change slide window design

pull/265/head
ffdfgdfg 2019-10-07 23:04:54 +08:00
parent 8bcf5313f4
commit b3ed822c72
5 changed files with 623 additions and 387 deletions

View File

@ -42,9 +42,11 @@ const (
MUX_NEW_CONN_OK
MUX_NEW_CONN_Fail
MUX_NEW_MSG
MUX_NEW_MSG_PART
MUX_MSG_SEND_OK
MUX_NEW_CONN
MUX_CONN_CLOSE
MUX_PING_RETURN
MUX_PING int32 = -1
MUX_PING int32 = -1
MAXIMUM_SEGMENT_SIZE = 4096 - 16 - 32 - 32 - 8
)

View File

@ -15,7 +15,7 @@ type NetPackager interface {
}
type BasePackager struct {
Length uint32
Length uint16
Content []byte
}
@ -101,7 +101,7 @@ func (Self *BasePackager) Unmarshal(content interface{}) (err error) {
}
func (Self *BasePackager) setLength() {
Self.Length = uint32(len(Self.Content))
Self.Length = uint16(len(Self.Content))
return
}
@ -147,25 +147,32 @@ func (Self *ConnPackager) UnPack(reader io.Reader) (err error) {
}
type MuxPackager struct {
Flag uint8
Id int32
Window uint16
Flag uint8
Id int32
Window uint32
ReadLength uint32
BasePackager
}
func (Self *MuxPackager) NewPac(flag uint8, id int32, content ...interface{}) (err error) {
Self.Flag = flag
Self.Id = id
if flag == MUX_NEW_MSG {
if flag == MUX_NEW_MSG || flag == MUX_NEW_MSG_PART || flag == MUX_PING_FLAG {
err = Self.BasePackager.NewPac(content...)
}
if flag == MUX_MSG_SEND_OK {
// MUX_MSG_SEND_OK only allows one data
switch content[0].(type) {
case int:
Self.Window = uint16(content[0].(int))
case uint16:
Self.Window = content[0].(uint16)
Self.Window = uint32(content[0].(int))
case uint32:
Self.Window = content[0].(uint32)
}
switch content[1].(type) {
case int:
Self.ReadLength = uint32(content[1].(int))
case uint32:
Self.ReadLength = content[1].(uint32)
}
}
return
@ -180,11 +187,15 @@ func (Self *MuxPackager) Pack(writer io.Writer) (err error) {
if err != nil {
return
}
if Self.Flag == MUX_NEW_MSG {
if Self.Flag == MUX_NEW_MSG || Self.Flag == MUX_NEW_MSG_PART || Self.Flag == MUX_PING_FLAG {
err = Self.BasePackager.Pack(writer)
}
if Self.Flag == MUX_MSG_SEND_OK {
err = binary.Write(writer, binary.LittleEndian, Self.Window)
if err != nil {
return
}
err = binary.Write(writer, binary.LittleEndian, Self.ReadLength)
}
return
}
@ -199,11 +210,15 @@ func (Self *MuxPackager) UnPack(reader io.Reader) (err error) {
if err != nil {
return
}
if Self.Flag == MUX_NEW_MSG {
if Self.Flag == MUX_NEW_MSG || Self.Flag == MUX_NEW_MSG_PART || Self.Flag == MUX_PING_FLAG {
err = Self.BasePackager.UnPack(reader)
}
if Self.Flag == MUX_MSG_SEND_OK {
err = binary.Read(reader, binary.LittleEndian, &Self.Window)
if err != nil {
return
}
err = binary.Read(reader, binary.LittleEndian, &Self.ReadLength)
}
return
}

View File

@ -2,7 +2,9 @@ package mux
import (
"errors"
"github.com/astaxie/beego/logs"
"io"
"math"
"net"
"sync"
"time"
@ -15,16 +17,11 @@ type conn struct {
getStatusCh chan struct{}
connStatusOkCh chan struct{}
connStatusFailCh chan struct{}
readTimeOut time.Time
writeTimeOut time.Time
connId int32
isClose bool
closeFlag bool // close conn flag
receiveWindow *window
sendWindow *window
readCh waitingCh
writeCh waitingCh
mux *Mux
receiveWindow *ReceiveWindow
sendWindow *SendWindow
once sync.Once
}
@ -34,15 +31,12 @@ func NewConn(connId int32, mux *Mux) *conn {
connStatusOkCh: make(chan struct{}),
connStatusFailCh: make(chan struct{}),
connId: connId,
receiveWindow: new(window),
sendWindow: new(window),
mux: mux,
receiveWindow: new(ReceiveWindow),
sendWindow: new(SendWindow),
once: sync.Once{},
}
c.receiveWindow.NewReceive()
c.sendWindow.NewSend()
c.readCh.new()
c.writeCh.new()
c.receiveWindow.New(mux)
c.sendWindow.New(mux)
return c
}
@ -50,39 +44,14 @@ func (s *conn) Read(buf []byte) (n int, err error) {
if s.isClose || buf == nil {
return 0, errors.New("the conn has closed")
}
if len(buf) == 0 {
return 0, nil
}
// waiting for takeout from receive window finish or timeout
go s.readWindow(buf, s.readCh.nCh, s.readCh.errCh)
if t := s.readTimeOut.Sub(time.Now()); t > 0 {
timer := time.NewTimer(t)
defer timer.Stop()
select {
case <-timer.C:
return 0, errors.New("read timeout")
case n = <-s.readCh.nCh:
err = <-s.readCh.errCh
}
} else {
n = <-s.readCh.nCh
