You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prometheus/model/textparse/protobufparse_test.go

2289 lines
56 KiB

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package textparse
import (
"bytes"
"encoding/binary"
"errors"
"io"
"testing"
"github.com/gogo/protobuf/proto"
"github.com/prometheus/common/model"
"github.com/stretchr/testify/require"
"github.com/prometheus/prometheus/model/exemplar"
Style cleanup of all the changes in sparsehistogram so far A lot of this code was hacked together, literally during a hackathon. This commit intends not to change the code substantially, but just make the code obey the usual style practices. A (possibly incomplete) list of areas: * Generally address linter warnings. * The `pgk` directory is deprecated as per dev-summit. No new packages should be added to it. I moved the new `pkg/histogram` package to `model` anticipating what's proposed in #9478. * Make the naming of the Sparse Histogram more consistent. Including abbreviations, there were just too many names for it: SparseHistogram, Histogram, Histo, hist, his, shs, h. The idea is to call it "Histogram" in general. Only add "Sparse" if it is needed to avoid confusion with conventional Histograms (which is rare because the TSDB really has no notion of conventional Histograms). Use abbreviations only in local scope, and then really abbreviate (not just removing three out of seven letters like in "Histo"). This is in the spirit of https://github.com/golang/go/wiki/CodeReviewComments#variable-names * Several other minor name changes. * A lot of formatting of doc comments. For one, following https://github.com/golang/go/wiki/CodeReviewComments#comment-sentences , but also layout question, anticipating how things will look like when rendered by `godoc` (even where `godoc` doesn't render them right now because they are for unexported types or not a doc comment at all but just a normal code comment - consistency is queen!). * Re-enabled `TestQueryLog` and `TestEndopints` (they pass now, leaving them disabled was presumably an oversight). * Bucket iterator for histogram.Histogram is now created with a method. * HistogramChunk.iterator now allows iterator recycling. (I think @dieterbe only commented it out because he was confused by the question in the comment.) * HistogramAppender.Append panics now because we decided to treat staleness marker differently. Signed-off-by: beorn7 <beorn@grafana.com>
3 years ago
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/util/testutil"
dto "github.com/prometheus/prometheus/prompb/io/prometheus/client"
)
func createTestProtoBuf(t *testing.T) *bytes.Buffer {
testMetricFamilies := []string{
`name: "go_build_info"
help: "Build information about the main Go module."
type: GAUGE
metric: <
label: <
name: "checksum"
value: ""
>
label: <
name: "path"
value: "github.com/prometheus/client_golang"
>
label: <
name: "version"
value: "(devel)"
>
gauge: <
value: 1
>
>
`,
`name: "go_memstats_alloc_bytes_total"
help: "Total number of bytes allocated, even if freed."
type: COUNTER
unit: "bytes"
metric: <
counter: <
value: 1.546544e+06
exemplar: <
label: <
name: "dummyID"
value: "42"
>
value: 12
timestamp: <
seconds: 1625851151
nanos: 233181499
>
>
>
>
`,
`name: "something_untyped"
help: "Just to test the untyped type."
type: UNTYPED
metric: <
untyped: <
value: 42
>
timestamp_ms: 1234567
>
`,
`name: "test_histogram"
help: "Test histogram with many buckets removed to keep it manageable in size."
type: HISTOGRAM
metric: <
histogram: <
sample_count: 175
sample_sum: 0.0008280461746287094
bucket: <
cumulative_count: 2
upper_bound: -0.0004899999999999998
>
bucket: <
cumulative_count: 4
upper_bound: -0.0003899999999999998
exemplar: <
label: <
name: "dummyID"
value: "59727"
>
value: -0.00039
timestamp: <
seconds: 1625851155
nanos: 146848499
>
>
>
bucket: <
cumulative_count: 16
upper_bound: -0.0002899999999999998
exemplar: <
label: <
name: "dummyID"
value: "5617"
>
value: -0.00029
>
>
schema: 3
zero_threshold: 2.938735877055719e-39
zero_count: 2
negative_span: <
offset: -162
length: 1
>
negative_span: <
offset: 23
length: 4
>
negative_delta: 1
negative_delta: 3
negative_delta: -2
negative_delta: -1
negative_delta: 1
positive_span: <
offset: -161
length: 1
>
positive_span: <
offset: 8
length: 3
>
positive_delta: 1
positive_delta: 2
positive_delta: -1
positive_delta: -1
>
timestamp_ms: 1234568
>
`,
`name: "test_gauge_histogram"
help: "Like test_histogram but as gauge histogram."
type: GAUGE_HISTOGRAM
metric: <
histogram: <
sample_count: 175
sample_sum: 0.0008280461746287094
bucket: <
cumulative_count: 2
upper_bound: -0.0004899999999999998
>
bucket: <
cumulative_count: 4
upper_bound: -0.0003899999999999998
exemplar: <
label: <
name: "dummyID"
value: "59727"
>
value: -0.00039
timestamp: <
seconds: 1625851155
nanos: 146848499
>
>
>
bucket: <
cumulative_count: 16
upper_bound: -0.0002899999999999998
exemplar: <
label: <
name: "dummyID"
value: "5617"
>
value: -0.00029
>
>
schema: 3
zero_threshold: 2.938735877055719e-39
zero_count: 2
negative_span: <
offset: -162
length: 1
>
negative_span: <
offset: 23
length: 4
>
negative_delta: 1
negative_delta: 3
negative_delta: -2
negative_delta: -1
negative_delta: 1
positive_span: <
offset: -161
length: 1
>
positive_span: <
offset: 8
length: 3
>
positive_delta: 1
positive_delta: 2
positive_delta: -1
positive_delta: -1
>
timestamp_ms: 1234568
>
`,
`name: "test_float_histogram"
help: "Test float histogram with many buckets removed to keep it manageable in size."
