histograms: Add Compact method to the normal integer Histogram
And use the new method to call to compact Histograms during
parsing. This happens for both `Histogram` and `FloatHistogram`. In
this way, if targets decide to optimize the exposition size by merging
spans with empty buckets in between, we still get a normalized
results. It will also normalize away any valid but weird
representations like empty spans, spans with offset zero, and empty
buckets at the start or end of a span.
The implementation seemed easy at first as it just turns the
`compactBuckets` helper into a generic function (which now got its own
file). However, the integer Histograms have delta buckets instead of
absolute buckets, which had to be treated specially in the generic
`compactBuckets` function. To make sure it works, I have added plenty
of explicit tests for `Histogram` in addition to the `FloatHistogram`
tests.
I have also updated the doc comment for the `Compact` method.
Based on the insights now expressed in the doc comment, compacting
with a maxEmptyBuckets > 0 is rarely useful. Therefore, this commit
also sets the value to 0 in the two cases we were using 3 so far. We
might still want to reconsider, so I don't want to remove the
maxEmptyBuckets parameter right now.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
// Copyright 2022 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package histogram
import (
"errors"
"fmt"
"math"
"strings"
)
const (
ExponentialSchemaMax int32 = 8
ExponentialSchemaMin int32 = - 4
CustomBucketsSchema int32 = - 53
)
var (
ErrHistogramCountNotBigEnough = errors . New ( "histogram's observation count should be at least the number of observations found in the buckets" )
ErrHistogramCountMismatch = errors . New ( "histogram's observation count should equal the number of observations found in the buckets (in absence of NaN)" )
ErrHistogramNegativeBucketCount = errors . New ( "histogram has a bucket whose observation count is negative" )
ErrHistogramSpanNegativeOffset = errors . New ( "histogram has a span whose offset is negative" )
ErrHistogramSpansBucketsMismatch = errors . New ( "histogram spans specify different number of buckets than provided" )
ErrHistogramCustomBucketsMismatch = errors . New ( "histogram custom bounds are too few" )
ErrHistogramCustomBucketsInvalid = errors . New ( "histogram custom bounds must be in strictly increasing order" )
ErrHistogramCustomBucketsInfinite = errors . New ( "histogram custom bounds must be finite" )
ErrHistogramsIncompatibleSchema = errors . New ( "cannot apply this operation on histograms with a mix of exponential and custom bucket schemas" )
ErrHistogramsIncompatibleBounds = errors . New ( "cannot apply this operation on custom buckets histograms with different custom bounds" )
)
func IsCustomBucketsSchema ( s int32 ) bool {
return s == CustomBucketsSchema
}
func IsExponentialSchema ( s int32 ) bool {
return s >= ExponentialSchemaMin && s <= ExponentialSchemaMax
}
// BucketCount is a type constraint for the count in a bucket, which can be
// float64 (for type FloatHistogram) or uint64 (for type Histogram).
type BucketCount interface {
float64 | uint64
}
// InternalBucketCount is used internally by Histogram and FloatHistogram. The
// difference to the BucketCount above is that Histogram internally uses deltas
// between buckets rather than absolute counts (while FloatHistogram uses
// absolute counts directly). Go type parameters don't allow type
// specialization. Therefore, where special treatment of deltas between buckets
// vs. absolute counts is important, this information has to be provided as a
// separate boolean parameter "deltaBuckets".
type InternalBucketCount interface {
float64 | int64
}
// Bucket represents a bucket with lower and upper limit and the absolute count
// of samples in the bucket. It also specifies if each limit is inclusive or
// not. (Mathematically, inclusive limits create a closed interval, and
// non-inclusive limits an open interval.)
//
// To represent cumulative buckets, Lower is set to -Inf, and the Count is then
// cumulative (including the counts of all buckets for smaller values).
type Bucket [ BC BucketCount ] struct {
Lower , Upper float64
LowerInclusive , UpperInclusive bool
Count BC
// Index within schema. To easily compare buckets that share the same
// schema and sign (positive or negative). Irrelevant for the zero bucket.
Index int32
}
// strippedBucket is Bucket without bound values (which are expensive to calculate
// and not used in certain use cases).
type strippedBucket [ BC BucketCount ] struct {
count BC
index int32
}
// String returns a string representation of a Bucket, using the usual
// mathematical notation of '['/']' for inclusive bounds and '('/')' for
// non-inclusive bounds.
func ( b Bucket [ BC ] ) String ( ) string {
var sb strings . Builder
if b . LowerInclusive {
sb . WriteRune ( '[' )
} else {
sb . WriteRune ( '(' )
}
fmt . Fprintf ( & sb , "%g,%g" , b . Lower , b . Upper )
if b . UpperInclusive {
sb . WriteRune ( ']' )
} else {
sb . WriteRune ( ')' )
}
fmt . Fprintf ( & sb , ":%v" , b . Count )
return sb . String ( )
}
// BucketIterator iterates over the buckets of a Histogram, returning decoded
// buckets.
type BucketIterator [ BC BucketCount ] interface {
// Next advances the iterator by one.
Next ( ) bool
// At returns the current bucket.
