dataPending
// Calculate Time to send one sample, averaged across all sends done this tick.
timePerSample = dataOutDuration / dataOutRate
desiredShards = timePerSample * ( dataInRate * dataKeptRatio + backlogCatchup )
)
t . metrics . desiredNumShards . Set ( desiredShards )
level . Debug ( t . logger ) . Log ( "msg" , "QueueManager.calculateDesiredShards" ,
"dataInRate" , dataInRate ,
"dataOutRate" , dataOutRate ,
"dataKeptRatio" , dataKeptRatio ,
"dataPendingRate" , dataPendingRate ,
"dataPending" , dataPending ,
"dataOutDuration" , dataOutDuration ,
"timePerSample" , timePerSample ,
"desiredShards" , desiredShards ,
"highestSent" , highestSent ,
"highestRecv" , highestRecv ,
)
// Changes in the number of shards must be greater than shardToleranceFraction.
var (
lowerBound = float64 ( t . numShards ) * ( 1. - shardToleranceFraction )
upperBound = float64 ( t . numShards ) * ( 1. + shardToleranceFraction )
)
level . Debug ( t . logger ) . Log ( "msg" , "QueueManager.updateShardsLoop" ,
"lowerBound" , lowerBound , "desiredShards" , desiredShards , "upperBound" , upperBound )
desiredShards = math . Ceil ( desiredShards ) // Round up to be on the safe side.
if lowerBound <= desiredShards && desiredShards <= upperBound {
return t . numShards
}
numShards := int ( desiredShards )
// Do not downshard if we are more than ten seconds back.
if numShards < t . numShards && delay > 10.0 {
level . Debug ( t . logger ) . Log ( "msg" , "Not downsharding due to being too far behind" )
return t . numShards
}
style: Replace `else if` cascades with `switch`
Wiser coders than myself have come to the conclusion that a `switch`
statement is almost always superior to a statement that includes any
`else if`.
The exceptions that I have found in our codebase are just these two:
* The `if else` is followed by an additional statement before the next
condition (separated by a `;`).
* The whole thing is within a `for` loop and `break` statements are
used. In this case, using `switch` would require tagging the `for`
loop, which probably tips the balance.
Why are `switch` statements more readable?
For one, fewer curly braces. But more importantly, the conditions all
have the same alignment, so the whole thing follows the natural flow
of going down a list of conditions. With `else if`, in contrast, all
conditions but the first are "hidden" behind `} else if `, harder to
spot and (for no good reason) presented differently from the first
condition.
I'm sure the aforemention wise coders can list even more reasons.
In any case, I like it so much that I have found myself recommending
it in code reviews. I would like to make it a habit in our code base,
without making it a hard requirement that we would test on the CI. But
for that, there has to be a role model, so this commit eliminates all
`if else` occurrences, unless it is autogenerated code or fits one of
the exceptions above.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
switch {
case numShards > t . cfg . MaxShards :
numShards = t . cfg . MaxShards
style: Replace `else if` cascades with `switch`
Wiser coders than myself have come to the conclusion that a `switch`
statement is almost always superior to a statement that includes any
`else if`.
The exceptions that I have found in our codebase are just these two:
* The `if else` is followed by an additional statement before the next
condition (separated by a `;`).
* The whole thing is within a `for` loop and `break` statements are
used. In this case, using `switch` would require tagging the `for`
loop, which probably tips the balance.
Why are `switch` statements more readable?
For one, fewer curly braces. But more importantly, the conditions all
have the same alignment, so the whole thing follows the natural flow
of going down a list of conditions. With `else if`, in contrast, all
conditions but the first are "hidden" behind `} else if `, harder to
spot and (for no good reason) presented differently from the first
condition.
I'm sure the aforemention wise coders can list even more reasons.