err = <-s.readCh.errCh
}
n, err = s.receiveWindow.Read(buf, s.connId)
return
}
func (s *conn) readWindow(buf []byte, nCh chan int, errCh chan error) {
n, err := s.receiveWindow.Read(buf)
if s.receiveWindow.WindowFull {
if s.receiveWindow.Size() > 0 {
// window.Read may be invoked before window.Write, and WindowFull flag change to true
// so make sure that receiveWindow is free some space
s.receiveWindow.WindowFull = false
s.mux.sendInfo(common.MUX_MSG_SEND_OK, s.connId, s.receiveWindow.Size())
// acknowledge other side, have empty some receive window space
}
}
nCh <- n
errCh <- err
}
func (s *conn) Write(buf []byte) (n int, err error) {
if s.isClose {
return 0, errors.New("the conn has closed")
@ -91,45 +60,13 @@ func (s *conn) Write(buf []byte) (n int, err error) {
//s.Close()
return 0, errors.New("io: write on closed conn")
}
s.sendWindow.SetSendBuf(buf) // set the buf to send window
go s.write(s.writeCh.nCh, s.writeCh.errCh)
// waiting for send to other side or timeout
if t := s.writeTimeOut.Sub(time.Now()); t > 0 {
timer := time.NewTimer(t)
defer timer.Stop()
select {
case <-timer.C:
return 0, errors.New("write timeout")
case n = <-s.writeCh.nCh:
err = <-s.writeCh.errCh
}
} else {
n = <-s.writeCh.nCh
err = <-s.writeCh.errCh
if len(buf) == 0 {
return 0, nil
}
//logs.Warn("write buf", len(buf))
n, err = s.sendWindow.WriteFull(buf, s.connId)
return
}
func (s *conn) write(nCh chan int, errCh chan error) {
var n int
var err error
for {
buf, err := s.sendWindow.WriteTo()
// get the usable window size buf from send window
if buf == nil && err == io.EOF {
// send window is drain, break the loop
err = nil
break
}
if err != nil {
break
}
n += len(buf)
s.mux.sendInfo(common.MUX_NEW_MSG, s.connId, buf)
// send to other side, not send nil data to other side
}
nCh <- n
errCh <- err
}
func (s *conn) Close() (err error) {
s.once.Do(s.closeProcess)
@ -138,11 +75,11 @@ func (s *conn) Close() (err error) {
func (s *conn) closeProcess() {
s.isClose = true
s.mux.connMap.Delete(s.connId)
if !s.mux.IsClose {
s.receiveWindow.mux.connMap.Delete(s.connId)
if !s.receiveWindow.mux.IsClose {
// if server or user close the conn while reading, will get a io.EOF
// and this Close method will be invoke, send this signal to close other side
s.mux.sendInfo(common.MUX_CONN_CLOSE, s.connId, nil)
s.receiveWindow.mux.sendInfo(common.MUX_CONN_CLOSE, s.connId, nil)
}
s.sendWindow.CloseWindow()
s.receiveWindow.CloseWindow()
@ -150,276 +87,440 @@ func (s *conn) closeProcess() {
}
func (s *conn) LocalAddr() net.Addr {
return s.mux.conn.LocalAddr()
return s.receiveWindow.mux.conn.LocalAddr()
}
func (s *conn) RemoteAddr() net.Addr {
return s.mux.conn.RemoteAddr()
return s.receiveWindow.mux.conn.RemoteAddr()
}
func (s *conn) SetDeadline(t time.Time) error {
s.readTimeOut = t
s.writeTimeOut = t
_ = s.SetReadDeadline(t)
_ = s.SetWriteDeadline(t)
return nil
}
func (s *conn) SetReadDeadline(t time.Time) error {
s.readTimeOut = t
s.receiveWindow.SetTimeOut(t)
return nil
}
func (s *conn) SetWriteDeadline(t time.Time) error {
s.writeTimeOut = t
s.sendWindow.SetTimeOut(t)
return nil
}
type window struct {
windowBuff []byte
off uint16
readOp chan struct{}
readWait bool
WindowFull bool
usableReceiveWindow chan uint16
WriteWg sync.WaitGroup
closeOp bool
closeOpCh chan struct{}
WriteEndOp chan struct{}
mutex sync.Mutex
off uint32
maxSize uint32
closeOp bool
closeOpCh chan struct{}
mux *Mux
}
func (Self *window) NewReceive() {
func (Self *window) New() {
Self.closeOpCh = make(chan struct{}, 2)
}
func (Self *window) CloseWindow() {
if !Self.closeOp {
Self.closeOp = true
Self.closeOpCh <- struct{}{}
Self.closeOpCh <- struct{}{}
}
}
type ReceiveWindow struct {
bufQueue FIFOQueue
element *ListElement
readLength uint32
readOp chan struct{}
readWait bool
windowFull bool
count int8
bw *bandwidth
once sync.Once
window
}
func (Self *ReceiveWindow) New(mux *Mux) {
// initial a window for receive
Self.windowBuff = common.WindowBuff.Get()
Self.readOp = make(chan struct{})
Self.WriteEndOp = make(chan struct{})
Self.closeOpCh = make(chan struct{}, 3)
Self.bufQueue.New()
