notepad-plus-plus/boostregex/boost/regex/v5/perl_matcher_common.hpp

922 lines
27 KiB
C++

/*
*
* Copyright (c) 2002
* John Maddock
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
*/
/*
* LOCATION: see http://www.boost.org for most recent version.
* FILE perl_matcher_common.cpp
* VERSION see <boost/version.hpp>
* DESCRIPTION: Definitions of perl_matcher member functions that are
* common to both the recursive and non-recursive versions.
*/
#ifndef BOOST_REGEX_V5_PERL_MATCHER_COMMON_HPP
#define BOOST_REGEX_V5_PERL_MATCHER_COMMON_HPP
#ifdef BOOST_REGEX_MSVC
# pragma warning(push)
#pragma warning(disable:4459)
#if BOOST_REGEX_MSVC < 1910
#pragma warning(disable:4800)
#endif
#endif
namespace boost{
namespace BOOST_REGEX_DETAIL_NS{
#ifdef BOOST_REGEX_MSVC
# pragma warning(push)
#pragma warning(disable:26812)
#endif
template <class BidiIterator, class Allocator, class traits>
void perl_matcher<BidiIterator, Allocator, traits>::construct_init(const basic_regex<char_type, traits>& e, match_flag_type f)
{
typedef typename std::iterator_traits<BidiIterator>::iterator_category category;
typedef typename basic_regex<char_type, traits>::flag_type expression_flag_type;
if(e.empty())
{
// precondition failure: e is not a valid regex.
std::invalid_argument ex("Invalid regular expression object");
#ifndef BOOST_REGEX_STANDALONE
boost::throw_exception(ex);
#else
throw e;
#endif
}
pstate = 0;
m_match_flags = f;
estimate_max_state_count(static_cast<category*>(0));
expression_flag_type re_f = re.flags();
icase = re_f & regex_constants::icase;
if(!(m_match_flags & (match_perl|match_posix)))
{
if((re_f & (regbase::main_option_type|regbase::no_perl_ex)) == 0)
m_match_flags |= match_perl;
else if((re_f & (regbase::main_option_type|regbase::emacs_ex)) == (regbase::basic_syntax_group|regbase::emacs_ex))
m_match_flags |= match_perl;
else if((re_f & (regbase::main_option_type|regbase::literal)) == (regbase::literal))
m_match_flags |= match_perl;
else
m_match_flags |= match_posix;
}
if(m_match_flags & match_posix)
{
m_temp_match.reset(new match_results<BidiIterator, Allocator>());
m_presult = m_temp_match.get();
}
else
m_presult = &m_result;
m_stack_base = 0;
m_backup_state = 0;
// find the value to use for matching word boundaries:
m_word_mask = re.get_data().m_word_mask;
// find bitmask to use for matching '.':
match_any_mask = static_cast<unsigned char>((f & match_not_dot_newline) ? BOOST_REGEX_DETAIL_NS::test_not_newline : BOOST_REGEX_DETAIL_NS::test_newline);
// Disable match_any if requested in the state machine:
if(e.get_data().m_disable_match_any)
m_match_flags &= regex_constants::match_not_any;
}
#ifdef BOOST_REGEX_MSVC
# pragma warning(pop)
#endif
template <class BidiIterator, class Allocator, class traits>
void perl_matcher<BidiIterator, Allocator, traits>::estimate_max_state_count(std::random_access_iterator_tag*)
{
//
// How many states should we allow our machine to visit before giving up?
// This is a heuristic: it takes the greater of O(N^2) and O(NS^2)
// where N is the length of the string, and S is the number of states
// in the machine. It's tempting to up this to O(N^2S) or even O(N^2S^2)
// but these take unreasonably amounts of time to bale out in pathological
// cases.