In any case, I like it so much that I have found myself recommending
it in code reviews. I would like to make it a habit in our code base,
without making it a hard requirement that we would test on the CI. But
for that, there has to be a role model, so this commit eliminates all
`if else` occurrences, unless it is autogenerated code or fits one of
the exceptions above.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
case numShards < t . cfg . MinShards :
numShards = t . cfg . MinShards
}
return numShards
}
func ( t * QueueManager ) reshardLoop ( ) {
defer t . wg . Done ( )
for {
select {
case numShards := <- t . reshardChan :
// We start the newShards after we have stopped (the therefore completely
// flushed) the oldShards, to guarantee we only every deliver samples in
// order.
t . shards . stop ( )
t . shards . start ( numShards )
case <- t . quit :
return
}
}
}
func ( t * QueueManager ) newShards ( ) * shards {
s := & shards {
qm : t ,
done : make ( chan struct { } ) ,
}
return s
}
type shards struct {
mtx sync . RWMutex // With the WAL, this is never actually contended.
qm * QueueManager
queues [ ] * queue
// So we can accurately track how many of each are lost during shard shutdowns.
enqueuedSamples atomic . Int64
enqueuedExemplars atomic . Int64
enqueuedHistograms atomic . Int64
// Emulate a wait group with a channel and an atomic int, as you
// cannot select on a wait group.
done chan struct { }
running atomic . Int32
// Soft shutdown context will prevent new enqueues and deadlocks.
softShutdown chan struct { }
// Hard shutdown context is used to terminate outgoing HTTP connections
// after giving them a chance to terminate.
hardShutdown context . CancelFunc
samplesDroppedOnHardShutdown atomic . Uint32
exemplarsDroppedOnHardShutdown atomic . Uint32
histogramsDroppedOnHardShutdown atomic . Uint32
}
// start the shards; must be called before any call to enqueue.
func ( s * shards ) start ( n int ) {
s . mtx . Lock ( )
defer s . mtx . Unlock ( )
s . qm . metrics . pendingSamples . Set ( 0 )
s . qm . metrics . numShards . Set ( float64 ( n ) )
newQueues := make ( [ ] * queue , n )
for i := 0 ; i < n ; i ++ {
newQueues [ i ] = newQueue ( s . qm . cfg . MaxSamplesPerSend , s . qm . cfg . Capacity )
}
s . queues = newQueues
var hardShutdownCtx context . Context
hardShutdownCtx , s . hardShutdown = context . WithCancel ( context . Background ( ) )
s . softShutdown = make ( chan struct { } )
s . running . Store ( int32 ( n ) )
s . done = make ( chan struct { } )
s . enqueuedSamples . Store ( 0 )
s . enqueuedExemplars . Store ( 0 )
s . enqueuedHistograms . Store ( 0 )
s . samplesDroppedOnHardShutdown . Store ( 0 )
s . exemplarsDroppedOnHardShutdown . Store ( 0 )
s . histogramsDroppedOnHardShutdown . Store ( 0 )
for i := 0 ; i < n ; i ++ {
go s . runShard ( hardShutdownCtx , i , newQueues [ i ] )
}
}
// stop the shards; subsequent call to enqueue will return false.
func ( s * shards ) stop ( ) {
// Attempt a clean shutdown, but only wait flushDeadline for all the shards
// to cleanly exit. As we're doing RPCs, enqueue can block indefinitely.
// We must be able so call stop concurrently, hence we can only take the
// RLock here.
s . mtx . RLock ( )
close ( s . softShutdown )
s . mtx . RUnlock ( )
// Enqueue should now be unblocked, so we can take the write lock. This
// also ensures we don't race with writes to the queues, and get a panic:
// send on closed channel.
s . mtx . Lock ( )
defer s . mtx . Unlock ( )
for _ , queue := range s . queues {
go queue . FlushAndShutdown ( s . done )
}
select {
case <- s . done :
return
case <- time . After ( s . qm . flushDeadline ) :
}
// Force an unclean shutdown.
s . hardShutdown ( )
<- s . done
if dropped := s . samplesDroppedOnHardShutdown . Load ( ) ; dropped > 0 {
level . Error ( s . qm . logger ) . Log ( "msg" , "Failed to flush all samples on shutdown" , "count" , dropped )
}
if dropped := s . exemplarsDroppedOnHardShutdown . Load ( ) ; dropped > 0 {
level . Error ( s . qm . logger ) . Log ( "msg" , "Failed to flush all exemplars on shutdown" , "count" , dropped )
}
}
// enqueue data (sample or exemplar). If the shard is full, shutting down, or
// resharding, it will return false; in this case, you should back off and
// retry. A shard is full when its configured capacity has been reached,
// specifically, when s.queues[shard] has filled its batchQueue channel and the
// partial batch has also been filled.