type: HISTOGRAM
metric: <
histogram: <
sample_count_float: 175.0
sample_sum: 0.0008280461746287094
bucket: <
cumulative_count_float: 2.0
upper_bound: -0.0004899999999999998
>
bucket: <
cumulative_count_float: 4.0
upper_bound: -0.0003899999999999998
exemplar: <
label: <
name: "dummyID"
value: "59727"
>
value: -0.00039
timestamp: <
seconds: 1625851155
nanos: 146848499
>
>
>
bucket: <
cumulative_count_float: 16
upper_bound: -0.0002899999999999998
exemplar: <
label: <
name: "dummyID"
value: "5617"
>
value: -0.00029
>
>
schema: 3
zero_threshold: 2.938735877055719e-39
zero_count_float: 2.0
negative_span: <
offset: -162
length: 1
>
negative_span: <
offset: 23
length: 4
>
negative_count: 1.0
negative_count: 3.0
negative_count: -2.0
negative_count: -1.0
negative_count: 1.0
positive_span: <
offset: -161
length: 1
>
positive_span: <
offset: 8
length: 3
>
positive_count: 1.0
positive_count: 2.0
positive_count: -1.0
positive_count: -1.0
>
timestamp_ms: 1234568
>
`,
`name: "test_gauge_float_histogram"
help: "Like test_float_histogram but as gauge histogram."
type: GAUGE_HISTOGRAM
metric: <
histogram: <
sample_count_float: 175.0
sample_sum: 0.0008280461746287094
bucket: <
cumulative_count_float: 2.0
upper_bound: -0.0004899999999999998
>
bucket: <
cumulative_count_float: 4.0
upper_bound: -0.0003899999999999998
exemplar: <
label: <
name: "dummyID"
value: "59727"
>
value: -0.00039
timestamp: <
seconds: 1625851155
nanos: 146848499
>
>
>
bucket: <
cumulative_count_float: 16
upper_bound: -0.0002899999999999998
exemplar: <
label: <
name: "dummyID"
value: "5617"
>
value: -0.00029
>
>
schema: 3
zero_threshold: 2.938735877055719e-39
zero_count_float: 2.0
negative_span: <
offset: -162
length: 1
>
negative_span: <
offset: 23
length: 4
>
negative_count: 1.0
negative_count: 3.0
negative_count: -2.0
negative_count: -1.0
negative_count: 1.0
positive_span: <
offset: -161
length: 1
>
positive_span: <
offset: 8
length: 3
>
positive_count: 1.0
positive_count: 2.0
positive_count: -1.0
positive_count: -1.0
>
timestamp_ms: 1234568
>
`,
`name: "test_histogram2"
help: "Similar histogram as before but now without sparse buckets."
type: HISTOGRAM
metric: <
histogram: <
sample_count: 175
sample_sum: 0.000828
bucket: <
cumulative_count: 2
upper_bound: -0.00048
>
bucket: <
cumulative_count: 4
upper_bound: -0.00038
exemplar: <
label: <
name: "dummyID"
value: "59727"
>
value: -0.00038
timestamp: <
seconds: 1625851153
nanos: 146848499
>
>
>
bucket: <
cumulative_count: 16
upper_bound: 1
exemplar: <
label: <
name: "dummyID"
value: "5617"
>
value: -0.000295
>
>
schema: 0
zero_threshold: 0
>
>
`,
`name: "test_histogram_family"
help: "Test histogram metric family with two very simple histograms."
type: HISTOGRAM
metric: <
label: <
name: "foo"
value: "bar"
>
histogram: <
sample_count: 5
sample_sum: 12.1
bucket: <
cumulative_count: 2
upper_bound: 1.1
>
bucket: <
cumulative_count: 3
upper_bound: 2.2
>
schema: 3
positive_span: <
offset: 8
length: 2
>
positive_delta: 2
positive_delta: 1
>
>
metric: <
label: <
name: "foo"
value: "baz"
>
histogram: <
sample_count: 6
sample_sum: 13.1
bucket: <
cumulative_count: 1
upper_bound: 1.1
>
bucket: <
cumulative_count: 5
upper_bound: 2.2
>
schema: 3
positive_span: <
offset: 8
length: 2
>
positive_delta: 1
positive_delta: 4
>
>
`,
`name: "test_float_histogram_with_zerothreshold_zero"
help: "Test float histogram with a zero threshold of zero."
type: HISTOGRAM
metric: <
histogram: <
sample_count_float: 5.0
sample_sum: 12.1
schema: 3
positive_span: <
offset: 8
length: 2
>
positive_count: 2.0
positive_count: 3.0
>
>
`,
`name: "rpc_durations_seconds"
help: "RPC latency distributions."
type: SUMMARY
metric: <
label: <
name: "service"
value: "exponential"
>
summary: <
sample_count: 262
sample_sum: 0.00025551262820703587
quantile: <
quantile: 0.5
value: 6.442786329648548e-07
>
quantile: <
quantile: 0.9
value: 1.9435742936658396e-06
>
quantile: <
quantile: 0.99
value: 4.0471608667037015e-06
>
>
>
`,
`name: "without_quantiles"
help: "A summary without quantiles."
type: SUMMARY
metric: <
summary: <
sample_count: 42
sample_sum: 1.234
>
>
`,
`name: "empty_histogram"
help: "A histogram without observations and with a zero threshold of zero but with a no-op span to identify it as a native histogram."
type: HISTOGRAM
metric: <
histogram: <
positive_span: <
offset: 0
length: 0
>
>
>
`,
`name: "test_counter_with_createdtimestamp"
help: "A counter with a created timestamp."
type: COUNTER
metric: <
counter: <
value: 42
created_timestamp: <
seconds: 1
nanos: 1
>
>
>
`,
`name: "test_summary_with_createdtimestamp"
help: "A summary with a created timestamp."
type: SUMMARY
metric: <
summary: <
sample_count: 42
sample_sum: 1.234
created_timestamp: <
seconds: 1
nanos: 1
>
>
>
`,
`name: "test_histogram_with_createdtimestamp"
help: "A histogram with a created timestamp."
type: HISTOGRAM
metric: <
histogram: <
created_timestamp: <
seconds: 1
nanos: 1
>
positive_span: <
offset: 0
length: 0
>
>
>
`,
`name: "test_gaugehistogram_with_createdtimestamp"
help: "A gauge histogram with a created timestamp."
type: GAUGE_HISTOGRAM
metric: <
histogram: <
created_timestamp: <
seconds: 1
nanos: 1
>
positive_span: <
offset: 0
length: 0
>
>
>
`,
`name: "test_histogram_with_native_histogram_exemplars"
help: "A histogram with native histogram exemplars."