//
// Calculate NS^2 first:
//
static const std::ptrdiff_t k = 100000;
std::ptrdiff_t dist = std::distance(base, last);
if(dist == 0)
dist = 1;
std::ptrdiff_t states = re.size();
if(states == 0)
states = 1;
if ((std::numeric_limits<std::ptrdiff_t>::max)() / states < states)
{
max_state_count = (std::min)((std::ptrdiff_t)BOOST_REGEX_MAX_STATE_COUNT, (std::numeric_limits<std::ptrdiff_t>::max)() - 2);
return;
}
states *= states;
if((std::numeric_limits<std::ptrdiff_t>::max)() / dist < states)
{
max_state_count = (std::min)((std::ptrdiff_t)BOOST_REGEX_MAX_STATE_COUNT, (std::numeric_limits<std::ptrdiff_t>::max)() - 2);
return;
}
states *= dist;
if((std::numeric_limits<std::ptrdiff_t>::max)() - k < states)
{
max_state_count = (std::min)((std::ptrdiff_t)BOOST_REGEX_MAX_STATE_COUNT, (std::numeric_limits<std::ptrdiff_t>::max)() - 2);
return;
}
states += k;
max_state_count = states;
//
// Now calculate N^2:
//
states = dist;
if((std::numeric_limits<std::ptrdiff_t>::max)() / dist < states)
{
max_state_count = (std::min)((std::ptrdiff_t)BOOST_REGEX_MAX_STATE_COUNT, (std::numeric_limits<std::ptrdiff_t>::max)() - 2);
return;
}
states *= dist;
if((std::numeric_limits<std::ptrdiff_t>::max)() - k < states)
{
max_state_count = (std::min)((std::ptrdiff_t)BOOST_REGEX_MAX_STATE_COUNT, (std::numeric_limits<std::ptrdiff_t>::max)() - 2);
return;
}
states += k;
//
// N^2 can be a very large number indeed, to prevent things getting out
// of control, cap the max states:
//
if(states > BOOST_REGEX_MAX_STATE_COUNT)
states = BOOST_REGEX_MAX_STATE_COUNT;
//
// If (the possibly capped) N^2 is larger than our first estimate,
// use this instead:
//
if(states > max_state_count)
max_state_count = states;
}
template <class BidiIterator, class Allocator, class traits>
inline void perl_matcher<BidiIterator, Allocator, traits>::estimate_max_state_count(void*)
{
// we don't know how long the sequence is:
max_state_count = BOOST_REGEX_MAX_STATE_COUNT;
}
template <class BidiIterator, class Allocator, class traits>
inline bool perl_matcher<BidiIterator, Allocator, traits>::match()
{
return match_imp();
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_imp()
{
// initialise our stack if we are non-recursive:
save_state_init init(&m_stack_base, &m_backup_state);
used_block_count = BOOST_REGEX_MAX_BLOCKS;
#if !defined(BOOST_NO_EXCEPTIONS)
try{
#endif
// reset our state machine:
position = base;
search_base = base;
state_count = 0;
m_match_flags |= regex_constants::match_all;
m_presult->set_size((m_match_flags & match_nosubs) ? 1u : static_cast<typename results_type::size_type>(1u + re.mark_count()), search_base, last);
m_presult->set_base(base);
m_presult->set_named_subs(this->re.get_named_subs());
if(m_match_flags & match_posix)
m_result = *m_presult;
verify_options(re.flags(), m_match_flags);
if(0 == match_prefix())
return false;
return (m_result[0].second == last) && (m_result[0].first == base);
#if !defined(BOOST_NO_EXCEPTIONS)
}
catch(...)
{
// unwind all pushed states, apart from anything else this
// ensures that all the states are correctly destructed
// not just the memory freed.
while(unwind(true)){}
throw;
}
#endif
}
template <class BidiIterator, class Allocator, class traits>
inline bool perl_matcher<BidiIterator, Allocator, traits>::find()
{
return find_imp();
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::find_imp()
{
static matcher_proc_type const s_find_vtable[7] =
{
&perl_matcher<BidiIterator, Allocator, traits>::find_restart_any,
&perl_matcher<BidiIterator, Allocator, traits>::find_restart_word,
&perl_matcher<BidiIterator, Allocator, traits>::find_restart_line,
&perl_matcher<BidiIterator, Allocator, traits>::find_restart_buf,
&perl_matcher<BidiIterator, Allocator, traits>::match_prefix,
&perl_matcher<BidiIterator, Allocator, traits>::find_restart_lit,
&perl_matcher<BidiIterator, Allocator, traits>::find_restart_lit,
};
// initialise our stack if we are non-recursive:
save_state_init init(&m_stack_base, &m_backup_state);
used_block_count = BOOST_REGEX_MAX_BLOCKS;
#if !defined(BOOST_NO_EXCEPTIONS)
try{
#endif
state_count = 0;
if((m_match_flags & regex_constants::match_init) == 0)
{
// reset our state machine:
search_base = position = base;
pstate = re.get_first_state();
m_presult->set_size((m_match_flags & match_nosubs) ? 1u : static_cast<typename results_type::size_type>(1u + re.mark_count()), base, last);
m_presult->set_base(base);
m_presult->set_named_subs(this->re.get_named_subs());
m_match_flags |= regex_constants::match_init;
}
else
{
// start again:
search_base = position = m_result[0].second;
// If last match was null and match_not_null was not set then increment
// our start position, otherwise we go into an infinite loop:
if(((m_match_flags & match_not_null) == 0) && (m_result.length() == 0))
{
if(position == last)
return false;
else
++position;
}
// reset $` start:
m_presult->set_size((m_match_flags & match_nosubs) ? 1u : static_cast<typename results_type::size_type>(1u + re.mark_count()), search_base, last);
//if((base != search_base) && (base == backstop))
// m_match_flags |= match_prev_avail;
}
if(m_match_flags & match_posix)
{
m_result.set_size(static_cast<typename results_type::size_type>(1u + re.mark_count()), base, last);
m_result.set_base(base);
}
verify_options(re.flags(), m_match_flags);
// find out what kind of expression we have:
unsigned type = (m_match_flags & match_continuous) ?
