/* * * Copyright (c) 1998-2009 * John Maddock * * Use, modification and distribution are subject to the * Boost Software License, Version 1.0. (See accompanying file * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) * */ /* * LOCATION: see http://www.boost.org for most recent version. * FILE match_results.cpp * VERSION see * DESCRIPTION: Declares template class match_results. */ #ifndef BOOST_REGEX_V5_MATCH_RESULTS_HPP #define BOOST_REGEX_V5_MATCH_RESULTS_HPP namespace boost{ #ifdef BOOST_REGEX_MSVC #pragma warning(push) #pragma warning(disable : 4251 4459) #if BOOST_REGEX_MSVC < 1700 # pragma warning(disable : 4231) #endif # if BOOST_REGEX_MSVC < 1600 # pragma warning(disable : 4660) # endif #endif namespace BOOST_REGEX_DETAIL_NS{ class named_subexpressions; } template class match_results { private: typedef std::vector, Allocator> vector_type; public: typedef sub_match value_type; typedef typename std::allocator_traits::value_type const & const_reference; typedef const_reference reference; typedef typename vector_type::const_iterator const_iterator; typedef const_iterator iterator; typedef typename std::iterator_traits< BidiIterator>::difference_type difference_type; typedef typename std::allocator_traits::size_type size_type; typedef Allocator allocator_type; typedef typename std::iterator_traits< BidiIterator>::value_type char_type; typedef std::basic_string string_type; typedef BOOST_REGEX_DETAIL_NS::named_subexpressions named_sub_type; // construct/copy/destroy: explicit match_results(const Allocator& a = Allocator()) : m_subs(a), m_base(), m_null(), m_last_closed_paren(0), m_is_singular(true) {} // // IMPORTANT: in the code below, the crazy looking checks around m_is_singular are // all required because it is illegal to copy a singular iterator. // See https://svn.boost.org/trac/boost/ticket/3632. // match_results(const match_results& m) : m_subs(m.m_subs), m_base(), m_null(), m_named_subs(m.m_named_subs), m_last_closed_paren(m.m_last_closed_paren), m_is_singular(m.m_is_singular) { if(!m_is_singular) { m_base = m.m_base; m_null = m.m_null; } } match_results& operator=(const match_results& m) { m_subs = m.m_subs; m_named_subs = m.m_named_subs; m_last_closed_paren = m.m_last_closed_paren; m_is_singular = m.m_is_singular; if(!m_is_singular) { m_base = m.m_base; m_null = m.m_null; } return *this; } ~match_results(){} // size: size_type size() const { return empty() ? 0 : m_subs.size() - 2; } size_type max_size() const { return m_subs.max_size(); } bool empty() const { return m_subs.size() < 2; } // element access: difference_type length(int sub = 0) const { if(m_is_singular) raise_logic_error(); sub += 2; if((sub < (int)m_subs.size()) && (sub > 0)) return m_subs[sub].length(); return 0; } difference_type length(const char_type* sub) const { if(m_is_singular) raise_logic_error(); const char_type* sub_end = sub; while(*sub_end) ++sub_end; return length(named_subexpression_index(sub, sub_end)); } template difference_type length(const charT* sub) const { if(m_is_singular) raise_logic_error(); const charT* sub_end = sub; while(*sub_end) ++sub_end; return length(named_subexpression_index(sub, sub_end)); } template difference_type length(const std::basic_string& sub) const { return length(sub.c_str()); } difference_type position(size_type sub = 0) const { if(m_is_singular) raise_logic_error(); sub += 2; if(sub < m_subs.size()) { const sub_match& s = m_subs[sub]; if(s.matched || (sub == 2)) { return std::distance((BidiIterator)(m_base), (BidiIterator)(s.first)); } } return ~static_cast(0); } difference_type position(const char_type* sub) const { const char_type* sub_end = sub; while(*sub_end) ++sub_end; return position(named_subexpression_index(sub, sub_end)); } template difference_type position(const charT* sub) const { const charT* sub_end = sub; while(*sub_end) ++sub_end; return position(named_subexpression_index(sub, sub_end)); } template difference_type position(const std::basic_string& sub) const { return position(sub.c_str()); } string_type str(int sub = 0) const { if(m_is_singular) raise_logic_error(); sub += 2; string_type result; if(sub < (int)m_subs.size() && (sub > 0)) { const sub_match& s = m_subs[sub]; if(s.matched) { result = s.str(); } } return result; } string_type str(const char_type* sub) const { return (*this)[sub].str(); } template string_type str(const std::basic_string& sub) const { return (*this)[sub].str(); } template string_type str(const charT* sub) const { return (*this)[sub].str(); } template string_type str(const std::basic_string& sub) const { return (*this)[sub].str(); } const_reference operator[](int sub) const { if(m_is_singular && m_subs.empty()) raise_logic_error(); sub += 2; if(sub < (int)m_subs.size() && (sub >= 0)) { return m_subs[sub]; } return m_null; } // // Named sub-expressions: // const_reference named_subexpression(const