type: HISTOGRAM
metric: <
histogram: <
sample_count: 175
sample_sum: 0.0008280461746287094
bucket: <
cumulative_count: 2
upper_bound: -0.0004899999999999998
>
bucket: <
cumulative_count: 4
upper_bound: -0.0003899999999999998
exemplar: <
label: <
name: "dummyID"
value: "59727"
>
value: -0.00039
timestamp: <
seconds: 1625851155
nanos: 146848499
>
>
>
bucket: <
cumulative_count: 16
upper_bound: -0.0002899999999999998
exemplar: <
label: <
name: "dummyID"
value: "5617"
>
value: -0.00029
>
>
schema: 3
zero_threshold: 2.938735877055719e-39
zero_count: 2
negative_span: <
offset: -162
length: 1
>
negative_span: <
offset: 23
length: 4
>
negative_delta: 1
negative_delta: 3
negative_delta: -2
negative_delta: -1
negative_delta: 1
positive_span: <
offset: -161
length: 1
>
positive_span: <
offset: 8
length: 3
>
positive_delta: 1
positive_delta: 2
positive_delta: -1
positive_delta: -1
exemplars: <
label: <
name: "dummyID"
value: "59780"
>
value: -0.00039
timestamp: <
seconds: 1625851155
nanos: 146848499
>
>
exemplars: <
label: <
name: "dummyID"
value: "5617"
>
value: -0.00029
>
exemplars: <
label: <
name: "dummyID"
value: "59772"
>
value: -0.00052
timestamp: <
seconds: 1625851160
nanos: 156848499
>
>
>
timestamp_ms: 1234568
>
`,
}
varintBuf := make([]byte, binary.MaxVarintLen32)
buf := &bytes.Buffer{}
for _, tmf := range testMetricFamilies {
pb := &dto.MetricFamily{}
// From text to proto message.
require.NoError(t, proto.UnmarshalText(tmf, pb))
// From proto message to binary protobuf.
protoBuf, err := proto.Marshal(pb)
require.NoError(t, err)
// Write first length, then binary protobuf.
varintLength := binary.PutUvarint(varintBuf, uint64(len(protoBuf)))
buf.Write(varintBuf[:varintLength])
buf.Write(protoBuf)
}
return buf
}
func TestProtobufParse(t *testing.T) {
type parseResult struct {
lset labels.Labels
m string
t int64
v float64
typ model.MetricType
help string
unit string
comment string
shs *histogram.Histogram
fhs *histogram.FloatHistogram
e []exemplar.Exemplar
ct int64
}
inputBuf := createTestProtoBuf(t)
scenarios := []struct {
name string
parser Parser
expected []parseResult
}{
{
name: "ignore classic buckets of native histograms",
parser: NewProtobufParser(inputBuf.Bytes(), false, labels.NewSymbolTable()),
expected: []parseResult{
{
m: "go_build_info",
help: "Build information about the main Go module.",
},
{
m: "go_build_info",
typ: model.MetricTypeGauge,
},
{
m: "go_build_info\xFFchecksum\xFF\xFFpath\xFFgithub.com/prometheus/client_golang\xFFversion\xFF(devel)",
v: 1,
lset: labels.FromStrings(
"__name__", "go_build_info",
"checksum", "",
"path", "github.com/prometheus/client_golang",
"version", "(devel)",
),
},
{
m: "go_memstats_alloc_bytes_total",
help: "Total number of bytes allocated, even if freed.",
unit: "bytes",
},
{
m: "go_memstats_alloc_bytes_total",
typ: model.MetricTypeCounter,
},
{
m: "go_memstats_alloc_bytes_total",
v: 1.546544e+06,
lset: labels.FromStrings(
"__name__", "go_memstats_alloc_bytes_total",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "42"), Value: 12, HasTs: true, Ts: 1625851151233},
},
},
{
m: "something_untyped",
help: "Just to test the untyped type.",
},
{
m: "something_untyped",
typ: model.MetricTypeUnknown,
},
{
m: "something_untyped",
t: 1234567,
v: 42,
lset: labels.FromStrings(
"__name__", "something_untyped",
),
},
{
m: "test_histogram",
help: "Test histogram with many buckets removed to keep it manageable in size.",
},
{
m: "test_histogram",
typ: model.MetricTypeHistogram,
},
{
m: "test_histogram",
t: 1234568,
shs: &histogram.Histogram{
Count: 175,
ZeroCount: 2,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []int64{1, 2, -1, -1},
NegativeBuckets: []int64{1, 3, -2, -1, 1},
},
lset: labels.FromStrings(
"__name__", "test_histogram",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{
m: "test_gauge_histogram",
help: "Like test_histogram but as gauge histogram.",
},
{
m: "test_gauge_histogram",
typ: model.MetricTypeGaugeHistogram,
},
{
m: "test_gauge_histogram",
t: 1234568,
shs: &histogram.Histogram{
CounterResetHint: histogram.GaugeType,
Count: 175,
ZeroCount: 2,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []int64{1, 2, -1, -1},
NegativeBuckets: []int64{1, 3, -2, -1, 1},
},
lset: labels.FromStrings(
"__name__", "test_gauge_histogram",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{
m: "test_float_histogram",
help: "Test float histogram with many buckets removed to keep it manageable in size.",
},
{
m: "test_float_histogram",
typ: model.MetricTypeHistogram,
},
{
m: "test_float_histogram",
t: 1234568,
fhs: &histogram.FloatHistogram{
Count: 175.0,
ZeroCount: 2.0,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []float64{1.0, 2.0, -1.0, -1.0},
NegativeBuckets: []float64{1.0, 3.0, -2.0, -1.0, 1.0},
},
lset: labels.FromStrings(
"__name__", "test_float_histogram",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{
m: "test_gauge_float_histogram",
help: "Like test_float_histogram but as gauge histogram.",
},
{
m: "test_gauge_float_histogram",
typ: model.MetricTypeGaugeHistogram,
},
{
m: "test_gauge_float_histogram",
t: 1234568,
fhs: &histogram.FloatHistogram{
CounterResetHint: histogram.GaugeType,
Count: 175.0,
ZeroCount: 2.0,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []float64{1.0, 2.0, -1.0, -1.0},
NegativeBuckets: []float64{1.0, 3.0, -2.0, -1.0, 1.0},
},
lset: labels.FromStrings(
"__name__", "test_gauge_float_histogram",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{
m: "test_histogram2",