func ( s * shards ) enqueue ( ref chunks . HeadSeriesRef , data timeSeries ) bool {
s . mtx . RLock ( )
defer s . mtx . RUnlock ( )
shard := uint64 ( ref ) % uint64 ( len ( s . queues ) )
select {
case <- s . softShutdown :
return false
default :
appended := s . queues [ shard ] . Append ( data )
if ! appended {
return false
}
switch data . sType {
case tSample :
s . qm . metrics . pendingSamples . Inc ( )
s . enqueuedSamples . Inc ( )
case tExemplar :
s . qm . metrics . pendingExemplars . Inc ( )
s . enqueuedExemplars . Inc ( )
case tHistogram , tFloatHistogram :
s . qm . metrics . pendingHistograms . Inc ( )
s . enqueuedHistograms . Inc ( )
}
return true
}
}
type queue struct {
// batchMtx covers operations appending to or publishing the partial batch.
batchMtx sync . Mutex
batch [ ] timeSeries
batchQueue chan [ ] timeSeries
// Since we know there are a limited number of batches out, using a stack
// is easy and safe so a sync.Pool is not necessary.
// poolMtx covers adding and removing batches from the batchPool.
poolMtx sync . Mutex
batchPool [ ] [ ] timeSeries
}
type timeSeries struct {
seriesLabels labels . Labels
value float64
histogram * histogram . Histogram
floatHistogram * histogram . FloatHistogram
timestamp int64
exemplarLabels labels . Labels
// The type of series: sample, exemplar, or histogram.
sType seriesType
}
type seriesType int
const (
tSample seriesType = iota
tExemplar
tHistogram
tFloatHistogram
)
func newQueue ( batchSize , capacity int ) * queue {
batches := capacity / batchSize
// Always create an unbuffered channel even if capacity is configured to be
// less than max_samples_per_send.
if batches == 0 {
batches = 1
}
return & queue {
batch : make ( [ ] timeSeries , 0 , batchSize ) ,
batchQueue : make ( chan [ ] timeSeries , batches ) ,
// batchPool should have capacity for everything in the channel + 1 for
// the batch being processed.
batchPool : make ( [ ] [ ] timeSeries , 0 , batches + 1 ) ,
}
}
// Append the timeSeries to the buffered batch. Returns false if it
// cannot be added and must be retried.
func ( q * queue ) Append ( datum timeSeries ) bool {
q . batchMtx . Lock ( )
defer q . batchMtx . Unlock ( )
q . batch = append ( q . batch , datum )
if len ( q . batch ) == cap ( q . batch ) {
select {
case q . batchQueue <- q . batch :
q . batch = q . newBatch ( cap ( q . batch ) )
return true
default :
// Remove the sample we just appended. It will get retried.
q . batch = q . batch [ : len ( q . batch ) - 1 ]
return false
}
}
return true
}
func ( q * queue ) Chan ( ) <- chan [ ] timeSeries {
return q . batchQueue
}
// Batch returns the current batch and allocates a new batch.
func ( q * queue ) Batch ( ) [ ] timeSeries {
q . batchMtx . Lock ( )
defer q . batchMtx . Unlock ( )
select {
case batch := <- q . batchQueue :
return batch
default :
batch := q . batch
q . batch = q . newBatch ( cap ( batch ) )
return batch
}
}
// ReturnForReuse adds the batch buffer back to the internal pool.
func ( q * queue ) ReturnForReuse ( batch [ ] timeSeries ) {
q . poolMtx . Lock ( )
defer q . poolMtx . Unlock ( )
if len ( q . batchPool ) < cap ( q . batchPool ) {
q . batchPool = append ( q . batchPool , batch [ : 0 ] )
}
}
// FlushAndShutdown stops the queue and flushes any samples. No appends can be
// made after this is called.
func ( q * queue ) FlushAndShutdown ( done <- chan struct { } ) {
for q . tryEnqueueingBatch ( done ) {
time . Sleep ( time . Second )
}
q . batch = nil
close ( q . batchQueue )
}
// tryEnqueueingBatch tries to send a batch if necessary. If sending needs to
// be retried it will return true.
func ( q * queue ) tryEnqueueingBatch ( done <- chan struct { } ) bool {
q . batchMtx . Lock ( )
defer q . batchMtx . Unlock ( )
if len ( q . batch ) == 0 {
return false
}
select {
case q . batchQueue <- q . batch :
return false
case <- done :
// The shard has been hard shut down, so no more samples can be sent.