At ( ) Bucket [ BC ]
}
// baseBucketIterator provides a struct that is shared by most BucketIterator
// implementations, together with an implementation of the At method. This
// iterator can be embedded in full implementations of BucketIterator to save on
// code replication.
type baseBucketIterator [ BC BucketCount , IBC InternalBucketCount ] struct {
schema int32
spans [ ] Span
buckets [ ] IBC
positive bool // Whether this is for positive buckets.
spansIdx int // Current span within spans slice.
idxInSpan uint32 // Index in the current span. 0 <= idxInSpan < span.Length.
bucketsIdx int // Current bucket within buckets slice.
currCount IBC // Count in the current bucket.
currIdx int32 // The actual bucket index.
customValues [ ] float64 // Bounds (usually upper) for histograms with custom buckets.
}
func ( b * baseBucketIterator [ BC , IBC ] ) At ( ) Bucket [ BC ] {
return b . at ( b . schema )
}
// at is an internal version of the exported At to enable using a different schema.
func ( b * baseBucketIterator [ BC , IBC ] ) at ( schema int32 ) Bucket [ BC ] {
bucket := Bucket [ BC ] {
Count : BC ( b . currCount ) ,
Index : b . currIdx ,
}
if b . positive {
bucket . Upper = getBound ( b . currIdx , schema , b . customValues )
bucket . Lower = getBound ( b . currIdx - 1 , schema , b . customValues )
} else {
bucket . Lower = - getBound ( b . currIdx , schema , b . customValues )
bucket . Upper = - getBound ( b . currIdx - 1 , schema , b . customValues )
}
if IsCustomBucketsSchema ( schema ) {
bucket . LowerInclusive = b . currIdx == 0
bucket . UpperInclusive = true
} else {
bucket . LowerInclusive = bucket . Lower < 0
bucket . UpperInclusive = bucket . Upper > 0
}
return bucket
}
// strippedAt returns current strippedBucket (which lacks bucket bounds but is cheaper to compute).
func ( b * baseBucketIterator [ BC , IBC ] ) strippedAt ( ) strippedBucket [ BC ] {
return strippedBucket [ BC ] {
count : BC ( b . currCount ) ,
index : b . currIdx ,
}
}
histograms: Add Compact method to the normal integer Histogram
And use the new method to call to compact Histograms during
parsing. This happens for both `Histogram` and `FloatHistogram`. In
this way, if targets decide to optimize the exposition size by merging
spans with empty buckets in between, we still get a normalized
results. It will also normalize away any valid but weird
representations like empty spans, spans with offset zero, and empty
buckets at the start or end of a span.
The implementation seemed easy at first as it just turns the
`compactBuckets` helper into a generic function (which now got its own
file). However, the integer Histograms have delta buckets instead of
absolute buckets, which had to be treated specially in the generic
`compactBuckets` function. To make sure it works, I have added plenty
of explicit tests for `Histogram` in addition to the `FloatHistogram`
tests.
I have also updated the doc comment for the `Compact` method.
Based on the insights now expressed in the doc comment, compacting
with a maxEmptyBuckets > 0 is rarely useful. Therefore, this commit
also sets the value to 0 in the two cases we were using 3 so far. We
might still want to reconsider, so I don't want to remove the
maxEmptyBuckets parameter right now.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
// compactBuckets is a generic function used by both Histogram.Compact and
// FloatHistogram.Compact. Set deltaBuckets to true if the provided buckets are
// deltas. Set it to false if the buckets contain absolute counts.
func compactBuckets [ IBC InternalBucketCount ] ( buckets [ ] IBC , spans [ ] Span , maxEmptyBuckets int , deltaBuckets bool ) ( [ ] IBC , [ ] Span ) {
histograms: Add Compact method to the normal integer Histogram
And use the new method to call to compact Histograms during
parsing. This happens for both `Histogram` and `FloatHistogram`. In
this way, if targets decide to optimize the exposition size by merging
spans with empty buckets in between, we still get a normalized
results. It will also normalize away any valid but weird
representations like empty spans, spans with offset zero, and empty
buckets at the start or end of a span.
The implementation seemed easy at first as it just turns the
`compactBuckets` helper into a generic function (which now got its own
file). However, the integer Histograms have delta buckets instead of
absolute buckets, which had to be treated specially in the generic
`compactBuckets` function. To make sure it works, I have added plenty
of explicit tests for `Histogram` in addition to the `FloatHistogram`
tests.
I have also updated the doc comment for the `Compact` method.
Based on the insights now expressed in the doc comment, compacting
with a maxEmptyBuckets > 0 is rarely useful. Therefore, this commit
also sets the value to 0 in the two cases we were using 3 so far. We
might still want to reconsider, so I don't want to remove the
maxEmptyBuckets parameter right now.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
// Fast path: If there are no empty buckets AND no offset in any span is
// <= maxEmptyBuckets AND no span has length 0, there is nothing to do and we can return
// immediately. We check that first because it's cheap and presumably
// common.
nothingToDo := true
var currentBucketAbsolute IBC
histograms: Add Compact method to the normal integer Histogram
And use the new method to call to compact Histograms during
parsing. This happens for both `Histogram` and `FloatHistogram`. In
this way, if targets decide to optimize the exposition size by merging
spans with empty buckets in between, we still get a normalized
results. It will also normalize away any valid but weird
representations like empty spans, spans with offset zero, and empty
buckets at the start or end of a span.
The implementation seemed easy at first as it just turns the
`compactBuckets` helper into a generic function (which now got its own
file). However, the integer Histograms have delta buckets instead of
absolute buckets, which had to be treated specially in the generic
`compactBuckets` function. To make sure it works, I have added plenty
of explicit tests for `Histogram` in addition to the `FloatHistogram`
tests.