help: "Similar histogram as before but now without sparse buckets.",
},
{
m: "test_histogram2",
typ: model.MetricTypeHistogram,
},
{
m: "test_histogram2_count",
v: 175,
lset: labels.FromStrings(
"__name__", "test_histogram2_count",
),
},
{
m: "test_histogram2_sum",
v: 0.000828,
lset: labels.FromStrings(
"__name__", "test_histogram2_sum",
),
},
{
m: "test_histogram2_bucket\xffle\xff-0.00048",
v: 2,
lset: labels.FromStrings(
"__name__", "test_histogram2_bucket",
"le", "-0.00048",
),
},
{
m: "test_histogram2_bucket\xffle\xff-0.00038",
v: 4,
lset: labels.FromStrings(
"__name__", "test_histogram2_bucket",
"le", "-0.00038",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00038, HasTs: true, Ts: 1625851153146},
},
},
{
m: "test_histogram2_bucket\xffle\xff1.0",
v: 16,
lset: labels.FromStrings(
"__name__", "test_histogram2_bucket",
"le", "1.0",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "5617"), Value: -0.000295, HasTs: false},
},
},
{
m: "test_histogram2_bucket\xffle\xff+Inf",
v: 175,
lset: labels.FromStrings(
"__name__", "test_histogram2_bucket",
"le", "+Inf",
),
},
{
m: "test_histogram_family",
help: "Test histogram metric family with two very simple histograms.",
},
{
m: "test_histogram_family",
typ: model.MetricTypeHistogram,
},
{
m: "test_histogram_family\xfffoo\xffbar",
shs: &histogram.Histogram{
CounterResetHint: histogram.UnknownCounterReset,
Count: 5,
Sum: 12.1,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: 8, Length: 2},
},
NegativeSpans: []histogram.Span{},
PositiveBuckets: []int64{2, 1},
},
lset: labels.FromStrings(
"__name__", "test_histogram_family",
"foo", "bar",
),
},
{
m: "test_histogram_family\xfffoo\xffbaz",
shs: &histogram.Histogram{
CounterResetHint: histogram.UnknownCounterReset,
Count: 6,
Sum: 13.1,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: 8, Length: 2},
},
NegativeSpans: []histogram.Span{},
PositiveBuckets: []int64{1, 4},
},
lset: labels.FromStrings(
"__name__", "test_histogram_family",
"foo", "baz",
),
},
{
m: "test_float_histogram_with_zerothreshold_zero",
help: "Test float histogram with a zero threshold of zero.",
},
{
m: "test_float_histogram_with_zerothreshold_zero",
typ: model.MetricTypeHistogram,
},
{
m: "test_float_histogram_with_zerothreshold_zero",
fhs: &histogram.FloatHistogram{
Count: 5.0,
Sum: 12.1,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: 8, Length: 2},
},
PositiveBuckets: []float64{2.0, 3.0},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "test_float_histogram_with_zerothreshold_zero",
),
},
{
m: "rpc_durations_seconds",
help: "RPC latency distributions.",
},
{
m: "rpc_durations_seconds",
typ: model.MetricTypeSummary,
},
{
m: "rpc_durations_seconds_count\xffservice\xffexponential",
v: 262,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds_count",
"service", "exponential",
),
},
{
m: "rpc_durations_seconds_sum\xffservice\xffexponential",
v: 0.00025551262820703587,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds_sum",
"service", "exponential",
),
},
{
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.5",
v: 6.442786329648548e-07,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds",
"quantile", "0.5",
"service", "exponential",
),
},
{
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.9",
v: 1.9435742936658396e-06,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds",
"quantile", "0.9",
"service", "exponential",
),
},
{
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.99",
v: 4.0471608667037015e-06,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds",
"quantile", "0.99",
"service", "exponential",
),
},
{
m: "without_quantiles",
help: "A summary without quantiles.",
},
{
m: "without_quantiles",
typ: model.MetricTypeSummary,
},
{
m: "without_quantiles_count",
v: 42,
lset: labels.FromStrings(
"__name__", "without_quantiles_count",
),
},
{
m: "without_quantiles_sum",
v: 1.234,
lset: labels.FromStrings(
"__name__", "without_quantiles_sum",
),
},
{
m: "empty_histogram",
help: "A histogram without observations and with a zero threshold of zero but with a no-op span to identify it as a native histogram.",
},
{
m: "empty_histogram",
typ: model.MetricTypeHistogram,
},
{
m: "empty_histogram",
shs: &histogram.Histogram{
CounterResetHint: histogram.UnknownCounterReset,
PositiveSpans: []histogram.Span{},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "empty_histogram",
),
},
{
m: "test_counter_with_createdtimestamp",
help: "A counter with a created timestamp.",
},
{
m: "test_counter_with_createdtimestamp",
typ: model.MetricTypeCounter,
},
{
m: "test_counter_with_createdtimestamp",
v: 42,
ct: 1000,
lset: labels.FromStrings(
"__name__", "test_counter_with_createdtimestamp",
),
},
{
m: "test_summary_with_createdtimestamp",
help: "A summary with a created timestamp.",
},
{
m: "test_summary_with_createdtimestamp",
typ: model.MetricTypeSummary,
},
{
m: "test_summary_with_createdtimestamp_count",
v: 42,
ct: 1000,
lset: labels.FromStrings(
"__name__", "test_summary_with_createdtimestamp_count",
),
},
{
m: "test_summary_with_createdtimestamp_sum",
v: 1.234,
ct: 1000,
lset: labels.FromStrings(
"__name__", "test_summary_with_createdtimestamp_sum",
),
},
{
m: "test_histogram_with_createdtimestamp",
help: "A histogram with a created timestamp.",
},
{
m: "test_histogram_with_createdtimestamp",
typ: model.MetricTypeHistogram,
},
{
m: "test_histogram_with_createdtimestamp",
ct: 1000,
shs: &histogram.Histogram{
CounterResetHint: histogram.UnknownCounterReset,
PositiveSpans: []histogram.Span{},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "test_histogram_with_createdtimestamp",