// No need to try again as we will drop everything left in the queue.
return false
default :
// The batchQueue is full, so we need to try again later.
return true
}
}
func ( q * queue ) newBatch ( capacity int ) [ ] timeSeries {
q . poolMtx . Lock ( )
defer q . poolMtx . Unlock ( )
batches := len ( q . batchPool )
if batches > 0 {
batch := q . batchPool [ batches - 1 ]
q . batchPool = q . batchPool [ : batches - 1 ]
return batch
}
return make ( [ ] timeSeries , 0 , capacity )
}
func ( s * shards ) runShard ( ctx context . Context , shardID int , queue * queue ) {
defer func ( ) {
if s . running . Dec ( ) == 0 {
close ( s . done )
}
} ( )
shardNum := strconv . Itoa ( shardID )
// Send batches of at most MaxSamplesPerSend samples to the remote storage.
// If we have fewer samples than that, flush them out after a deadline anyways.
var (
max = s . qm . cfg . MaxSamplesPerSend
pBuf = proto . NewBuffer ( nil )
buf [ ] byte
)
if s . qm . sendExemplars {
max += int ( float64 ( max ) * 0.1 )
}
batchQueue := queue . Chan ( )
pendingData := make ( [ ] prompb . TimeSeries , max )
for i := range pendingData {
pendingData [ i ] . Samples = [ ] prompb . Sample { { } }
if s . qm . sendExemplars {
pendingData [ i ] . Exemplars = [ ] prompb . Exemplar { { } }
}
}
timer := time . NewTimer ( time . Duration ( s . qm . cfg . BatchSendDeadline ) )
stop := func ( ) {
if ! timer . Stop ( ) {
select {
case <- timer . C :
default :
}
}
}
defer stop ( )
for {
select {
case <- ctx . Done ( ) :
// In this case we drop all samples in the buffer and the queue.
// Remove them from pending and mark them as failed.
droppedSamples := int ( s . enqueuedSamples . Load ( ) )
droppedExemplars := int ( s . enqueuedExemplars . Load ( ) )
droppedHistograms := int ( s . enqueuedHistograms . Load ( ) )
s . qm . metrics . pendingSamples . Sub ( float64 ( droppedSamples ) )
s . qm . metrics . pendingExemplars . Sub ( float64 ( droppedExemplars ) )
s . qm . metrics . pendingHistograms . Sub ( float64 ( droppedHistograms ) )
s . qm . metrics . failedSamplesTotal . Add ( float64 ( droppedSamples ) )
s . qm . metrics . failedExemplarsTotal . Add ( float64 ( droppedExemplars ) )
s . qm . metrics . failedHistogramsTotal . Add ( float64 ( droppedHistograms ) )
s . samplesDroppedOnHardShutdown . Add ( uint32 ( droppedSamples ) )
s . exemplarsDroppedOnHardShutdown . Add ( uint32 ( droppedExemplars ) )
s . histogramsDroppedOnHardShutdown . Add ( uint32 ( droppedHistograms ) )
return
case batch , ok := <- batchQueue :
if ! ok {
return
}
nPendingSamples , nPendingExemplars , nPendingHistograms := s . populateTimeSeries ( batch , pendingData )
queue . ReturnForReuse ( batch )
n := nPendingSamples + nPendingExemplars + nPendingHistograms
s . sendSamples ( ctx , pendingData [ : n ] , nPendingSamples , nPendingExemplars , nPendingHistograms , pBuf , & buf )
stop ( )
timer . Reset ( time . Duration ( s . qm . cfg . BatchSendDeadline ) )
case <- timer . C :
batch := queue . Batch ( )
if len ( batch ) > 0 {
nPendingSamples , nPendingExemplars , nPendingHistograms := s . populateTimeSeries ( batch , pendingData )
n := nPendingSamples + nPendingExemplars + nPendingHistograms
level . Debug ( s . qm . logger ) . Log ( "msg" , "runShard timer ticked, sending buffered data" , "samples" , nPendingSamples ,