static_cast<unsigned int>(regbase::restart_continue)
: static_cast<unsigned int>(re.get_restart_type());
// call the appropriate search routine:
matcher_proc_type proc = s_find_vtable[type];
return (this->*proc)();
#if !defined(BOOST_NO_EXCEPTIONS)
}
catch(...)
{
// unwind all pushed states, apart from anything else this
// ensures that all the states are correctly destructed
// not just the memory freed.
while(unwind(true)){}
throw;
}
#endif
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_prefix()
{
m_has_partial_match = false;
m_has_found_match = false;
pstate = re.get_first_state();
m_presult->set_first(position);
restart = position;
match_all_states();
if(!m_has_found_match && m_has_partial_match && (m_match_flags & match_partial))
{
m_has_found_match = true;
m_presult->set_second(last, 0, false);
position = last;
if((m_match_flags & match_posix) == match_posix)
{
m_result.maybe_assign(*m_presult);
}
}
#ifdef BOOST_REGEX_MATCH_EXTRA
if(m_has_found_match && (match_extra & m_match_flags))
{
//
// we have a match, reverse the capture information:
//
for(unsigned i = 0; i < m_presult->size(); ++i)
{
typename sub_match<BidiIterator>::capture_sequence_type & seq = ((*m_presult)[i]).get_captures();
std::reverse(seq.begin(), seq.end());
}
}
#endif
if(!m_has_found_match)
position = restart; // reset search postion
return m_has_found_match;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_literal()
{
unsigned int len = static_cast<const re_literal*>(pstate)->length;
const char_type* what = reinterpret_cast<const char_type*>(static_cast<const re_literal*>(pstate) + 1);
//
// compare string with what we stored in
// our records:
for(unsigned int i = 0; i < len; ++i, ++position)
{
if((position == last) || (traits_inst.translate(*position, icase) != what[i]))
return false;
}
pstate = pstate->next.p;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_start_line()
{
if(position == backstop)
{
if((m_match_flags & match_prev_avail) == 0)
{
if((m_match_flags & match_not_bol) == 0)
{
pstate = pstate->next.p;
return true;
}
return false;
}
}
else if(m_match_flags & match_single_line)
return false;
// check the previous value character:
BidiIterator t(position);
--t;
if(position != last)
{
if(is_separator(*t) && !((*t == static_cast<char_type>('\r')) && (*position == static_cast<char_type>('\n'))) )
{
pstate = pstate->next.p;
return true;
}
}
else if(is_separator(*t))
{
pstate = pstate->next.p;
return true;
}
return false;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_end_line()
{
if(position != last)
{
if(m_match_flags & match_single_line)
return false;
// we're not yet at the end so *first is always valid:
if(is_separator(*position))
{
if((position != backstop) || (m_match_flags & match_prev_avail))
{
// check that we're not in the middle of \r\n sequence
BidiIterator t(position);
--t;
if((*t == static_cast<char_type>('\r')) && (*position == static_cast<char_type>('\n')))
{
return false;
}
}
pstate = pstate->next.p;
return true;
}
}
else if((m_match_flags & match_not_eol) == 0)
{
pstate = pstate->next.p;
return true;
}
return false;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_wild()
{
if(position == last)
return false;
if(is_separator(*position) && ((match_any_mask & static_cast<const re_dot*>(pstate)->mask) == 0))
return false;
if((*position == char_type(0)) && (m_match_flags & match_not_dot_null))
return false;
pstate = pstate->next.p;
++position;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_word_boundary()
{
bool b; // indcates whether next character is a word character
if(position != last)
{
// prev and this character must be opposites:
b = traits_inst.isctype(*position, m_word_mask);
}
else
{
if (m_match_flags & match_not_eow)
return false;
b = false;
}
if((position == backstop) && ((m_match_flags & match_prev_avail) == 0))
{
if(m_match_flags & match_not_bow)
return false;
else
b ^= false;
}
else
{
--position;
b ^= traits_inst.isctype(*position, m_word_mask);
++position;
}
if(b)
{
pstate = pstate->next.p;
return true;
}
return false; // no match if we get to here...