I have also updated the doc comment for the `Compact` method.
Based on the insights now expressed in the doc comment, compacting
with a maxEmptyBuckets > 0 is rarely useful. Therefore, this commit
also sets the value to 0 in the two cases we were using 3 so far. We
might still want to reconsider, so I don't want to remove the
maxEmptyBuckets parameter right now.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
for _ , bucket := range buckets {
if deltaBuckets {
currentBucketAbsolute += bucket
} else {
currentBucketAbsolute = bucket
}
if currentBucketAbsolute == 0 {
nothingToDo = false
break
}
}
if nothingToDo {
for _ , span := range spans {
if int ( span . Offset ) <= maxEmptyBuckets || span . Length == 0 {
nothingToDo = false
break
}
}
if nothingToDo {
return buckets , spans
}
}
var iBucket , iSpan int
var posInSpan uint32
currentBucketAbsolute = 0
// Helper function.
emptyBucketsHere := func ( ) int {
i := 0
abs := currentBucketAbsolute
for uint32 ( i ) + posInSpan < spans [ iSpan ] . Length && abs == 0 {
i ++
if i + iBucket >= len ( buckets ) {
break
}
abs = buckets [ i + iBucket ]
}
return i
}
// Merge spans with zero-offset to avoid special cases later.
if len ( spans ) > 1 {
for i , span := range spans [ 1 : ] {
if span . Offset == 0 {
spans [ iSpan ] . Length += span . Length
continue
}
iSpan ++
if i + 1 != iSpan {
spans [ iSpan ] = span
}
}
spans = spans [ : iSpan + 1 ]
iSpan = 0
}
// Merge spans with zero-length to avoid special cases later.
for i , span := range spans {
if span . Length == 0 {
if i + 1 < len ( spans ) {
spans [ i + 1 ] . Offset += span . Offset
}
continue
}
if i != iSpan {
spans [ iSpan ] = span
}
iSpan ++
}
spans = spans [ : iSpan ]
iSpan = 0
// Cut out empty buckets from start and end of spans, no matter
// what. Also cut out empty buckets from the middle of a span but only
// if there are more than maxEmptyBuckets consecutive empty buckets.
for iBucket < len ( buckets ) {
if deltaBuckets {
currentBucketAbsolute += buckets [ iBucket ]
} else {
currentBucketAbsolute = buckets [ iBucket ]
}
if nEmpty := emptyBucketsHere ( ) ; nEmpty > 0 {
if posInSpan > 0 &&
nEmpty < int ( spans [ iSpan ] . Length - posInSpan ) &&
nEmpty <= maxEmptyBuckets {
// The empty buckets are in the middle of a
// span, and there are few enough to not bother.
// Just fast-forward.
iBucket += nEmpty
if deltaBuckets {
currentBucketAbsolute = 0
}
posInSpan += uint32 ( nEmpty )
continue
}
// In all other cases, we cut out the empty buckets.
if deltaBuckets && iBucket + nEmpty < len ( buckets ) {
currentBucketAbsolute = - buckets [ iBucket ]
buckets [ iBucket + nEmpty ] += buckets [ iBucket ]
}
buckets = append ( buckets [ : iBucket ] , buckets [ iBucket + nEmpty : ] ... )
if posInSpan == 0 {
// Start of span.
if nEmpty == int ( spans [ iSpan ] . Length ) {
// The whole span is empty.
offset := spans [ iSpan ] . Offset
spans = append ( spans [ : iSpan ] , spans [ iSpan + 1 : ] ... )
if len ( spans ) > iSpan {
spans [ iSpan ] . Offset += offset + int32 ( nEmpty )
}
continue
}
spans [ iSpan ] . Length -= uint32 ( nEmpty )
spans [ iSpan ] . Offset += int32 ( nEmpty )
continue
}
// It's in the middle or in the end of the span.
// Split the current span.
newSpan := Span {
Offset : int32 ( nEmpty ) ,
Length : spans [ iSpan ] . Length - posInSpan - uint32 ( nEmpty ) ,
}
spans [ iSpan ] . Length = posInSpan
// In any case, we have to split to the next span.
iSpan ++
posInSpan = 0
if newSpan . Length == 0 {
// The span is empty, so we were already at the end of a span.
// We don't have to insert the new span, just adjust the next
// span's offset, if there is one.
if iSpan < len ( spans ) {
spans [ iSpan ] . Offset += int32 ( nEmpty )
}
continue
}
// Insert the new span.
spans = append ( spans , Span { } )
if iSpan + 1 < len ( spans ) {
copy ( spans [ iSpan + 1 : ] , spans [ iSpan : ] )
}
spans [ iSpan ] = newSpan
continue
}
iBucket ++
posInSpan ++
if posInSpan >= spans [ iSpan ] . Length {
posInSpan = 0
iSpan ++
}
}
if maxEmptyBuckets == 0 || len ( buckets ) == 0 {
return buckets , spans
}
// Finally, check if any offsets between spans are small enough to merge
// the spans.
iBucket = int ( spans [ 0 ] . Length )
if deltaBuckets {
currentBucketAbsolute = 0
for _ , bucket := range buckets [ : iBucket ] {
currentBucketAbsolute += bucket
}
}
iSpan = 1
for iSpan < len ( spans ) {
if int ( spans [ iSpan ] . Offset ) > maxEmptyBuckets {
l := int ( spans [ iSpan ] . Length )
if deltaBuckets {
for _ , bucket := range buckets [ iBucket : iBucket + l ] {
currentBucketAbsolute += bucket
}
}
iBucket += l
iSpan ++
continue
}
// Merge span with previous one and insert empty buckets.