),
},
{
m: "test_gaugehistogram_with_createdtimestamp",
help: "A gauge histogram with a created timestamp.",
},
{
m: "test_gaugehistogram_with_createdtimestamp",
typ: model.MetricTypeGaugeHistogram,
},
{
m: "test_gaugehistogram_with_createdtimestamp",
ct: 1000,
shs: &histogram.Histogram{
CounterResetHint: histogram.GaugeType,
PositiveSpans: []histogram.Span{},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "test_gaugehistogram_with_createdtimestamp",
),
},
{
m: "test_histogram_with_native_histogram_exemplars",
help: "A histogram with native histogram exemplars.",
},
{
m: "test_histogram_with_native_histogram_exemplars",
typ: model.MetricTypeHistogram,
},
{
m: "test_histogram_with_native_histogram_exemplars",
t: 1234568,
shs: &histogram.Histogram{
Count: 175,
ZeroCount: 2,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []int64{1, 2, -1, -1},
NegativeBuckets: []int64{1, 3, -2, -1, 1},
},
lset: labels.FromStrings(
"__name__", "test_histogram_with_native_histogram_exemplars",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59780"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
{Labels: labels.FromStrings("dummyID", "59772"), Value: -0.00052, HasTs: true, Ts: 1625851160156},
},
},
},
},
{
name: "parse classic and native buckets",
parser: NewProtobufParser(inputBuf.Bytes(), true, labels.NewSymbolTable()),
expected: []parseResult{
{ // 0
m: "go_build_info",
help: "Build information about the main Go module.",
},
{ // 1
m: "go_build_info",
typ: model.MetricTypeGauge,
},
{ // 2
m: "go_build_info\xFFchecksum\xFF\xFFpath\xFFgithub.com/prometheus/client_golang\xFFversion\xFF(devel)",
v: 1,
lset: labels.FromStrings(
"__name__", "go_build_info",
"checksum", "",
"path", "github.com/prometheus/client_golang",
"version", "(devel)",
),
},
{ // 3
m: "go_memstats_alloc_bytes_total",
help: "Total number of bytes allocated, even if freed.",
},
{ // 4
m: "go_memstats_alloc_bytes_total",
typ: model.MetricTypeCounter,
},
{ // 5
m: "go_memstats_alloc_bytes_total",
v: 1.546544e+06,
lset: labels.FromStrings(
"__name__", "go_memstats_alloc_bytes_total",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "42"), Value: 12, HasTs: true, Ts: 1625851151233},
},
},
{ // 6
m: "something_untyped",
help: "Just to test the untyped type.",
},
{ // 7
m: "something_untyped",
typ: model.MetricTypeUnknown,
},
{ // 8
m: "something_untyped",
t: 1234567,
v: 42,
lset: labels.FromStrings(
"__name__", "something_untyped",
),
},
{ // 9
m: "test_histogram",
help: "Test histogram with many buckets removed to keep it manageable in size.",
},
{ // 10
m: "test_histogram",
typ: model.MetricTypeHistogram,
},
{ // 11
m: "test_histogram",
t: 1234568,
shs: &histogram.Histogram{
Count: 175,
ZeroCount: 2,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []int64{1, 2, -1, -1},
NegativeBuckets: []int64{1, 3, -2, -1, 1},
},
lset: labels.FromStrings(
"__name__", "test_histogram",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 12
m: "test_histogram_count",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_histogram_count",
),
},
{ // 13
m: "test_histogram_sum",
t: 1234568,
v: 0.0008280461746287094,
lset: labels.FromStrings(
"__name__", "test_histogram_sum",
),
},
{ // 14
m: "test_histogram_bucket\xffle\xff-0.0004899999999999998",
t: 1234568,
v: 2,
lset: labels.FromStrings(
"__name__", "test_histogram_bucket",
"le", "-0.0004899999999999998",
),
},
{ // 15
m: "test_histogram_bucket\xffle\xff-0.0003899999999999998",
t: 1234568,
v: 4,
lset: labels.FromStrings(
"__name__", "test_histogram_bucket",
"le", "-0.0003899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 16
m: "test_histogram_bucket\xffle\xff-0.0002899999999999998",
t: 1234568,
v: 16,
lset: labels.FromStrings(
"__name__", "test_histogram_bucket",
"le", "-0.0002899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "5617"), Value: -0.00029, HasTs: false},
},
},
{ // 17
m: "test_histogram_bucket\xffle\xff+Inf",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_histogram_bucket",
"le", "+Inf",
),
},
{ // 18
m: "test_gauge_histogram",
help: "Like test_histogram but as gauge histogram.",
},
{ // 19
m: "test_gauge_histogram",
typ: model.MetricTypeGaugeHistogram,
},
{ // 20
m: "test_gauge_histogram",
t: 1234568,
shs: &histogram.Histogram{
CounterResetHint: histogram.GaugeType,
Count: 175,
ZeroCount: 2,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []int64{1, 2, -1, -1},
NegativeBuckets: []int64{1, 3, -2, -1, 1},
},
lset: labels.FromStrings(
"__name__", "test_gauge_histogram",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 21
m: "test_gauge_histogram_count",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_gauge_histogram_count",
),
},
{ // 22
m: "test_gauge_histogram_sum",
t: 1234568,
v: 0.0008280461746287094,
lset: labels.FromStrings(
"__name__", "test_gauge_histogram_sum",
),
},
{ // 23
m: "test_gauge_histogram_bucket\xffle\xff-0.0004899999999999998",
t: 1234568,
v: 2,
lset: labels.FromStrings(
"__name__", "test_gauge_histogram_bucket",
"le", "-0.0004899999999999998",
),
},
{ // 24
m: "test_gauge_histogram_bucket\xffle\xff-0.0003899999999999998",
t: 1234568,
v: 4,
lset: labels.FromStrings(
"__name__", "test_gauge_histogram_bucket",
"le", "-0.0003899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 25
m: "test_gauge_histogram_bucket\xffle\xff-0.0002899999999999998",
t: 1234568,
v: 16,
lset: labels.FromStrings(
"__name__", "test_gauge_histogram_bucket",