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_within_word()
{
bool b = !match_word_boundary();
if(b)
pstate = pstate->next.p;
return b;
/*
if(position == last)
return false;
// both prev and this character must be m_word_mask:
bool prev = traits_inst.isctype(*position, m_word_mask);
{
bool b;
if((position == backstop) && ((m_match_flags & match_prev_avail) == 0))
return false;
else
{
--position;
b = traits_inst.isctype(*position, m_word_mask);
++position;
}
if(b == prev)
{
pstate = pstate->next.p;
return true;
}
}
return false;
*/
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_word_start()
{
if(position == last)
return false; // can't be starting a word if we're already at the end of input
if(!traits_inst.isctype(*position, m_word_mask))
return false; // next character isn't a word character
if((position == backstop) && ((m_match_flags & match_prev_avail) == 0))
{
if(m_match_flags & match_not_bow)
return false; // no previous input
}
else
{
// otherwise inside buffer:
BidiIterator t(position);
--t;
if(traits_inst.isctype(*t, m_word_mask))
return false; // previous character not non-word
}
// OK we have a match:
pstate = pstate->next.p;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_word_end()
{
if((position == backstop) && ((m_match_flags & match_prev_avail) == 0))
return false; // start of buffer can't be end of word
BidiIterator t(position);
--t;
if(traits_inst.isctype(*t, m_word_mask) == false)
return false; // previous character wasn't a word character
if(position == last)
{
if(m_match_flags & match_not_eow)
return false; // end of buffer but not end of word
}
else
{
// otherwise inside buffer:
if(traits_inst.isctype(*position, m_word_mask))
return false; // next character is a word character
}
pstate = pstate->next.p;
return true; // if we fall through to here then we've succeeded
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_buffer_start()
{
if((position != backstop) || (m_match_flags & match_not_bob))
return false;
// OK match:
pstate = pstate->next.p;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_buffer_end()
{
if((position != last) || (m_match_flags & match_not_eob))
return false;
// OK match:
pstate = pstate->next.p;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_backref()
{
//
// Compare with what we previously matched.
// Note that this succeeds if the backref did not partisipate
// in the match, this is in line with ECMAScript, but not Perl
// or PCRE.
//
int index = static_cast<const re_brace*>(pstate)->index;
if(index >= hash_value_mask)
{
named_subexpressions::range_type r = re.get_data().equal_range(index);
BOOST_REGEX_ASSERT(r.first != r.second);
do
{
index = r.first->index;
++r.first;
}while((r.first != r.second) && ((*m_presult)[index].matched != true));
}
if((m_match_flags & match_perl) && !(*m_presult)[index].matched)
return false;
BidiIterator i = (*m_presult)[index].first;
BidiIterator j = (*m_presult)[index].second;
while(i != j)
{
if((position == last) || (traits_inst.translate(*position, icase) != traits_inst.translate(*i, icase)))
return false;
++i;
++position;
}
pstate = pstate->next.p;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_long_set()
{
typedef typename traits::char_class_type char_class_type;
// let the traits class do the work:
if(position == last)
return false;
BidiIterator t = re_is_set_member(position, last, static_cast<const re_set_long<char_class_type>*>(pstate), re.get_data(), icase);
if(t != position)
{
pstate = pstate->next.p;
position = t;
return true;
}
return false;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_set()
{
if(position == last)
return false;
if(static_cast<const re_set*>(pstate)->_map[static_cast<unsigned char>(traits_inst.translate(*position, icase))])
{
pstate = pstate->next.p;
++position;
return true;
}
return false;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_jump()
{
pstate = static_cast<const re_jump*>(pstate)->alt.p;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_combining()
{
if(position == last)
return false;
if(is_combining(traits_inst.translate(*position, icase)))
return false;
++position;
while((position != last) && is_combining(traits_inst.translate(*position, icase)))
++position;
pstate = pstate->next.p;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_soft_buffer_end()
{
if(m_match_flags & match_not_eob)
return false;
BidiIterator p(position);
while((p != last) && is_separator(traits_inst.translate(*p, icase)))++p;
if(p != last)
return false;
pstate = pstate->next.p;
return true;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_restart_continue()
{
if(position == search_base)
{
pstate = pstate->next.p;
return true;
}
return false;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_backstep()
{
#ifdef BOOST_REGEX_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
if( ::boost::is_random_access_iterator<BidiIterator>::value)
{
std::ptrdiff_t maxlen = std::distance(backstop, position);
if(maxlen < static_cast<const re_brace*>(pstate)->index)
return false;
std::advance(position, -static_cast<const re_brace*>(pstate)->index);
}
else
{
int c = static_cast<const re_brace*>(pstate)->index;
while(c--)
{
if(position == backstop)
return false;
--position;
}
}
pstate = pstate->next.p;
return true;
#ifdef BOOST_REGEX_MSVC
#pragma warning(pop)
#endif
}
template <class BidiIterator, class Allocator, class traits>
inline bool perl_matcher<BidiIterator, Allocator, traits>::match_assert_backref()
{
// return true if marked sub-expression N has been matched:
int index = static_cast<const re_brace*>(pstate)->index;
bool result = false;
if(index == 9999)
{
// Magic value for a (DEFINE) block:
return false;
}
else if(index > 0)
{
// Have we matched subexpression "index"?