offset := int ( spans [ iSpan ] . Offset )
spans [ iSpan - 1 ] . Length += uint32 ( offset ) + spans [ iSpan ] . Length
spans = append ( spans [ : iSpan ] , spans [ iSpan + 1 : ] ... )
newBuckets := make ( [ ] IBC , len ( buckets ) + offset )
histograms: Add Compact method to the normal integer Histogram
And use the new method to call to compact Histograms during
parsing. This happens for both `Histogram` and `FloatHistogram`. In
this way, if targets decide to optimize the exposition size by merging
spans with empty buckets in between, we still get a normalized
results. It will also normalize away any valid but weird
representations like empty spans, spans with offset zero, and empty
buckets at the start or end of a span.
The implementation seemed easy at first as it just turns the
`compactBuckets` helper into a generic function (which now got its own
file). However, the integer Histograms have delta buckets instead of
absolute buckets, which had to be treated specially in the generic
`compactBuckets` function. To make sure it works, I have added plenty
of explicit tests for `Histogram` in addition to the `FloatHistogram`
tests.
I have also updated the doc comment for the `Compact` method.
Based on the insights now expressed in the doc comment, compacting
with a maxEmptyBuckets > 0 is rarely useful. Therefore, this commit
also sets the value to 0 in the two cases we were using 3 so far. We
might still want to reconsider, so I don't want to remove the
maxEmptyBuckets parameter right now.
Signed-off-by: beorn7 <beorn@grafana.com>
2 years ago
copy ( newBuckets , buckets [ : iBucket ] )
copy ( newBuckets [ iBucket + offset : ] , buckets [ iBucket : ] )
if deltaBuckets {
newBuckets [ iBucket ] = - currentBucketAbsolute
newBuckets [ iBucket + offset ] += currentBucketAbsolute
}
iBucket += offset
buckets = newBuckets
currentBucketAbsolute = buckets [ iBucket ]
// Note that with many merges, it would be more efficient to
// first record all the chunks of empty buckets to insert and
// then do it in one go through all the buckets.
}
return buckets , spans
}
func checkHistogramSpans ( spans [ ] Span , numBuckets int ) error {
var spanBuckets int
for n , span := range spans {
if n > 0 && span . Offset < 0 {
return fmt . Errorf ( "span number %d with offset %d: %w" , n + 1 , span . Offset , ErrHistogramSpanNegativeOffset )
}
spanBuckets += int ( span . Length )
}
if spanBuckets != numBuckets {
return fmt . Errorf ( "spans need %d buckets, have %d buckets: %w" , spanBuckets , numBuckets , ErrHistogramSpansBucketsMismatch )
}
return nil
}
func checkHistogramBuckets [ BC BucketCount , IBC InternalBucketCount ] ( buckets [ ] IBC , count * BC , deltas bool ) error {
if len ( buckets ) == 0 {
return nil
}
var last IBC
for i := 0 ; i < len ( buckets ) ; i ++ {
var c IBC
if deltas {
c = last + buckets [ i ]
} else {
c = buckets [ i ]
}
if c < 0 {
return fmt . Errorf ( "bucket number %d has observation count of %v: %w" , i + 1 , c , ErrHistogramNegativeBucketCount )
}
last = c
* count += BC ( c )
}
return nil
}
func checkHistogramCustomBounds ( bounds [ ] float64 , spans [ ] Span , numBuckets int ) error {
prev := math . Inf ( - 1 )
for _ , curr := range bounds {
if curr <= prev {
return fmt . Errorf ( "previous bound is %f and current is %f: %w" , prev , curr , ErrHistogramCustomBucketsInvalid )
}
prev = curr
}
if prev == math . Inf ( 1 ) {
return fmt . Errorf ( "last +Inf bound must not be explicitly defined: %w" , ErrHistogramCustomBucketsInfinite )
}
var spanBuckets int
var totalSpanLength int
for n , span := range spans {
if span . Offset < 0 {
return fmt . Errorf ( "span number %d with offset %d: %w" , n + 1 , span . Offset , ErrHistogramSpanNegativeOffset )
}
spanBuckets += int ( span . Length )
totalSpanLength += int ( span . Length ) + int ( span . Offset )
}
if spanBuckets != numBuckets {
return fmt . Errorf ( "spans need %d buckets, have %d buckets: %w" , spanBuckets , numBuckets , ErrHistogramSpansBucketsMismatch )
}
if ( len ( bounds ) + 1 ) < totalSpanLength {
return fmt . Errorf ( "only %d custom bounds defined which is insufficient to cover total span length of %d: %w" , len ( bounds ) , totalSpanLength , ErrHistogramCustomBucketsMismatch )
}
return nil
}
func getBound ( idx , schema int32 , customValues [ ] float64 ) float64 {
if IsCustomBucketsSchema ( schema ) {
length := int32 ( len ( customValues ) )
switch {
case idx > length || idx < - 1 :
panic ( fmt . Errorf ( "index %d out of bounds for custom bounds of length %d" , idx , length ) )
case idx == length :
return math . Inf ( 1 )
case idx == - 1 :
return math . Inf ( - 1 )
default :
return customValues [ idx ]
}
}
return getBoundExponential ( idx , schema )
}
func getBoundExponential ( idx , schema int32 ) float64 {
// Here a bit of context about the behavior for the last bucket counting
// regular numbers (called simply "last bucket" below) and the bucket
// counting observations of ±Inf (called "inf bucket" below, with an idx
// one higher than that of the "last bucket"):
//
// If we apply the usual formula to the last bucket, its upper bound
// would be calculated as +Inf. The reason is that the max possible
// regular float64 number (math.MaxFloat64) doesn't coincide with one of
// the calculated bucket boundaries. So the calculated boundary has to
// be larger than math.MaxFloat64, and the only float64 larger than
// math.MaxFloat64 is +Inf. However, we want to count actual
// observations of ±Inf in the inf bucket. Therefore, we have to treat
// the upper bound of the last bucket specially and set it to
// math.MaxFloat64. (The upper bound of the inf bucket, with its idx
// being one higher than that of the last bucket, naturally comes out as
// +Inf by the usual formula. So that's fine.)