Self.bw = new(bandwidth)
Self.element = new(ListElement)
Self.maxSize = 8192
Self.mux = mux
Self.window.New()
}
func (Self *window) NewSend() {
// initial a window for send
Self.usableReceiveWindow = make(chan uint16)
Self.closeOpCh = make(chan struct{}, 3)
func (Self *ReceiveWindow) RemainingSize() (n uint32) {
// receive window remaining
if Self.maxSize >= Self.bufQueue.Len() {
n = Self.maxSize - Self.bufQueue.Len()
}
// if maxSize is small than bufQueue length, return 0
return
}
func (Self *window) SetSendBuf(buf []byte) {
func (Self *ReceiveWindow) ReadSize() (n uint32) {
// acknowledge the size already read
Self.bufQueue.mutex.Lock()
n = Self.readLength
Self.readLength = 0
Self.bufQueue.mutex.Unlock()
Self.count += 1
return
}
func (Self *ReceiveWindow) CalcSize() {
// calculating maximum receive window size
if Self.count == 0 {
logs.Warn("ping, bw", Self.mux.latency, Self.bw.Get())
n := uint32(2 * Self.mux.latency * Self.bw.Get())
if n < 8192 {
n = 8192
}
if n < Self.bufQueue.Len() {
n = Self.bufQueue.Len()
}
// set the minimal size
logs.Warn("n", n)
Self.maxSize = n
Self.count = -5
}
}
func (Self *ReceiveWindow) Write(buf []byte, l uint16, part bool, id int32) (err error) {
if Self.closeOp {
return errors.New("conn.receiveWindow: write on closed window")
}
element := ListElement{}
err = element.New(buf, l, part)
//logs.Warn("push the buf", len(buf), l, (&element).l)
if err != nil {
return
}
Self.bufQueue.Push(&element) // must push data before allow read
//logs.Warn("read session calc size ", Self.maxSize)
// calculating the receive window size
Self.CalcSize()
logs.Warn("read session calc size finish", Self.maxSize)
if Self.RemainingSize() == 0 {
Self.windowFull = true
//logs.Warn("window full true", Self.windowFull)
}
Self.mux.sendInfo(common.MUX_MSG_SEND_OK, id, Self.maxSize, Self.ReadSize())
return nil
}
func (Self *ReceiveWindow) Read(p []byte, id int32) (n int, err error) {
if Self.closeOp {
return 0, io.EOF // receive close signal, returns eof
}
pOff := 0
l := 0
//logs.Warn("receive window read off, element.l", Self.off, Self.element.l)
copyData:
Self.bw.StartRead()
if Self.off == uint32(Self.element.l) {
// on the first Read method invoked, Self.off and Self.element.l
// both zero value
Self.element, err = Self.bufQueue.Pop()
// if the queue is empty, Pop method will wait until one element push
// into the queue successful, or timeout.
// timer start on timeout parameter is set up ,
// reset to 60s if timeout and data still available
Self.off = 0
if err != nil {
return // queue receive stop or time out, break the loop and return
}
//logs.Warn("pop element", Self.element.l, Self.element.part)
}
l = copy(p[pOff:], Self.element.buf[Self.off:])
Self.bw.SetCopySize(l)
pOff += l
Self.off += uint32(l)
Self.bufQueue.mutex.Lock()
Self.readLength += uint32(l)
//logs.Warn("window read length buf len", Self.readLength, Self.bufQueue.Len())
Self.bufQueue.mutex.Unlock()
n += l
l = 0
Self.bw.EndRead()
Self.sendStatus(id)
if pOff < len(p) && Self.element.part {
// element is a part of the segments, trying to fill up buf p
goto copyData
}
return // buf p is full or all of segments in buf, return
}
func (Self *ReceiveWindow) sendStatus(id int32) {
if Self.windowFull || Self.bufQueue.Len() == 0 {
// window is full before read or empty now
Self.windowFull = false
Self.mux.sendInfo(common.MUX_MSG_SEND_OK, id, Self.maxSize, Self.ReadSize())
// acknowledge other side, have empty some receive window space
//}
}
}
func (Self *ReceiveWindow) SetTimeOut(t time.Time) {
// waiting for FIFO queue Pop method
Self.bufQueue.SetTimeOut(t)
}
func (Self *ReceiveWindow) Stop() {
// queue has no more data to push, so unblock pop method
Self.once.Do(Self.bufQueue.Stop)
}
func (Self *ReceiveWindow) CloseWindow() {
Self.window.CloseWindow()
Self.Stop()
}
type SendWindow struct {
buf []byte
sentLength uint32
setSizeCh chan struct{}
setSizeWait bool
unSlide uint32
timeout time.Time
window
mutex sync.Mutex
}
func (Self *SendWindow) New(mux *Mux) {
Self.setSizeCh = make(chan struct{})
Self.maxSize = 4096
Self.mux = mux
Self.window.New()