char_type* i, const char_type* j) const { // // Scan for the leftmost *matched* subexpression with the specified named: // if(m_is_singular) raise_logic_error(); BOOST_REGEX_DETAIL_NS::named_subexpressions::range_type r = m_named_subs->equal_range(i, j); while((r.first != r.second) && ((*this)[r.first->index].matched == false)) ++r.first; return r.first != r.second ? (*this)[r.first->index] : m_null; } template const_reference named_subexpression(const charT* i, const charT* j) const { static_assert(sizeof(charT) <= sizeof(char_type), "Failed internal logic"); if(i == j) return m_null; std::vector s; while(i != j) s.insert(s.end(), *i++); return named_subexpression(&*s.begin(), &*s.begin() + s.size()); } int named_subexpression_index(const char_type* i, const char_type* j) const { // // Scan for the leftmost *matched* subexpression with the specified named. // If none found then return the leftmost expression with that name, // otherwise an invalid index: // if(m_is_singular) raise_logic_error(); BOOST_REGEX_DETAIL_NS::named_subexpressions::range_type s, r; s = r = m_named_subs->equal_range(i, j); while((r.first != r.second) && ((*this)[r.first->index].matched == false)) ++r.first; if(r.first == r.second) r = s; return r.first != r.second ? r.first->index : -20; } template int named_subexpression_index(const charT* i, const charT* j) const { static_assert(sizeof(charT) <= sizeof(char_type), "Failed internal logic"); if(i == j) return -20; std::vector s; while(i != j) s.insert(s.end(), *i++); return named_subexpression_index(&*s.begin(), &*s.begin() + s.size()); } template const_reference operator[](const std::basic_string& s) const { return named_subexpression(s.c_str(), s.c_str() + s.size()); } const_reference operator[](const char_type* p) const { const char_type* e = p; while(*e) ++e; return named_subexpression(p, e); } template const_reference operator[](const charT* p) const { static_assert(sizeof(charT) <= sizeof(char_type), "Failed internal logic"); if(*p == 0) return m_null; std::vector s; while(*p) s.insert(s.end(), *p++); return named_subexpression(&*s.begin(), &*s.begin() + s.size()); } template const_reference operator[](const std::basic_string& ns) const { static_assert(sizeof(charT) <= sizeof(char_type), "Failed internal logic"); if(ns.empty()) return m_null; std::vector s; for(unsigned i = 0; i < ns.size(); ++i) s.insert(s.end(), ns[i]); return named_subexpression(&*s.begin(), &*s.begin() + s.size()); } const_reference prefix() const { if(m_is_singular) raise_logic_error(); return (*this)[-1]; } const_reference suffix() const { if(m_is_singular) raise_logic_error(); return (*this)[-2]; } const_iterator begin() const { return (m_subs.size() > 2) ? (m_subs.begin() + 2) : m_subs.end(); } const_iterator end() const { return m_subs.end(); } // format: template OutputIterator format(OutputIterator out, Functor fmt, match_flag_type flags = format_default) const { if(m_is_singular) raise_logic_error(); typedef typename BOOST_REGEX_DETAIL_NS::compute_functor_type, OutputIterator>::type F; F func(fmt); return func(*this, out, flags); } template string_type format(Functor fmt, match_flag_type flags = format_default) const { if(m_is_singular) raise_logic_error(); std::basic_string result; BOOST_REGEX_DETAIL_NS::string_out_iterator > i(result); typedef typename BOOST_REGEX_DETAIL_NS::compute_functor_type, BOOST_REGEX_DETAIL_NS::string_out_iterator > >::type F; F func(fmt); func(*this, i, flags); return result; } // format with locale: template OutputIterator format(OutputIterator out, Functor fmt, match_flag_type flags, const RegexT& re) const { if(m_is_singular) raise_logic_error(); typedef ::boost::regex_traits_wrapper traits_type; typedef typename BOOST_REGEX_DETAIL_NS::compute_functor_type, OutputIterator, traits_type>::type F; F func(fmt); return func(*this, out, flags, re.get_traits()); } template string_type format(Functor fmt, match_flag_type flags, const RegexT& re) const { if(m_is_singular) raise_logic_error(); typedef ::boost::regex_traits_wrapper traits_type; std::basic_string result; BOOST_REGEX_DETAIL_NS::string_out_iterator > i(result); typedef typename BOOST_REGEX_DETAIL_NS::compute_functor_type, BOOST_REGEX_DETAIL_NS::string_out_iterator >, traits_type >::type F; F func(fmt); func(*this, i, flags, re.get_traits()); return result; } const_reference get_last_closed_paren()const { if(m_is_singular) raise_logic_error(); return m_last_closed_paren == 0 ? m_null : (*this)[m_last_closed_paren]; } allocator_type get_allocator() const { return m_subs.get_allocator(); } void swap(match_results& that) { std::swap(m_subs, that.m_subs); std::swap(m_named_subs, that.m_named_subs); std::swap(m_last_closed_paren, that.m_last_closed_paren); if(m_is_singular) { if(!that.m_is_singular) { m_base = that.m_base; m_null = that.m_null; } } else if(that.m_is_singular) { that.m_base = m_base; that.m_null = m_null; } else { std::swap(m_base, that.m_base); std::swap(m_null, that.m_null); } std::swap(m_is_singular, that.m_is_singular); } bool operator==(const match_results& that)const { if(m_is_singular) { return that.m_is_singular; } else if(that.m_is_singular) { return false; } return (m_subs == that.m_subs) && (m_base == that.m_base) && (m_last_closed_paren == that.m_last_closed_paren); } bool operator!