//
// math.MaxFloat64 has a frac of 0.9999999999999999 and an exp of
// 1024. If there were a float64 number following math.MaxFloat64, it
// would have a frac of 1.0 and an exp of 1024, or equivalently a frac
// of 0.5 and an exp of 1025. However, since frac must be smaller than
// 1, and exp must be smaller than 1025, either representation overflows
// a float64. (Which, in turn, is the reason that math.MaxFloat64 is the
// largest possible float64. Q.E.D.) However, the formula for
// calculating the upper bound from the idx and schema of the last
// bucket results in precisely that. It is either frac=1.0 & exp=1024
// (for schema < 0) or frac=0.5 & exp=1025 (for schema >=0). (This is,
// by the way, a power of two where the exponent itself is a power of
// two, 2¹⁰ in fact, which coincides with a bucket boundary in all
// schemas.) So these are the special cases we have to catch below.
if schema < 0 {
exp := int ( idx ) << - schema
if exp == 1024 {
// This is the last bucket before the overflow bucket
// (for ±Inf observations). Return math.MaxFloat64 as
// explained above.
return math . MaxFloat64
}
return math . Ldexp ( 1 , exp )
}
fracIdx := idx & ( ( 1 << schema ) - 1 )
frac := exponentialBounds [ schema ] [ fracIdx ]
exp := ( int ( idx ) >> schema ) + 1
if frac == 0.5 && exp == 1025 {
// This is the last bucket before the overflow bucket (for ±Inf
// observations). Return math.MaxFloat64 as explained above.
return math . MaxFloat64
}
return math . Ldexp ( frac , exp )
}
// exponentialBounds is a precalculated table of bucket bounds in the interval
// [0.5,1) in schema 0 to 8.
var exponentialBounds = [ ] [ ] float64 {
// Schema "0":
{ 0.5 } ,
// Schema 1:
{ 0.5 , 0.7071067811865475 } ,
// Schema 2:
{ 0.5 , 0.5946035575013605 , 0.7071067811865475 , 0.8408964152537144 } ,
// Schema 3:
{
0.5 , 0.5452538663326288 , 0.5946035575013605 , 0.6484197773255048 ,
0.7071067811865475 , 0.7711054127039704 , 0.8408964152537144 , 0.9170040432046711 ,
} ,
// Schema 4:
{
0.5 , 0.5221368912137069 , 0.5452538663326288 , 0.5693943173783458 ,
0.5946035575013605 , 0.620928906036742 , 0.6484197773255048 , 0.6771277734684463 ,
0.7071067811865475 , 0.7384130729697496 , 0.7711054127039704 , 0.805245165974627 ,
0.8408964152537144 , 0.8781260801866495 , 0.9170040432046711 , 0.9576032806985735 ,
} ,
// Schema 5:
{
0.5 , 0.5109485743270583 , 0.5221368912137069 , 0.5335702003384117 ,
0.5452538663326288 , 0.5571933712979462 , 0.5693943173783458 , 0.5818624293887887 ,
0.5946035575013605 , 0.6076236799902344 , 0.620928906036742 , 0.6345254785958666 ,
0.6484197773255048 , 0.6626183215798706 , 0.6771277734684463 , 0.6919549409819159 ,
0.7071067811865475 , 0.7225904034885232 , 0.7384130729697496 , 0.7545822137967112 ,
0.7711054127039704 , 0.7879904225539431 , 0.805245165974627 , 0.8228777390769823 ,
0.8408964152537144 , 0.8593096490612387 , 0.8781260801866495 , 0.8973545375015533 ,
0.9170040432046711 , 0.9370838170551498 , 0.9576032806985735 , 0.9785720620876999 ,
} ,
// Schema 6:
{
0.5 , 0.5054446430258502 , 0.5109485743270583 , 0.5165124395106142 ,
0.5221368912137069 , 0.5278225891802786 , 0.5335702003384117 , 0.5393803988785598 ,
0.5452538663326288 , 0.5511912916539204 , 0.5571933712979462 , 0.5632608093041209 ,
0.5693943173783458 , 0.5755946149764913 , 0.5818624293887887 , 0.5881984958251406 ,
0.5946035575013605 , 0.6010783657263515 , 0.6076236799902344 , 0.6142402680534349 ,
0.620928906036742 , 0.6276903785123455 , 0.6345254785958666 , 0.6414350080393891 ,
0.6484197773255048 , 0.6554806057623822 , 0.6626183215798706 , 0.6698337620266515 ,
0.6771277734684463 , 0.6845012114872953 , 0.6919549409819159 , 0.6994898362691555 ,
0.7071067811865475 , 0.7148066691959849 , 0.7225904034885232 , 0.7304588970903234 ,
0.7384130729697496 , 0.7464538641456323 , 0.7545822137967112 , 0.762799075372269 ,
0.7711054127039704 , 0.7795022001189185 , 0.7879904225539431 , 0.7965710756711334 ,
0.805245165974627 , 0.8140137109286738 , 0.8228777390769823 , 0.8318382901633681 ,
0.8408964152537144 , 0.8500531768592616 , 0.8593096490612387 , 0.8686669176368529 ,
0.8781260801866495 , 0.8876882462632604 , 0.8973545375015533 , 0.9071260877501991 ,