}
func (Self *SendWindow) SetSendBuf(buf []byte) {
// send window buff from conn write method, set it to send window
Self.mutex.Lock()
Self.windowBuff = buf
Self.buf = buf
Self.off = 0
Self.mutex.Unlock()
}
func (Self *window) fullSlide() {
// slide by allocate
newBuf := common.WindowBuff.Get()
Self.liteSlide()
n := copy(newBuf[:Self.len()], Self.windowBuff)
common.WindowBuff.Put(Self.windowBuff)
Self.windowBuff = newBuf[:n]
func (Self *SendWindow) RemainingSize() (n uint32) {
if Self.maxSize >= Self.sentLength {
n = Self.maxSize - Self.sentLength
}
return
}
func (Self *window) liteSlide() {
// slide by re slice
Self.windowBuff = Self.windowBuff[Self.off:]
Self.off = 0
return
}
func (Self *window) Size() (n int) {
// receive Window remaining
n = common.PoolSizeWindow - Self.len()
return
}
func (Self *window) len() (n int) {
n = len(Self.windowBuff[Self.off:])
return
}
func (Self *window) cap() (n int) {
n = cap(Self.windowBuff[Self.off:])
return
}
func (Self *window) grow(n int) {
Self.windowBuff = Self.windowBuff[:Self.len()+n]
}
func (Self *window) Write(p []byte) (n int, err error) {
if Self.closeOp {
return 0, errors.New("conn.receiveWindow: write on closed window")
}
if len(p) > Self.Size() {
return 0, errors.New("conn.receiveWindow: write too large")
}
Self.mutex.Lock()
// slide the offset
if len(p) > Self.cap()-Self.len() {
// not enough space, need to allocate
Self.fullSlide()
} else {
// have enough space, re slice
Self.liteSlide()
}
length := Self.len() // length before grow
Self.grow(len(p)) // grow for copy
n = copy(Self.windowBuff[length:], p) // must copy data before allow Read
if Self.readWait {
// if there condition is length == 0 and
// Read method just take away all the windowBuff,
// this method will block until windowBuff is empty again
// allow continue read
defer Self.allowRead()
}
Self.mutex.Unlock()
return n, nil
}
func (Self *window) allowRead() (closed bool) {
if Self.closeOp {
close(Self.readOp)
return true
}
Self.mutex.Lock()
Self.readWait = false
Self.mutex.Unlock()
select {
case <-Self.closeOpCh:
close(Self.readOp)
return true
case Self.readOp <- struct{}{}:
return false
}
}
func (Self *window) Read(p []byte) (n int, err error) {
if Self.closeOp {
return 0, io.EOF // Write method receive close signal, returns eof
}
Self.mutex.Lock()
length := Self.len() // protect the length data, it invokes
// before Write lock and after Write unlock
if length == 0 {
// window is empty, waiting for Write method send a success readOp signal
// or get timeout or close
Self.readWait = true
Self.mutex.Unlock()
ticker := time.NewTicker(2 * time.Minute)
defer ticker.Stop()
select {
case _, ok := <-Self.readOp:
if !ok {
return 0, errors.New("conn.receiveWindow: window closed")
}
case <-Self.WriteEndOp:
return 0, io.EOF // receive eof signal, returns eof
case <-ticker.C:
return 0, errors.New("conn.receiveWindow: read time out")
case <-Self.closeOpCh:
close(Self.readOp)
return 0, io.EOF // receive close signal, returns eof
}
} else {
Self.mutex.Unlock()
}
minCopy := 512
for {
Self.mutex.Lock()
if len(p) == n || Self.len() == 0 {
Self.mutex.Unlock()
break
}
if n+minCopy > len(p) {
minCopy = len(p) - n
}
i := copy(p[n:n+minCopy], Self.windowBuff[Self.off:])
Self.off += uint16(i)
n += i
Self.mutex.Unlock()
}
p = p[:n]
return
}
func (Self *window) WriteTo() (p []byte, err error) {
if Self.closeOp {
return nil, errors.New("conn.writeWindow: window closed")
}
if Self.len() == 0 {
return nil, io.EOF
// send window buff is drain, return eof and get another one
}
var windowSize uint16
var ok bool
waiting:
ticker := time.NewTicker(2 * time.Minute)
defer ticker.Stop()
// waiting for receive usable window size, or timeout
select {
case windowSize, ok = <-Self.usableReceiveWindow:
if !ok {
return nil, errors.New("conn.writeWindow: window closed")
}
case <-ticker.C:
return nil, errors.New("conn.writeWindow: write to time out")
case <-Self.closeOpCh:
return nil, errors.New("conn.writeWindow: window closed")
}
if windowSize == 0 {
goto waiting // waiting for another usable window size
}
Self.mutex.Lock()