"exemplars" , nPendingExemplars , "shard" , shardNum , "histograms" , nPendingHistograms )
s . sendSamples ( ctx , pendingData [ : n ] , nPendingSamples , nPendingExemplars , nPendingHistograms , pBuf , & buf )
}
queue . ReturnForReuse ( batch )
timer . Reset ( time . Duration ( s . qm . cfg . BatchSendDeadline ) )
}
}
}
func ( s * shards ) populateTimeSeries ( batch [ ] timeSeries , pendingData [ ] prompb . TimeSeries ) ( int , int , int ) {
var nPendingSamples , nPendingExemplars , nPendingHistograms int
for nPending , d := range batch {
pendingData [ nPending ] . Samples = pendingData [ nPending ] . Samples [ : 0 ]
if s . qm . sendExemplars {
pendingData [ nPending ] . Exemplars = pendingData [ nPending ] . Exemplars [ : 0 ]
}
if s . qm . sendNativeHistograms {
pendingData [ nPending ] . Histograms = pendingData [ nPending ] . Histograms [ : 0 ]
}
// Number of pending samples is limited by the fact that sendSamples (via sendSamplesWithBackoff)
// retries endlessly, so once we reach max samples, if we can never send to the endpoint we'll
// stop reading from the queue. This makes it safe to reference pendingSamples by index.
pendingData [ nPending ] . Labels = labelsToLabelsProto ( d . seriesLabels , pendingData [ nPending ] . Labels )
switch d . sType {
case tSample :
pendingData [ nPending ] . Samples = append ( pendingData [ nPending ] . Samples , prompb . Sample {
Value : d . value ,
Timestamp : d . timestamp ,
} )
nPendingSamples ++
case tExemplar :
pendingData [ nPending ] . Exemplars = append ( pendingData [ nPending ] . Exemplars , prompb . Exemplar {
Labels : labelsToLabelsProto ( d . exemplarLabels , nil ) ,
Value : d . value ,
Timestamp : d . timestamp ,
} )
nPendingExemplars ++
case tHistogram :
pendingData [ nPending ] . Histograms = append ( pendingData [ nPending ] . Histograms , HistogramToHistogramProto ( d . timestamp , d . histogram ) )
nPendingHistograms ++
case tFloatHistogram :
pendingData [ nPending ] . Histograms = append ( pendingData [ nPending ] . Histograms , FloatHistogramToHistogramProto ( d . timestamp , d . floatHistogram ) )
nPendingHistograms ++
}
}
return nPendingSamples , nPendingExemplars , nPendingHistograms
}
func ( s * shards ) sendSamples ( ctx context . Context , samples [ ] prompb . TimeSeries , sampleCount , exemplarCount , histogramCount int , pBuf * proto . Buffer , buf * [ ] byte ) {
begin := time . Now ( )
err := s . sendSamplesWithBackoff ( ctx , samples , sampleCount , exemplarCount , histogramCount , pBuf , buf )
if err != nil {
level . Error ( s . qm . logger ) . Log ( "msg" , "non-recoverable error" , "count" , sampleCount , "exemplarCount" , exemplarCount , "err" , err )
s . qm . metrics . failedSamplesTotal . Add ( float64 ( sampleCount ) )
s . qm . metrics . failedExemplarsTotal . Add ( float64 ( exemplarCount ) )
s . qm . metrics . failedHistogramsTotal . Add ( float64 ( histogramCount ) )
}
// These counters are used to calculate the dynamic sharding, and as such
// should be maintained irrespective of success or failure.
s . qm . dataOut . incr ( int64 ( len ( samples ) ) )
s . qm . dataOutDuration . incr ( int64 ( time . Since ( begin ) ) )
s . qm . lastSendTimestamp . Store ( time . Now ( ) . Unix ( ) )
// Pending samples/exemplars/histograms also should be subtracted, as an error means
// they will not be retried.