0.9170040432046711 , 0.9269895625416926 , 0.9370838170551498 , 0.9472879907934827 ,
0.9576032806985735 , 0.9680308967461471 , 0.9785720620876999 , 0.9892280131939752 ,
} ,
// Schema 7:
{
0.5 , 0.5027149505564014 , 0.5054446430258502 , 0.5081891574554764 ,
0.5109485743270583 , 0.5137229745593818 , 0.5165124395106142 , 0.5193170509806894 ,
0.5221368912137069 , 0.5249720429003435 , 0.5278225891802786 , 0.5306886136446309 ,
0.5335702003384117 , 0.5364674337629877 , 0.5393803988785598 , 0.5423091811066545 ,
0.5452538663326288 , 0.5482145409081883 , 0.5511912916539204 , 0.5541842058618393 ,
0.5571933712979462 , 0.5602188762048033 , 0.5632608093041209 , 0.5663192597993595 ,
0.5693943173783458 , 0.572486072215902 , 0.5755946149764913 , 0.5787200368168754 ,
0.5818624293887887 , 0.585021884841625 , 0.5881984958251406 , 0.5913923554921704 ,
0.5946035575013605 , 0.5978321960199137 , 0.6010783657263515 , 0.6043421618132907 ,
0.6076236799902344 , 0.6109230164863786 , 0.6142402680534349 , 0.6175755319684665 ,
0.620928906036742 , 0.6243004885946023 , 0.6276903785123455 , 0.6310986751971253 ,
0.6345254785958666 , 0.637970889198196 , 0.6414350080393891 , 0.6449179367033329 ,
0.6484197773255048 , 0.6519406325959679 , 0.6554806057623822 , 0.659039800633032 ,
0.6626183215798706 , 0.6662162735415805 , 0.6698337620266515 , 0.6734708931164728 ,
0.6771277734684463 , 0.6808045103191123 , 0.6845012114872953 , 0.688217985377265 ,
0.6919549409819159 , 0.6957121878859629 , 0.6994898362691555 , 0.7032879969095076 ,
0.7071067811865475 , 0.7109463010845827 , 0.7148066691959849 , 0.718687998724491 ,
0.7225904034885232 , 0.7265139979245261 , 0.7304588970903234 , 0.7344252166684908 ,
0.7384130729697496 , 0.7424225829363761 , 0.7464538641456323 , 0.7505070348132126 ,
0.7545822137967112 , 0.7586795205991071 , 0.762799075372269 , 0.7669409989204777 ,
0.7711054127039704 , 0.7752924388424999 , 0.7795022001189185 , 0.7837348199827764 ,
0.7879904225539431 , 0.7922691326262467 , 0.7965710756711334 , 0.8008963778413465 ,
0.805245165974627 , 0.8096175675974316 , 0.8140137109286738 , 0.8184337248834821 ,
0.8228777390769823 , 0.8273458838280969 , 0.8318382901633681 , 0.8363550898207981 ,
0.8408964152537144 , 0.8454623996346523 , 0.8500531768592616 , 0.8546688815502312 ,
0.8593096490612387 , 0.8639756154809185 , 0.8686669176368529 , 0.8733836930995842 ,
0.8781260801866495 , 0.8828942179666361 , 0.8876882462632604 , 0.8925083056594671 ,
0.8973545375015533 , 0.9022270839033115 , 0.9071260877501991 , 0.9120516927035263 ,
0.9170040432046711 , 0.9219832844793128 , 0.9269895625416926 , 0.9320230241988943 ,
0.9370838170551498 , 0.9421720895161669 , 0.9472879907934827 , 0.9524316709088368 ,
0.9576032806985735 , 0.9628029718180622 , 0.9680308967461471 , 0.9732872087896164 ,
0.9785720620876999 , 0.9838856116165875 , 0.9892280131939752 , 0.9945994234836328 ,
} ,
// Schema 8:
{
0.5 , 0.5013556375251013 , 0.5027149505564014 , 0.5040779490592088 ,
0.5054446430258502 , 0.5068150424757447 , 0.5081891574554764 , 0.509566998038869 ,
0.5109485743270583 , 0.5123338964485679 , 0.5137229745593818 , 0.5151158188430205 ,
0.5165124395106142 , 0.5179128468009786 , 0.5193170509806894 , 0.520725062344158 ,
0.5221368912137069 , 0.5235525479396449 , 0.5249720429003435 , 0.526395386502313 ,
0.5278225891802786 , 0.5292536613972564 , 0.5306886136446309 , 0.5321274564422321 ,
0.5335702003384117 , 0.5350168559101208 , 0.5364674337629877 , 0.5379219445313954 ,
0.5393803988785598 , 0.5408428074966075 , 0.5423091811066545 , 0.5437795304588847 ,
0.5452538663326288 , 0.5467321995364429 , 0.5482145409081883 , 0.549700901315111 ,
0.5511912916539204 , 0.5526857228508706 , 0.5541842058618393 , 0.5556867516724088 ,
0.5571933712979462 , 0.5587040757836845 , 0.5602188762048033 , 0.5617377836665098 ,
0.5632608093041209 , 0.564787964283144 , 0.5663192597993595 , 0.5678547070789026 ,
0.5693943173783458 , 0.5709381019847808 , 0.572486072215902 , 0.5740382394200894 ,
0.5755946149764913 , 0.5771552102951081 , 0.5787200368168754 , 0.5802891060137493 ,
0.5818624293887887 , 0.5834400184762408 , 0.585021884841625 , 0.5866080400818185 ,
0.5881984958251406 , 0.5897932637314379 , 0.5913923554921704 , 0.5929957828304968 ,