"le", "-0.0002899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "5617"), Value: -0.00029, HasTs: false},
},
},
{ // 26
m: "test_gauge_histogram_bucket\xffle\xff+Inf",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_gauge_histogram_bucket",
"le", "+Inf",
),
},
{ // 27
m: "test_float_histogram",
help: "Test float histogram with many buckets removed to keep it manageable in size.",
},
{ // 28
m: "test_float_histogram",
typ: model.MetricTypeHistogram,
},
{ // 29
m: "test_float_histogram",
t: 1234568,
fhs: &histogram.FloatHistogram{
Count: 175.0,
ZeroCount: 2.0,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []float64{1.0, 2.0, -1.0, -1.0},
NegativeBuckets: []float64{1.0, 3.0, -2.0, -1.0, 1.0},
},
lset: labels.FromStrings(
"__name__", "test_float_histogram",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 30
m: "test_float_histogram_count",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_float_histogram_count",
),
},
{ // 31
m: "test_float_histogram_sum",
t: 1234568,
v: 0.0008280461746287094,
lset: labels.FromStrings(
"__name__", "test_float_histogram_sum",
),
},
{ // 32
m: "test_float_histogram_bucket\xffle\xff-0.0004899999999999998",
t: 1234568,
v: 2,
lset: labels.FromStrings(
"__name__", "test_float_histogram_bucket",
"le", "-0.0004899999999999998",
),
},
{ // 33
m: "test_float_histogram_bucket\xffle\xff-0.0003899999999999998",
t: 1234568,
v: 4,
lset: labels.FromStrings(
"__name__", "test_float_histogram_bucket",
"le", "-0.0003899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 34
m: "test_float_histogram_bucket\xffle\xff-0.0002899999999999998",
t: 1234568,
v: 16,
lset: labels.FromStrings(
"__name__", "test_float_histogram_bucket",
"le", "-0.0002899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "5617"), Value: -0.00029, HasTs: false},
},
},
{ // 35
m: "test_float_histogram_bucket\xffle\xff+Inf",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_float_histogram_bucket",
"le", "+Inf",
),
},
{ // 36
m: "test_gauge_float_histogram",
help: "Like test_float_histogram but as gauge histogram.",
},
{ // 37
m: "test_gauge_float_histogram",
typ: model.MetricTypeGaugeHistogram,
},
{ // 38
m: "test_gauge_float_histogram",
t: 1234568,
fhs: &histogram.FloatHistogram{
CounterResetHint: histogram.GaugeType,
Count: 175.0,
ZeroCount: 2.0,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []float64{1.0, 2.0, -1.0, -1.0},
NegativeBuckets: []float64{1.0, 3.0, -2.0, -1.0, 1.0},
},
lset: labels.FromStrings(
"__name__", "test_gauge_float_histogram",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 39
m: "test_gauge_float_histogram_count",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_gauge_float_histogram_count",
),
},
{ // 40
m: "test_gauge_float_histogram_sum",
t: 1234568,
v: 0.0008280461746287094,
lset: labels.FromStrings(
"__name__", "test_gauge_float_histogram_sum",
),
},
{ // 41
m: "test_gauge_float_histogram_bucket\xffle\xff-0.0004899999999999998",
t: 1234568,
v: 2,
lset: labels.FromStrings(
"__name__", "test_gauge_float_histogram_bucket",
"le", "-0.0004899999999999998",
),
},
{ // 42
m: "test_gauge_float_histogram_bucket\xffle\xff-0.0003899999999999998",
t: 1234568,
v: 4,
lset: labels.FromStrings(
"__name__", "test_gauge_float_histogram_bucket",
"le", "-0.0003899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 43
m: "test_gauge_float_histogram_bucket\xffle\xff-0.0002899999999999998",
t: 1234568,
v: 16,
lset: labels.FromStrings(
"__name__", "test_gauge_float_histogram_bucket",
"le", "-0.0002899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "5617"), Value: -0.00029, HasTs: false},
},
},
{ // 44
m: "test_gauge_float_histogram_bucket\xffle\xff+Inf",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_gauge_float_histogram_bucket",
"le", "+Inf",
),
},
{ // 45
m: "test_histogram2",
help: "Similar histogram as before but now without sparse buckets.",
},
{ // 46
m: "test_histogram2",
typ: model.MetricTypeHistogram,
},
{ // 47
m: "test_histogram2_count",
v: 175,
lset: labels.FromStrings(
"__name__", "test_histogram2_count",
),
},
{ // 48
m: "test_histogram2_sum",
v: 0.000828,
lset: labels.FromStrings(
"__name__", "test_histogram2_sum",
),
},
{ // 49
m: "test_histogram2_bucket\xffle\xff-0.00048",
v: 2,
lset: labels.FromStrings(
"__name__", "test_histogram2_bucket",
"le", "-0.00048",
),
},
{ // 50
m: "test_histogram2_bucket\xffle\xff-0.00038",
v: 4,
lset: labels.FromStrings(
"__name__", "test_histogram2_bucket",
"le", "-0.00038",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00038, HasTs: true, Ts: 1625851153146},
},
},
{ // 51
m: "test_histogram2_bucket\xffle\xff1.0",
v: 16,
lset: labels.FromStrings(
"__name__", "test_histogram2_bucket",
"le", "1.0",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "5617"), Value: -0.000295, HasTs: false},
},
},
{ // 52
m: "test_histogram2_bucket\xffle\xff+Inf",
v: 175,
lset: labels.FromStrings(
"__name__", "test_histogram2_bucket",
"le", "+Inf",
),
},
{ // 53
m: "test_histogram_family",
help: "Test histogram metric family with two very simple histograms.",
},
{ // 54
m: "test_histogram_family",
typ: model.MetricTypeHistogram,
},
{ // 55
m: "test_histogram_family\xfffoo\xffbar",
shs: &histogram.Histogram{
CounterResetHint: histogram.UnknownCounterReset,
Count: 5,
Sum: 12.1,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: 8, Length: 2},
},
NegativeSpans: []histogram.Span{},
PositiveBuckets: []int64{2, 1},
},
lset: labels.FromStrings(
"__name__", "test_histogram_family",
"foo", "bar",
),
},
{ // 56
m: "test_histogram_family_count\xfffoo\xffbar",
v: 5,