if windowSize > uint16(Self.len()) {
// usable window size is bigger than window buff size, send the full buff
windowSize = uint16(Self.len())
}
p = Self.windowBuff[Self.off : windowSize+Self.off]
Self.off += windowSize
Self.mutex.Unlock()
return
}
func (Self *window) SetAllowSize(value uint16) (closed bool) {
func (Self *SendWindow) SetSize(windowSize, readLength uint32) (closed bool) {
defer func() {
if recover() != nil {
closed = true
}
}()
if Self.closeOp {
close(Self.usableReceiveWindow)
close(Self.setSizeCh)
return true
}
select {
case Self.usableReceiveWindow <- value:
return false
case <-Self.closeOpCh:
close(Self.usableReceiveWindow)
return true
if readLength == 0 && Self.maxSize == windowSize {
logs.Warn("waiting for another window size")
return false // waiting for receive another usable window size
}
logs.Warn("set send window size to ", windowSize, readLength)
Self.mutex.Lock()
Self.slide(windowSize, readLength)
if Self.setSizeWait {
// send window into the wait status, need notice the channel
//logs.Warn("send window remaining size is 0 , wait")
if Self.RemainingSize() == 0 {
//logs.Warn("waiting for another window size after slide")
// keep the wait status
Self.mutex.Unlock()
return false
}
Self.setSizeWait = false
Self.mutex.Unlock()
//logs.Warn("send window remaining size is 0 starting wait")
select {
case Self.setSizeCh <- struct{}{}:
//logs.Warn("send window remaining size is 0 finish")
return false
case <-Self.closeOpCh:
close(Self.setSizeCh)
return true
}
}
// send window not into the wait status, so just do slide
Self.mutex.Unlock()
return false
}
func (Self *window) CloseWindow() {
Self.closeOp = true
Self.closeOpCh <- struct{}{}
Self.closeOpCh <- struct{}{}
Self.closeOpCh <- struct{}{}
close(Self.closeOpCh)
func (Self *SendWindow) slide(windowSize, readLength uint32) {
Self.sentLength -= readLength
Self.maxSize = windowSize
}
func (Self *SendWindow) WriteTo() (p []byte, part bool, err error) {
// returns buf segments, return only one segments, need a loop outside
// until err = io.EOF
if Self.closeOp {
return nil, false, errors.New("conn.writeWindow: window closed")
}
if Self.off == uint32(len(Self.buf)) {
return nil, false, io.EOF
// send window buff is drain, return eof and get another one
}
Self.mutex.Lock()
if Self.RemainingSize() == 0 {
Self.setSizeWait = true
Self.mutex.Unlock()
// into the wait status
err = Self.waitReceiveWindow()
if err != nil {
return nil, false, err
}
} else {
Self.mutex.Unlock()
}
Self.mutex.Lock()
var sendSize uint32
if len(Self.buf[Self.off:]) > common.MAXIMUM_SEGMENT_SIZE {
sendSize = common.MAXIMUM_SEGMENT_SIZE
part = true
} else {
sendSize = uint32(len(Self.buf[Self.off:]))
part = false
}
if Self.RemainingSize() < sendSize {
// usable window size is small than
// window MAXIMUM_SEGMENT_SIZE or send buf left
sendSize = Self.RemainingSize()
part = true
}
//logs.Warn("send size", sendSize)
p = Self.buf[Self.off : sendSize+Self.off]
Self.off += sendSize
Self.sentLength += sendSize
Self.mutex.Unlock()
return
}
type waitingCh struct {
nCh chan int
errCh chan error
func (Self *SendWindow) waitReceiveWindow() (err error) {
t := Self.timeout.Sub(time.Now())
if t < 0 {
t = time.Minute
}
timer := time.NewTimer(t)
defer timer.Stop()
// waiting for receive usable window size, or timeout
select {
case _, ok := <-Self.setSizeCh:
if !ok {
return errors.New("conn.writeWindow: window closed")
}
return nil
case <-timer.C:
return errors.New("conn.writeWindow: write to time out")
case <-Self.closeOpCh:
return errors.New("conn.writeWindow: window closed")
}
}
func (Self *waitingCh) new() {
Self.nCh = make(chan int)
Self.errCh = make(chan error)
func (Self *SendWindow) WriteFull(buf []byte, id int32) (n int, err error) {
Self.SetSendBuf(buf) // set the buf to send window
var bufSeg []byte
var part bool
for {
bufSeg, part, err = Self.WriteTo()
//logs.Warn("buf seg", len(bufSeg), part, err)
// get the buf segments from send window
if bufSeg == nil && part == false && err == io.EOF {
// send window is drain, break the loop
err = nil
break
}
if err != nil {
break
}
n += len(bufSeg)