0.5946035575013605 , 0.5962156912915756 , 0.5978321960199137 , 0.5994530835371903 ,
0.6010783657263515 , 0.6027080545025619 , 0.6043421618132907 , 0.6059806996384005 ,
0.6076236799902344 , 0.6092711149137041 , 0.6109230164863786 , 0.6125793968185725 ,
0.6142402680534349 , 0.6159056423670379 , 0.6175755319684665 , 0.6192499490999082 ,
0.620928906036742 , 0.622612415087629 , 0.6243004885946023 , 0.6259931389331581 ,
0.6276903785123455 , 0.6293922197748583 , 0.6310986751971253 , 0.6328097572894031 ,
0.6345254785958666 , 0.6362458516947014 , 0.637970889198196 , 0.6397006037528346 ,
0.6414350080393891 , 0.6431741147730128 , 0.6449179367033329 , 0.6466664866145447 ,
0.6484197773255048 , 0.6501778216898253 , 0.6519406325959679 , 0.6537082229673385 ,
0.6554806057623822 , 0.6572577939746774 , 0.659039800633032 , 0.6608266388015788 ,
0.6626183215798706 , 0.6644148621029772 , 0.6662162735415805 , 0.6680225691020727 ,
0.6698337620266515 , 0.6716498655934177 , 0.6734708931164728 , 0.6752968579460171 ,
0.6771277734684463 , 0.6789636531064505 , 0.6808045103191123 , 0.6826503586020058 ,
0.6845012114872953 , 0.6863570825438342 , 0.688217985377265 , 0.690083933630119 ,
0.6919549409819159 , 0.6938310211492645 , 0.6957121878859629 , 0.6975984549830999 ,
0.6994898362691555 , 0.7013863456101023 , 0.7032879969095076 , 0.7051948041086352 ,
0.7071067811865475 , 0.7090239421602076 , 0.7109463010845827 , 0.7128738720527471 ,
0.7148066691959849 , 0.7167447066838943 , 0.718687998724491 , 0.7206365595643126 ,
0.7225904034885232 , 0.7245495448210174 , 0.7265139979245261 , 0.7284837772007218 ,
0.7304588970903234 , 0.7324393720732029 , 0.7344252166684908 , 0.7364164454346837 ,
0.7384130729697496 , 0.7404151139112358 , 0.7424225829363761 , 0.7444354947621984 ,
0.7464538641456323 , 0.7484777058836176 , 0.7505070348132126 , 0.7525418658117031 ,
0.7545822137967112 , 0.7566280937263048 , 0.7586795205991071 , 0.7607365094544071 ,
0.762799075372269 , 0.7648672334736434 , 0.7669409989204777 , 0.7690203869158282 ,
0.7711054127039704 , 0.7731960915705107 , 0.7752924388424999 , 0.7773944698885442 ,
0.7795022001189185 , 0.7816156449856788 , 0.7837348199827764 , 0.7858597406461707 ,
0.7879904225539431 , 0.7901268813264122 , 0.7922691326262467 , 0.7944171921585818 ,
0.7965710756711334 , 0.7987307989543135 , 0.8008963778413465 , 0.8030678282083853 ,
0.805245165974627 , 0.8074284071024302 , 0.8096175675974316 , 0.8118126635086642 ,
0.8140137109286738 , 0.8162207259936375 , 0.8184337248834821 , 0.820652723822003 ,
0.8228777390769823 , 0.8251087869603088 , 0.8273458838280969 , 0.8295890460808079 ,
0.8318382901633681 , 0.8340936325652911 , 0.8363550898207981 , 0.8386226785089391 ,
0.8408964152537144 , 0.8431763167241966 , 0.8454623996346523 , 0.8477546807446661 ,
0.8500531768592616 , 0.8523579048290255 , 0.8546688815502312 , 0.8569861239649629 ,
0.8593096490612387 , 0.8616394738731368 , 0.8639756154809185 , 0.8663180910111553 ,
0.8686669176368529 , 0.871022112577578 , 0.8733836930995842 , 0.8757516765159389 ,
0.8781260801866495 , 0.8805069215187917 , 0.8828942179666361 , 0.8852879870317771 ,
0.8876882462632604 , 0.890095013257712 , 0.8925083056594671 , 0.8949281411607002 ,
0.8973545375015533 , 0.8997875124702672 , 0.9022270839033115 , 0.9046732696855155 ,
0.9071260877501991 , 0.909585556079304 , 0.9120516927035263 , 0.9145245157024483 ,
0.9170040432046711 , 0.9194902933879467 , 0.9219832844793128 , 0.9244830347552253 ,
0.9269895625416926 , 0.92950288621441 , 0.9320230241988943 , 0.9345499949706191 ,
0.9370838170551498 , 0.93962450902828 , 0.9421720895161669 , 0.9447265771954693 ,
0.9472879907934827 , 0.9498563490882775 , 0.9524316709088368 , 0.9550139751351947 ,
0.9576032806985735 , 0.9601996065815236 , 0.9628029718180622 , 0.9654133954938133 ,
0.9680308967461471 , 0.9706554947643201 , 0.9732872087896164 , 0.9759260581154889 ,
0.9785720620876999 , 0.9812252401044634 , 0.9838856116165875 , 0.9865531961276168 ,
0.9892280131939752 , 0.9919100824251095 , 0.9945994234836328 , 0.9972960560854698 ,
} ,
}
// reduceResolution reduces the input spans, buckets in origin schema to the spans, buckets in target schema.