lset: labels.FromStrings(
"__name__", "test_histogram_family_count",
"foo", "bar",
),
},
{ // 57
m: "test_histogram_family_sum\xfffoo\xffbar",
v: 12.1,
lset: labels.FromStrings(
"__name__", "test_histogram_family_sum",
"foo", "bar",
),
},
{ // 58
m: "test_histogram_family_bucket\xfffoo\xffbar\xffle\xff1.1",
v: 2,
lset: labels.FromStrings(
"__name__", "test_histogram_family_bucket",
"foo", "bar",
"le", "1.1",
),
},
{ // 59
m: "test_histogram_family_bucket\xfffoo\xffbar\xffle\xff2.2",
v: 3,
lset: labels.FromStrings(
"__name__", "test_histogram_family_bucket",
"foo", "bar",
"le", "2.2",
),
},
{ // 60
m: "test_histogram_family_bucket\xfffoo\xffbar\xffle\xff+Inf",
v: 5,
lset: labels.FromStrings(
"__name__", "test_histogram_family_bucket",
"foo", "bar",
"le", "+Inf",
),
},
{ // 61
m: "test_histogram_family\xfffoo\xffbaz",
shs: &histogram.Histogram{
CounterResetHint: histogram.UnknownCounterReset,
Count: 6,
Sum: 13.1,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: 8, Length: 2},
},
NegativeSpans: []histogram.Span{},
PositiveBuckets: []int64{1, 4},
},
lset: labels.FromStrings(
"__name__", "test_histogram_family",
"foo", "baz",
),
},
{ // 62
m: "test_histogram_family_count\xfffoo\xffbaz",
v: 6,
lset: labels.FromStrings(
"__name__", "test_histogram_family_count",
"foo", "baz",
),
},
{ // 63
m: "test_histogram_family_sum\xfffoo\xffbaz",
v: 13.1,
lset: labels.FromStrings(
"__name__", "test_histogram_family_sum",
"foo", "baz",
),
},
{ // 64
m: "test_histogram_family_bucket\xfffoo\xffbaz\xffle\xff1.1",
v: 1,
lset: labels.FromStrings(
"__name__", "test_histogram_family_bucket",
"foo", "baz",
"le", "1.1",
),
},
{ // 65
m: "test_histogram_family_bucket\xfffoo\xffbaz\xffle\xff2.2",
v: 5,
lset: labels.FromStrings(
"__name__", "test_histogram_family_bucket",
"foo", "baz",
"le", "2.2",
),
},
{ // 66
m: "test_histogram_family_bucket\xfffoo\xffbaz\xffle\xff+Inf",
v: 6,
lset: labels.FromStrings(
"__name__", "test_histogram_family_bucket",
"foo", "baz",
"le", "+Inf",
),
},
{ // 67
m: "test_float_histogram_with_zerothreshold_zero",
help: "Test float histogram with a zero threshold of zero.",
},
{ // 68
m: "test_float_histogram_with_zerothreshold_zero",
typ: model.MetricTypeHistogram,
},
{ // 69
m: "test_float_histogram_with_zerothreshold_zero",
fhs: &histogram.FloatHistogram{
Count: 5.0,
Sum: 12.1,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: 8, Length: 2},
},
PositiveBuckets: []float64{2.0, 3.0},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "test_float_histogram_with_zerothreshold_zero",
),
},
{ // 70
m: "rpc_durations_seconds",
help: "RPC latency distributions.",
},
{ // 71
m: "rpc_durations_seconds",
typ: model.MetricTypeSummary,
},
{ // 72
m: "rpc_durations_seconds_count\xffservice\xffexponential",
v: 262,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds_count",
"service", "exponential",
),
},
{ // 73
m: "rpc_durations_seconds_sum\xffservice\xffexponential",
v: 0.00025551262820703587,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds_sum",
"service", "exponential",
),
},
{ // 74
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.5",
v: 6.442786329648548e-07,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds",
"quantile", "0.5",
"service", "exponential",
),
},
{ // 75
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.9",
v: 1.9435742936658396e-06,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds",
"quantile", "0.9",
"service", "exponential",
),
},
{ // 76
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.99",
v: 4.0471608667037015e-06,
lset: labels.FromStrings(
"__name__", "rpc_durations_seconds",
"quantile", "0.99",
"service", "exponential",
),
},
{ // 77
m: "without_quantiles",
help: "A summary without quantiles.",
},
{ // 78
m: "without_quantiles",
typ: model.MetricTypeSummary,
},
{ // 79
m: "without_quantiles_count",
v: 42,
lset: labels.FromStrings(
"__name__", "without_quantiles_count",
),
},
{ // 80
m: "without_quantiles_sum",
v: 1.234,
lset: labels.FromStrings(
"__name__", "without_quantiles_sum",
),
},
{ // 78
m: "empty_histogram",
help: "A histogram without observations and with a zero threshold of zero but with a no-op span to identify it as a native histogram.",
},
{ // 79
m: "empty_histogram",
typ: model.MetricTypeHistogram,
},
{ // 80
m: "empty_histogram",
shs: &histogram.Histogram{
CounterResetHint: histogram.UnknownCounterReset,
PositiveSpans: []histogram.Span{},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "empty_histogram",
),
},
{ // 81
m: "test_counter_with_createdtimestamp",
help: "A counter with a created timestamp.",
},
{ // 82
m: "test_counter_with_createdtimestamp",
typ: model.MetricTypeCounter,
},
{ // 83
m: "test_counter_with_createdtimestamp",
v: 42,
ct: 1000,
lset: labels.FromStrings(
"__name__", "test_counter_with_createdtimestamp",
),
},
{ // 84
m: "test_summary_with_createdtimestamp",
help: "A summary with a created timestamp.",
},
{ // 85
m: "test_summary_with_createdtimestamp",
typ: model.MetricTypeSummary,
},
{ // 86
m: "test_summary_with_createdtimestamp_count",
v: 42,
ct: 1000,
lset: labels.FromStrings(
"__name__", "test_summary_with_createdtimestamp_count",
),
},
{ // 87
m: "test_summary_with_createdtimestamp_sum",
v: 1.234,
ct: 1000,
lset: labels.FromStrings(
"__name__", "test_summary_with_createdtimestamp_sum",
),
},
{ // 88
m: "test_histogram_with_createdtimestamp",
help: "A histogram with a created timestamp.",
},
{ // 89
m: "test_histogram_with_createdtimestamp",
typ: model.MetricTypeHistogram,
},
{ // 90