if part {
Self.mux.sendInfo(common.MUX_NEW_MSG_PART, id, bufSeg)
} else {
Self.mux.sendInfo(common.MUX_NEW_MSG, id, bufSeg)
//logs.Warn("buf seg sent", len(bufSeg), part, err)
}
// send to other side, not send nil data to other side
}
//logs.Warn("buf seg write success")
return
}
func (Self *waitingCh) close() {
close(Self.nCh)
close(Self.errCh)
func (Self *SendWindow) SetTimeOut(t time.Time) {
// waiting for receive a receive window size
Self.timeout = t
}
type bandwidth struct {
lastReadStart time.Time
readStart time.Time
readEnd time.Time
bufLength int
lastBufLength int
count int8
readBW float64
writeBW float64
}
func (Self *bandwidth) StartRead() {
Self.lastReadStart, Self.readStart = Self.readStart, time.Now()
}
func (Self *bandwidth) EndRead() {
if !Self.lastReadStart.IsZero() {
if Self.count == 0 {
Self.calcWriteBandwidth()
}
}
Self.readEnd = time.Now()
if Self.count == 0 {
Self.calcReadBandwidth()
Self.count = -3
}
Self.count += 1
}
func (Self *bandwidth) SetCopySize(n int) {
// must be invoke between StartRead and EndRead
Self.lastBufLength, Self.bufLength = Self.bufLength, n
}
func (Self *bandwidth) calcReadBandwidth() {
// Bandwidth between nps and npc
readTime := Self.readEnd.Sub(Self.readStart)
Self.readBW = float64(Self.bufLength) / readTime.Seconds()
//logs.Warn("calc read bw", Self.bufLength, readTime.Seconds())
}
func (Self *bandwidth) calcWriteBandwidth() {
// Bandwidth between nps and user, npc and application
//logs.Warn("calc write bw")
writeTime := Self.readEnd.Sub(Self.lastReadStart)
Self.writeBW = float64(Self.lastBufLength) / writeTime.Seconds()
}
func (Self *bandwidth) Get() (bw float64) {
// The zero value, 0 for numeric types
if Self.writeBW == 0 && Self.readBW == 0 {
logs.Warn("bw both 0")
return 100
}
if Self.writeBW == 0 && Self.readBW != 0 {
return Self.readBW
}
if Self.readBW == 0 && Self.writeBW != 0 {
return Self.writeBW
}
return math.Min(Self.readBW, Self.writeBW)
}

View File

@ -3,6 +3,7 @@ package mux
import (
"bytes"
"errors"
"io"
"math"
"net"
"sync"
@ -22,8 +23,10 @@ type Mux struct {
closeChan chan struct{}
IsClose bool
pingOk int
latency float64
pingCh chan []byte
connType string
writeQueue Queue
writeQueue PriorityQueue
bufCh chan *bytes.Buffer
sync.Mutex
}
@ -38,13 +41,15 @@ func NewMux(c net.Conn, connType string) *Mux {
IsClose: false,
connType: connType,
bufCh: make(chan *bytes.Buffer),
pingCh: make(chan []byte),
}
m.writeQueue.New()
//read session by flag
go m.readSession()
m.readSession()
//ping
go m.ping()
go m.writeSession()
m.ping()
m.pingReturn()
m.writeSession()
return m
}
@ -83,10 +88,10 @@ func (s *Mux) Addr() net.Addr {
return s.conn.LocalAddr()
}
func (s *Mux) sendInfo(flag uint8, id int32, data interface{}) {
func (s *Mux) sendInfo(flag uint8, id int32, data ...interface{}) {
var err error
pack := common.MuxPack.Get()
err = pack.NewPac(flag, id, data)
err = pack.NewPac(flag, id, data...)
if err != nil {
common.MuxPack.Put(pack)
return
@ -98,11 +103,13 @@ func (s *Mux) sendInfo(flag uint8, id int32, data interface{}) {
func (s *Mux) writeSession() {
go s.packBuf()
go s.writeBuf()
<-s.closeChan
}
func (s *Mux) packBuf() {
for {
if s.IsClose {
break
}
pack := s.writeQueue.Pop()
buffer := common.BuffPool.Get()
err := pack.Pack(buffer)
@ -117,12 +124,14 @@ func (s *Mux) packBuf() {
case <-s.closeChan:
break
}
}
}
func (s *Mux) writeBuf() {
for {
if s.IsClose {
break
}
select {
case buffer := <-s.bufCh:
l := buffer.Len()
@ -141,8 +150,15 @@ func (s *Mux) writeBuf() {
func (s *Mux) ping() {
go func() {
ticker := time.NewTicker(time.Second * 1)
now, _ := time.Now().MarshalText()
s.sendInfo(common.MUX_PING_FLAG, common.MUX_PING, now)
// send the ping flag and get the latency first
ticker := time.NewTicker(time.Second * 15)
for {
if s.IsClose {
ticker.Stop()
break
}
select {
case <-ticker.C:
}
@ -150,7 +166,8 @@ func (s *Mux) ping() {
if (math.MaxInt32 - s.id) < 10000 {
s.id = 0
}
s.sendInfo(common.MUX_PING_FLAG, common.MUX_PING, nil)
now, _ := time.Now().MarshalText()
s.sendInfo(common.MUX_PING_FLAG, common.MUX_PING, now)
if s.pingOk > 10 && s.connType == "kcp" {