// The target schema must be smaller than the original schema.
// Set deltaBuckets to true if the provided buckets are
// deltas. Set it to false if the buckets contain absolute counts.
// Set inplace to true to reuse input slices and avoid allocations (otherwise
// new slices will be allocated for result).
func reduceResolution [ IBC InternalBucketCount ] (
originSpans [ ] Span ,
originBuckets [ ] IBC ,
originSchema ,
targetSchema int32 ,
deltaBuckets bool ,
inplace bool ,
) ( [ ] Span , [ ] IBC ) {
var (
targetSpans [ ] Span // The spans in the target schema.
targetBuckets [ ] IBC // The bucket counts in the target schema.
bucketIdx int32 // The index of bucket in the origin schema.
bucketCountIdx int // The position of a bucket in origin bucket count slice `originBuckets`.
targetBucketIdx int32 // The index of bucket in the target schema.
lastBucketCount IBC // The last visited bucket's count in the origin schema.
lastTargetBucketIdx int32 // The index of the last added target bucket.
lastTargetBucketCount IBC
)
if inplace {
// Slice reuse is safe because when reducing the resolution,
// target slices don't grow faster than origin slices are being read.
targetSpans = originSpans [ : 0 ]
targetBuckets = originBuckets [ : 0 ]
}
for _ , span := range originSpans {
// Determine the index of the first bucket in this span.
bucketIdx += span . Offset
for j := 0 ; j < int ( span . Length ) ; j ++ {
// Determine the index of the bucket in the target schema from the index in the original schema.
targetBucketIdx = targetIdx ( bucketIdx , originSchema , targetSchema )
switch {
case len ( targetSpans ) == 0 :
// This is the first span in the targetSpans.
span := Span {
Offset : targetBucketIdx ,
Length : 1 ,
}
targetSpans = append ( targetSpans , span )
targetBuckets = append ( targetBuckets , originBuckets [ bucketCountIdx ] )
lastTargetBucketIdx = targetBucketIdx
lastBucketCount = originBuckets [ bucketCountIdx ]
lastTargetBucketCount = originBuckets [ bucketCountIdx ]
case lastTargetBucketIdx == targetBucketIdx :
// The current bucket has to be merged into the same target bucket as the previous bucket.
if deltaBuckets {
lastBucketCount += originBuckets [ bucketCountIdx ]
targetBuckets [ len ( targetBuckets ) - 1 ] += lastBucketCount
lastTargetBucketCount += lastBucketCount
} else {
targetBuckets [ len ( targetBuckets ) - 1 ] += originBuckets [ bucketCountIdx ]
}
case ( lastTargetBucketIdx + 1 ) == targetBucketIdx :
// The current bucket has to go into a new target bucket,
// and that bucket is next to the previous target bucket,
// so we add it to the current target span.
targetSpans [ len ( targetSpans ) - 1 ] . Length ++
lastTargetBucketIdx ++
if deltaBuckets {
lastBucketCount += originBuckets [ bucketCountIdx ]
targetBuckets = append ( targetBuckets , lastBucketCount - lastTargetBucketCount )
lastTargetBucketCount = lastBucketCount
} else {
targetBuckets = append ( targetBuckets , originBuckets [ bucketCountIdx ] )
}
case ( lastTargetBucketIdx + 1 ) < targetBucketIdx :
// The current bucket has to go into a new target bucket,
// and that bucket is separated by a gap from the previous target bucket,
// so we need to add a new target span.
span := Span {
Offset : targetBucketIdx - lastTargetBucketIdx - 1 ,
Length : 1 ,
}
targetSpans = append ( targetSpans , span )
lastTargetBucketIdx = targetBucketIdx
if deltaBuckets {
lastBucketCount += originBuckets [ bucketCountIdx ]
targetBuckets = append ( targetBuckets , lastBucketCount - lastTargetBucketCount )
lastTargetBucketCount = lastBucketCount
} else {
targetBuckets = append ( targetBuckets , originBuckets [ bucketCountIdx ] )
}
}
bucketIdx ++
bucketCountIdx ++
}
}
return targetSpans , targetBuckets
}
func clearIfNotNil [ T any ] ( items [ ] T ) [ ] T {
if items == nil {
return nil
}
return items [ : 0 ]
}