s . qm . metrics . pendingSamples . Sub ( float64 ( sampleCount ) )
s . qm . metrics . pendingExemplars . Sub ( float64 ( exemplarCount ) )
s . qm . metrics . pendingHistograms . Sub ( float64 ( histogramCount ) )
s . enqueuedSamples . Sub ( int64 ( sampleCount ) )
s . enqueuedExemplars . Sub ( int64 ( exemplarCount ) )
s . enqueuedHistograms . Sub ( int64 ( histogramCount ) )
}
// sendSamples to the remote storage with backoff for recoverable errors.
func ( s * shards ) sendSamplesWithBackoff ( ctx context . Context , samples [ ] prompb . TimeSeries , sampleCount , exemplarCount , histogramCount int , pBuf * proto . Buffer , buf * [ ] byte ) error {
// Build the WriteRequest with no metadata.
req , highest , err := buildWriteRequest ( samples , nil , pBuf , * buf )
if err != nil {
// Failing to build the write request is non-recoverable, since it will
// only error if marshaling the proto to bytes fails.
return err
}
reqSize := len ( req )
* buf = req
// An anonymous function allows us to defer the completion of our per-try spans
// without causing a memory leak, and it has the nice effect of not propagating any
// parameters for sendSamplesWithBackoff/3.
attemptStore := func ( try int ) error {
ctx , span := otel . Tracer ( "" ) . Start ( ctx , "Remote Send Batch" )
defer span . End ( )
span . SetAttributes (
attribute . Int ( "request_size" , reqSize ) ,
attribute . Int ( "samples" , sampleCount ) ,
attribute . Int ( "try" , try ) ,
attribute . String ( "remote_name" , s . qm . storeClient . Name ( ) ) ,
attribute . String ( "remote_url" , s . qm . storeClient . Endpoint ( ) ) ,
)
if exemplarCount > 0 {
span . SetAttributes ( attribute . Int ( "exemplars" , exemplarCount ) )
}
if histogramCount > 0 {
span . SetAttributes ( attribute . Int ( "histograms" , histogramCount ) )
}
begin := time . Now ( )
s . qm . metrics . samplesTotal . Add ( float64 ( sampleCount ) )
s . qm . metrics . exemplarsTotal . Add ( float64 ( exemplarCount ) )
s . qm . metrics . histogramsTotal . Add ( float64 ( histogramCount ) )
err := s . qm . client ( ) . Store ( ctx , * buf )
s . qm . metrics . sentBatchDuration . Observe ( time . Since ( begin ) . Seconds ( ) )
if err != nil {
span . RecordError ( err )
return err
}
return nil
}
onRetry := func ( ) {
s . qm . metrics . retriedSamplesTotal . Add ( float64 ( sampleCount ) )
s . qm . metrics . retriedExemplarsTotal . Add ( float64 ( exemplarCount ) )
s . qm . metrics . retriedHistogramsTotal . Add ( float64 ( histogramCount ) )
}
err = sendWriteRequestWithBackoff ( ctx , s . qm . cfg , s . qm . logger , attemptStore , onRetry )
if errors . Is ( err , context . Canceled ) {
// When there is resharding, we cancel the context for this queue, which means the data is not sent.
// So we exit early to not update the metrics.
return err
}
s . qm . metrics . sentBytesTotal . Add ( float64 ( reqSize ) )
s . qm . metrics . highestSentTimestamp . Set ( float64 ( highest / 1000 ) )
return err
}
func sendWriteRequestWithBackoff ( ctx context . Context , cfg config . QueueConfig , l log . Logger , attempt func ( int ) error , onRetry func ( ) ) error {
backoff := cfg . MinBackoff
sleepDuration := model . Duration ( 0 )
try := 0
for {
select {
case <- ctx . Done ( ) :
return ctx . Err ( )
default :
}
err := attempt ( try )
if err == nil {
return nil
}
// If the error is unrecoverable, we should not retry.
var backoffErr RecoverableError
if ! errors . As ( err , & backoffErr ) {
return err
}
sleepDuration = backoff
style: Replace `else if` cascades with `switch`
Wiser coders than myself have come to the conclusion that a `switch`
statement is almost always superior to a statement that includes any
`else if`.
The exceptions that I have found in our codebase are just these two:
* The `if else` is followed by an additional statement before the next
condition (separated by a `;`).