s.Close()
break
@ -158,15 +175,32 @@ func (s *Mux) ping() {
s.pingOk++
}
}()
select {
case <-s.closeChan:
}
}
func (s *Mux) pingReturn() {
go func() {
var now time.Time
var data []byte
for {
select {
case data = <-s.pingCh:
case <-s.closeChan:
break
}
_ = now.UnmarshalText(data)
s.latency = time.Since(now).Seconds()
s.sendInfo(common.MUX_PING_RETURN, common.MUX_PING, nil)
}
}()
}
func (s *Mux) readSession() {
go func() {
pack := common.MuxPack.Get()
for {
if s.IsClose {
break
}
pack = common.MuxPack.Get()
if pack.UnPack(s.conn) != nil {
break
@ -176,44 +210,25 @@ func (s *Mux) readSession() {
case common.MUX_NEW_CONN: //new connection
connection := NewConn(pack.Id, s)
s.connMap.Set(pack.Id, connection) //it has been set before send ok
go func(connection *conn) {
connection.sendWindow.SetAllowSize(512) // set the initial receive window
}(connection)
s.newConnCh <- connection
s.sendInfo(common.MUX_NEW_CONN_OK, connection.connId, nil)
continue
case common.MUX_PING_FLAG: //ping
go s.sendInfo(common.MUX_PING_RETURN, common.MUX_PING, nil)
s.pingCh <- pack.Content
continue
case common.MUX_PING_RETURN:
continue
}
if connection, ok := s.connMap.Get(pack.Id); ok && !connection.isClose {
switch pack.Flag {
case common.MUX_NEW_MSG: //new msg from remote connection
//insert wait queue
if connection.isClose {
continue
case common.MUX_NEW_MSG, common.MUX_NEW_MSG_PART: //new msg from remote connection
err := s.newMsg(connection, pack)
if err != nil {
connection.Close()
}
connection.receiveWindow.WriteWg.Add(1)
go func(connection *conn, content []byte) { // do not block read session
_, err := connection.receiveWindow.Write(content)
if err != nil {
logs.Warn("mux new msg err close", err)
connection.Close()
}
size := connection.receiveWindow.Size()
if size == 0 {
connection.receiveWindow.WindowFull = true
}
s.sendInfo(common.MUX_MSG_SEND_OK, connection.connId, size)
connection.receiveWindow.WriteWg.Done()
}(connection, pack.Content)
continue
case common.MUX_NEW_CONN_OK: //connection ok
connection.connStatusOkCh <- struct{}{}
go connection.sendWindow.SetAllowSize(512)
// set the initial receive window both side
continue
case common.MUX_NEW_CONN_Fail:
connection.connStatusFailCh <- struct{}{}
@ -222,15 +237,12 @@ func (s *Mux) readSession() {
if connection.isClose {
continue
}
go connection.sendWindow.SetAllowSize(pack.Window)
connection.sendWindow.SetSize(pack.Window, pack.ReadLength)
continue
case common.MUX_CONN_CLOSE: //close the connection
s.connMap.Delete(pack.Id)
connection.closeFlag = true
go func(connection *conn) {
connection.receiveWindow.WriteWg.Wait()
connection.receiveWindow.WriteEndOp <- struct{}{} // close signal to receive window
}(connection)
connection.receiveWindow.Stop() // close signal to receive window
continue
}
} else if pack.Flag == common.MUX_CONN_CLOSE {
@ -241,9 +253,24 @@ func (s *Mux) readSession() {
common.MuxPack.Put(pack)
s.Close()
}()
select {
case <-s.closeChan:
}
func (s *Mux) newMsg(connection *conn, pack *common.MuxPackager) (err error) {
if connection.isClose {
err = io.ErrClosedPipe
return
}
//logs.Warn("read session receive new msg", pack.Length)
//go func(connection *conn, pack *common.MuxPackager) { // do not block read session
//insert into queue
if pack.Flag == common.MUX_NEW_MSG_PART {
err = connection.receiveWindow.Write(pack.Content, pack.Length, true, pack.Id)
}
if pack.Flag == common.MUX_NEW_MSG {
err = connection.receiveWindow.Write(pack.Content, pack.Length, false, pack.Id)
}
//logs.Warn("read session write success", pack.Length)
return
}
func (s *Mux) Close() error {
@ -255,9 +282,6 @@ func (s *Mux) Close() error {
s.connMap.Close()
s.closeChan <- struct{}{}
s.closeChan <- struct{}{}
s.closeChan <- struct{}{}
s.closeChan <- struct{}{}
s.closeChan <- struct{}{}
close(s.newConnCh)
return s.conn.Close()
}

View File

@ -2,25 +2,54 @@ package mux
import (
"container/list"
"errors"
"github.com/cnlh/nps/lib/common"
"io"
"sync"
"time"
)
type Queue struct {
list *list.List
type QueueOp struct {
readOp chan struct{}
cleanOp chan struct{}
popWait bool
mutex sync.Mutex
}