m: "test_histogram_with_createdtimestamp",
ct: 1000,
shs: &histogram.Histogram{
CounterResetHint: histogram.UnknownCounterReset,
PositiveSpans: []histogram.Span{},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "test_histogram_with_createdtimestamp",
),
},
{ // 91
m: "test_gaugehistogram_with_createdtimestamp",
help: "A gauge histogram with a created timestamp.",
},
{ // 92
m: "test_gaugehistogram_with_createdtimestamp",
typ: model.MetricTypeGaugeHistogram,
},
{ // 93
m: "test_gaugehistogram_with_createdtimestamp",
ct: 1000,
shs: &histogram.Histogram{
CounterResetHint: histogram.GaugeType,
PositiveSpans: []histogram.Span{},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "test_gaugehistogram_with_createdtimestamp",
),
},
{ // 94
m: "test_histogram_with_native_histogram_exemplars",
help: "A histogram with native histogram exemplars.",
},
{ // 95
m: "test_histogram_with_native_histogram_exemplars",
typ: model.MetricTypeHistogram,
},
{ // 96
m: "test_histogram_with_native_histogram_exemplars",
t: 1234568,
shs: &histogram.Histogram{
Count: 175,
ZeroCount: 2,
Sum: 0.0008280461746287094,
ZeroThreshold: 2.938735877055719e-39,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: -161, Length: 1},
{Offset: 8, Length: 3},
},
NegativeSpans: []histogram.Span{
{Offset: -162, Length: 1},
{Offset: 23, Length: 4},
},
PositiveBuckets: []int64{1, 2, -1, -1},
NegativeBuckets: []int64{1, 3, -2, -1, 1},
},
lset: labels.FromStrings(
"__name__", "test_histogram_with_native_histogram_exemplars",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59780"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
{Labels: labels.FromStrings("dummyID", "59772"), Value: -0.00052, HasTs: true, Ts: 1625851160156},
},
},
{ // 97
m: "test_histogram_with_native_histogram_exemplars_count",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_histogram_with_native_histogram_exemplars_count",
),
},
{ // 98
m: "test_histogram_with_native_histogram_exemplars_sum",
t: 1234568,
v: 0.0008280461746287094,
lset: labels.FromStrings(
"__name__", "test_histogram_with_native_histogram_exemplars_sum",
),
},
{ // 99
m: "test_histogram_with_native_histogram_exemplars_bucket\xffle\xff-0.0004899999999999998",
t: 1234568,
v: 2,
lset: labels.FromStrings(
"__name__", "test_histogram_with_native_histogram_exemplars_bucket",
"le", "-0.0004899999999999998",
),
},
{ // 100
m: "test_histogram_with_native_histogram_exemplars_bucket\xffle\xff-0.0003899999999999998",
t: 1234568,
v: 4,
lset: labels.FromStrings(
"__name__", "test_histogram_with_native_histogram_exemplars_bucket",
"le", "-0.0003899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "59727"), Value: -0.00039, HasTs: true, Ts: 1625851155146},
},
},
{ // 101
m: "test_histogram_with_native_histogram_exemplars_bucket\xffle\xff-0.0002899999999999998",
t: 1234568,
v: 16,
lset: labels.FromStrings(
"__name__", "test_histogram_with_native_histogram_exemplars_bucket",
"le", "-0.0002899999999999998",
),
e: []exemplar.Exemplar{
{Labels: labels.FromStrings("dummyID", "5617"), Value: -0.00029, HasTs: false},
},
},
{ // 102
m: "test_histogram_with_native_histogram_exemplars_bucket\xffle\xff+Inf",
t: 1234568,
v: 175,
lset: labels.FromStrings(
"__name__", "test_histogram_with_native_histogram_exemplars_bucket",
"le", "+Inf",
),
},
},
},
}
for _, scenario := range scenarios {
t.Run(scenario.name, func(t *testing.T) {
var (
i int
res labels.Labels
p = scenario.parser
exp = scenario.expected
)
for {
et, err := p.Next()
if errors.Is(err, io.EOF) {
break
}
require.NoError(t, err)
switch et {
case EntrySeries:
m, ts, v := p.Series()
var e exemplar.Exemplar
p.Metric(&res)
eFound := p.Exemplar(&e)
ct := p.CreatedTimestamp()
require.Equal(t, exp[i].m, string(m), "i: %d", i)
if ts != nil {
require.Equal(t, exp[i].t, *ts, "i: %d", i)
} else {
require.Equal(t, int64(0), exp[i].t, "i: %d", i)
}
require.Equal(t, exp[i].v, v, "i: %d", i)
testutil.RequireEqual(t, exp[i].lset, res, "i: %d", i)
if len(exp[i].e) == 0 {
require.False(t, eFound, "i: %d", i)
} else {
require.True(t, eFound, "i: %d", i)
testutil.RequireEqual(t, exp[i].e[0], e, "i: %d", i)
require.False(t, p.Exemplar(&e), "too many exemplars returned, i: %d", i)
}
if exp[i].ct != 0 {
require.NotNilf(t, ct, "i: %d", i)
require.Equal(t, exp[i].ct, *ct, "i: %d", i)
} else {
require.Nilf(t, ct, "i: %d", i)
}
case EntryHistogram:
m, ts, shs, fhs := p.Histogram()
p.Metric(&res)
require.Equal(t, exp[i].m, string(m), "i: %d", i)
if ts != nil {
require.Equal(t, exp[i].t, *ts, "i: %d", i)
} else {
require.Equal(t, int64(0), exp[i].t, "i: %d", i)
}
testutil.RequireEqual(t, exp[i].lset, res, "i: %d", i)
require.Equal(t, exp[i].m, string(m), "i: %d", i)
if shs != nil {
require.Equal(t, exp[i].shs, shs, "i: %d", i)
} else {
require.Equal(t, exp[i].fhs, fhs, "i: %d", i)
}
j := 0
for e := (exemplar.Exemplar{}); p.Exemplar(&e); j++ {
testutil.RequireEqual(t, exp[i].e[j], e, "i: %d", i)
e = exemplar.Exemplar{}
}
require.Len(t, exp[i].e, j, "not enough exemplars found, i: %d", i)
case EntryType:
m, typ := p.Type()
require.Equal(t, exp[i].m, string(m), "i: %d", i)
require.Equal(t, exp[i].typ, typ, "i: %d", i)
case EntryHelp:
m, h := p.Help()
require.Equal(t, exp[i].m, string(m), "i: %d", i)
require.Equal(t, exp[i].help, string(h), "i: %d", i)
case EntryUnit:
m, u := p.Unit()
require.Equal(t, exp[i].m, string(m), "i: %d", i)
require.Equal(t, exp[i].unit, string(u), "i: %d", i)
case EntryComment:
require.Equal(t, exp[i].comment, string(p.Comment()), "i: %d", i)
}
i++
}
require.Len(t, exp, i)
})
}
}