* The whole thing is within a `for` loop and `break` statements are
used. In this case, using `switch` would require tagging the `for`
loop, which probably tips the balance.
Why are `switch` statements more readable?
For one, fewer curly braces. But more importantly, the conditions all
have the same alignment, so the whole thing follows the natural flow
of going down a list of conditions. With `else if`, in contrast, all
conditions but the first are "hidden" behind `} else if `, harder to
spot and (for no good reason) presented differently from the first
condition.
I'm sure the aforemention wise coders can list even more reasons.
In any case, I like it so much that I have found myself recommending
it in code reviews. I would like to make it a habit in our code base,
without making it a hard requirement that we would test on the CI. But
for that, there has to be a role model, so this commit eliminates all
`if else` occurrences, unless it is autogenerated code or fits one of
the exceptions above.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
switch {
case backoffErr . retryAfter > 0 :
sleepDuration = backoffErr . retryAfter
level . Info ( l ) . Log ( "msg" , "Retrying after duration specified by Retry-After header" , "duration" , sleepDuration )
style: Replace `else if` cascades with `switch`
Wiser coders than myself have come to the conclusion that a `switch`
statement is almost always superior to a statement that includes any
`else if`.
The exceptions that I have found in our codebase are just these two:
* The `if else` is followed by an additional statement before the next
condition (separated by a `;`).
* The whole thing is within a `for` loop and `break` statements are
used. In this case, using `switch` would require tagging the `for`
loop, which probably tips the balance.
Why are `switch` statements more readable?
For one, fewer curly braces. But more importantly, the conditions all
have the same alignment, so the whole thing follows the natural flow
of going down a list of conditions. With `else if`, in contrast, all
conditions but the first are "hidden" behind `} else if `, harder to
spot and (for no good reason) presented differently from the first
condition.
I'm sure the aforemention wise coders can list even more reasons.
In any case, I like it so much that I have found myself recommending
it in code reviews. I would like to make it a habit in our code base,
without making it a hard requirement that we would test on the CI. But
for that, there has to be a role model, so this commit eliminates all
`if else` occurrences, unless it is autogenerated code or fits one of
the exceptions above.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
case backoffErr . retryAfter < 0 :
level . Debug ( l ) . Log ( "msg" , "retry-after cannot be in past, retrying using default backoff mechanism" )
}
select {
case <- ctx . Done ( ) :
case <- time . After ( time . Duration ( sleepDuration ) ) :
}
// If we make it this far, we've encountered a recoverable error and will retry.
onRetry ( )
level . Warn ( l ) . Log ( "msg" , "Failed to send batch, retrying" , "err" , err )
backoff = sleepDuration * 2
if backoff > cfg . MaxBackoff {
backoff = cfg . MaxBackoff
}
try ++
}
}
func buildWriteRequest ( samples [ ] prompb . TimeSeries , metadata [ ] prompb . MetricMetadata , pBuf * proto . Buffer , buf [ ] byte ) ( [ ] byte , int64 , error ) {
var highest int64
for _ , ts := range samples {
// At the moment we only ever append a TimeSeries with a single sample or exemplar in it.
if len ( ts . Samples ) > 0 && ts . Samples [ 0 ] . Timestamp > highest {
highest = ts . Samples [ 0 ] . Timestamp
}
if len ( ts . Exemplars ) > 0 && ts . Exemplars [ 0 ] . Timestamp > highest {
highest = ts . Exemplars [ 0 ] . Timestamp
}
if len ( ts . Histograms ) > 0 && ts . Histograms [ 0 ] . Timestamp > highest {
highest = ts . Histograms [ 0 ] . Timestamp
}
}
req := & prompb . WriteRequest {
Timeseries : samples ,
Metadata : metadata ,
}
if pBuf == nil {
pBuf = proto . NewBuffer ( nil ) // For convenience in tests. Not efficient.
} else {
pBuf . Reset ( )
}
err := pBuf . Marshal ( req )
if err != nil {
return nil , highest , err
}
// snappy uses len() to see if it needs to allocate a new slice. Make the
// buffer as long as possible.
if buf != nil {
buf = buf [ 0 : cap ( buf ) ]
}
compressed := snappy . Encode ( buf , pBuf . Bytes ( ) )
return compressed , highest , nil
}