func (Self *Queue) New() {
Self.list = list.New()
func (Self *QueueOp) New() {
Self.readOp = make(chan struct{})
Self.cleanOp = make(chan struct{}, 2)
}
func (Self *Queue) Push(packager *common.MuxPackager) {
func (Self *QueueOp) allowPop() (closed bool) {
Self.mutex.Lock()
Self.popWait = false
Self.mutex.Unlock()
select {
case Self.readOp <- struct{}{}:
return false
case <-Self.cleanOp:
return true
}
}
func (Self *QueueOp) Clean() {
Self.cleanOp <- struct{}{}
Self.cleanOp <- struct{}{}
close(Self.cleanOp)
}
type PriorityQueue struct {
list *list.List
QueueOp
}
func (Self *PriorityQueue) New() {
Self.list = list.New()
Self.QueueOp.New()
}
func (Self *PriorityQueue) Push(packager *common.MuxPackager) {
Self.mutex.Lock()
if Self.popWait {
defer Self.allowPop()
@ -35,28 +64,16 @@ func (Self *Queue) Push(packager *common.MuxPackager) {
return
}
func (Self *Queue) allowPop() (closed bool) {
Self.mutex.Lock()
Self.popWait = false
Self.mutex.Unlock()
select {
case Self.readOp <- struct{}{}:
return false
case <-Self.cleanOp:
return true
}
}
func (Self *Queue) insert(packager *common.MuxPackager) {
func (Self *PriorityQueue) insert(packager *common.MuxPackager) {
element := Self.list.Back()
for {
if element == nil { // Queue dose not have any of msg package with this close package id
if element == nil { // PriorityQueue dose not have any of msg package with this close package id
Self.list.PushFront(packager) // insert close package to first
break
}
if element.Value.(*common.MuxPackager).Flag == common.MUX_NEW_MSG &&
element.Value.(*common.MuxPackager).Id == packager.Id {
Self.list.InsertAfter(packager, element) // Queue has some msg package
Self.list.InsertAfter(packager, element) // PriorityQueue has some msg package
// with this close package id, insert close package after last msg package
break
}
@ -64,7 +81,7 @@ func (Self *Queue) insert(packager *common.MuxPackager) {
}
}
func (Self *Queue) Pop() (packager *common.MuxPackager) {
func (Self *PriorityQueue) Pop() (packager *common.MuxPackager) {
Self.mutex.Lock()
element := Self.list.Front()
if element != nil {
@ -73,7 +90,7 @@ func (Self *Queue) Pop() (packager *common.MuxPackager) {
Self.mutex.Unlock()
return
}
Self.popWait = true // Queue is empty, notice Push method
Self.popWait = true // PriorityQueue is empty, notice Push method
Self.mutex.Unlock()
select {
case <-Self.readOp:
@ -83,13 +100,90 @@ func (Self *Queue) Pop() (packager *common.MuxPackager) {
}
}
func (Self *Queue) Len() (n int) {
func (Self *PriorityQueue) Len() (n int) {
n = Self.list.Len()
return
}
func (Self *Queue) Clean() {
Self.cleanOp <- struct{}{}
Self.cleanOp <- struct{}{}
close(Self.cleanOp)
type ListElement struct {
buf []byte
l uint16
part bool
}
func (Self *ListElement) New(buf []byte, l uint16, part bool) (err error) {
if uint16(len(buf)) != l {
return errors.New("ListElement: buf length not match")
}
Self.buf = buf
Self.l = l
Self.part = part
return nil
}
type FIFOQueue struct {
list []*ListElement
length uint32
stopOp chan struct{}
timeout time.Time
QueueOp
}
func (Self *FIFOQueue) New() {
Self.QueueOp.New()
Self.stopOp = make(chan struct{}, 1)
}
func (Self *FIFOQueue) Push(element *ListElement) {
Self.mutex.Lock()
if Self.popWait {
defer Self.allowPop()
}
Self.list = append(Self.list, element)
Self.length += uint32(element.l)
Self.mutex.Unlock()
return
}
func (Self *FIFOQueue) Pop() (element *ListElement, err error) {
Self.mutex.Lock()
if len(Self.list) == 0 {
Self.popWait = true
Self.mutex.Unlock()
t := Self.timeout.Sub(time.Now())
if t <= 0 {
t = time.Minute
}
timer := time.NewTimer(t)
defer timer.Stop()
select {
case <-Self.readOp:
Self.mutex.Lock()
case <-Self.cleanOp:
return
case <-Self.stopOp:
err = io.EOF
return
case <-timer.C:
err = errors.New("mux.queue: read time out")
return
}
}
element = Self.list[0]
Self.list = Self.list[1:]
Self.length -= uint32(element.l)
Self.mutex.Unlock()
return
}
func (Self *FIFOQueue) Len() (n uint32) {
return Self.length
}
func (Self *FIFOQueue) Stop() {
Self.stopOp <- struct{}{}
}
func (Self *FIFOQueue) SetTimeOut(t time.Time) {
Self.timeout = t
}