// Check if index is a hash value:
if(index >= hash_value_mask)
{
named_subexpressions::range_type r = re.get_data().equal_range(index);
while(r.first != r.second)
{
if((*m_presult)[r.first->index].matched)
{
result = true;
break;
}
++r.first;
}
}
else
{
result = (*m_presult)[index].matched;
}
pstate = pstate->next.p;
}
else
{
// Have we recursed into subexpression "index"?
// If index == 0 then check for any recursion at all, otherwise for recursion to -index-1.
int idx = -(index+1);
if(idx >= hash_value_mask)
{
named_subexpressions::range_type r = re.get_data().equal_range(idx);
int stack_index = recursion_stack.empty() ? -1 : recursion_stack.back().idx;
while(r.first != r.second)
{
result |= (stack_index == r.first->index);
if(result)break;
++r.first;
}
}
else
{
result = !recursion_stack.empty() && ((recursion_stack.back().idx == idx) || (index == 0));
}
pstate = pstate->next.p;
}
return result;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_fail()
{
// Just force a backtrack:
return false;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::match_accept()
{
if(!recursion_stack.empty())
{
return skip_until_paren(recursion_stack.back().idx);
}
else
{
return skip_until_paren(INT_MAX);
}
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::find_restart_any()
{
#ifdef BOOST_REGEX_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
const unsigned char* _map = re.get_map();
while(true)
{
// skip everything we can't match:
while((position != last) && !can_start(*position, _map, (unsigned char)mask_any) )
++position;
if(position == last)
{
// run out of characters, try a null match if possible:
if(re.can_be_null())
return match_prefix();
break;
}
// now try and obtain a match:
if(match_prefix())
return true;
if(position == last)
return false;
++position;
}
return false;
#ifdef BOOST_REGEX_MSVC
#pragma warning(pop)
#endif
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::find_restart_word()
{
#ifdef BOOST_REGEX_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
// do search optimised for word starts:
const unsigned char* _map = re.get_map();
if((m_match_flags & match_prev_avail) || (position != base))
--position;
else if(match_prefix())
return true;
do
{
while((position != last) && traits_inst.isctype(*position, m_word_mask))
++position;
while((position != last) && !traits_inst.isctype(*position, m_word_mask))
++position;
if(position == last)
break;
if(can_start(*position, _map, (unsigned char)mask_any) )
{
if(match_prefix())
return true;
}
if(position == last)
break;
} while(true);
return false;
#ifdef BOOST_REGEX_MSVC
#pragma warning(pop)
#endif
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::find_restart_line()
{
// do search optimised for line starts:
const unsigned char* _map = re.get_map();
if(match_prefix())
return true;
while(position != last)
{
while((position != last) && !is_separator(*position))
++position;
if(position == last)
return false;
++position;
if(position == last)
{
if(re.can_be_null() && match_prefix())
return true;
return false;
}
if( can_start(*position, _map, (unsigned char)mask_any) )
{
if(match_prefix())
return true;
}
if(position == last)
return false;
//++position;
}
return false;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::find_restart_buf()
{
if((position == base) && ((m_match_flags & match_not_bob) == 0))
return match_prefix();
return false;
}
template <class BidiIterator, class Allocator, class traits>
bool perl_matcher<BidiIterator, Allocator, traits>::find_restart_lit()
{
return false;
}
} // namespace BOOST_REGEX_DETAIL_NS
} // namespace boost
#ifdef BOOST_REGEX_MSVC
# pragma warning(pop)
#endif
#endif