=(const match_results& that)const { return !(*this == that); } #ifdef BOOST_REGEX_MATCH_EXTRA typedef typename sub_match::capture_sequence_type capture_sequence_type; const capture_sequence_type& captures(int i)const { if(m_is_singular) raise_logic_error(); return (*this)[i].captures(); } #endif // // private access functions: void set_second(BidiIterator i) { BOOST_REGEX_ASSERT(m_subs.size() > 2); m_subs[2].second = i; m_subs[2].matched = true; m_subs[0].first = i; m_subs[0].matched = (m_subs[0].first != m_subs[0].second); m_null.first = i; m_null.second = i; m_null.matched = false; m_is_singular = false; } void set_second(BidiIterator i, size_type pos, bool m = true, bool escape_k = false) { if(pos) m_last_closed_paren = static_cast(pos); pos += 2; BOOST_REGEX_ASSERT(m_subs.size() > pos); m_subs[pos].second = i; m_subs[pos].matched = m; if((pos == 2) && !escape_k) { m_subs[0].first = i; m_subs[0].matched = (m_subs[0].first != m_subs[0].second); m_null.first = i; m_null.second = i; m_null.matched = false; m_is_singular = false; } } void set_size(size_type n, BidiIterator i, BidiIterator j) { value_type v(j); size_type len = m_subs.size(); if(len > n + 2) { m_subs.erase(m_subs.begin()+n+2, m_subs.end()); std::fill(m_subs.begin(), m_subs.end(), v); } else { std::fill(m_subs.begin(), m_subs.end(), v); if(n+2 != len) m_subs.insert(m_subs.end(), n+2-len, v); } m_subs[1].first = i; m_last_closed_paren = 0; } void set_base(BidiIterator pos) { m_base = pos; } BidiIterator base()const { return m_base; } void set_first(BidiIterator i) { BOOST_REGEX_ASSERT(m_subs.size() > 2); // set up prefix: m_subs[1].second = i; m_subs[1].matched = (m_subs[1].first != i); // set up $0: m_subs[2].first = i; // zero out everything else: for(size_type n = 3; n < m_subs.size(); ++n) { m_subs[n].first = m_subs[n].second = m_subs[0].second; m_subs[n].matched = false; } } void set_first(BidiIterator i, size_type pos, bool escape_k = false) { BOOST_REGEX_ASSERT(pos+2 < m_subs.size()); if(pos || escape_k) { m_subs[pos+2].first = i; if(escape_k) { m_subs[1].second = i; m_subs[1].matched = (m_subs[1].first != m_subs[1].second); } } else set_first(i); } void maybe_assign(const match_results& m); void set_named_subs(std::shared_ptr subs) { m_named_subs = subs; } private: // // Error handler called when an uninitialized match_results is accessed: // static void raise_logic_error() { std::logic_error e("Attempt to access an uninitialized boost::match_results<> class."); #ifndef BOOST_REGEX_STANDALONE boost::throw_exception(e); #else throw e; #endif } vector_type m_subs; // subexpressions BidiIterator m_base; // where the search started from sub_match m_null; // a null match std::shared_ptr m_named_subs; // Shared copy of named subs in the regex object int m_last_closed_paren; // Last ) to be seen - used for formatting bool m_is_singular; // True if our stored iterators are singular }; template void match_results::maybe_assign(const match_results& m) { if(m_is_singular) { *this = m; return; } const_iterator p1, p2; p1 = begin(); p2 = m.begin(); // // Distances are measured from the start of *this* match, unless this isn't // a valid match in which case we use the start of the whole sequence. Note that // no subsequent match-candidate can ever be to the left of the first match found. // This ensures that when we are using bidirectional iterators, that distances // measured are as short as possible, and therefore as efficient as possible // to compute. Finally note that we don't use the "matched" data member to test // whether a sub-expression is a valid match, because partial matches set this // to false for sub-expression 0. // BidiIterator l_end = this->suffix().second; BidiIterator l_base = (p1->first == l_end) ? this->prefix().first : (*this)[0].first; difference_type len1 = 0; difference_type len2 = 0; difference_type base1 = 0; difference_type base2 = 0; std::size_t i; for(i = 0; i < size(); ++i, ++p1, ++p2) { // // Leftmost takes priority over longest; handle special cases // where distances need not be computed first (an optimisation // for bidirectional iterators: ensure that we don't accidently // compute the length of the whole sequence, as this can be really // expensive). // if(p1->first == l_end) { if(p2->first != l_end) { // p2 must be better than p1, and no need to calculate // actual distances: base1 = 1; base2 = 0; break; } else { // *p1 and *p2 are either unmatched or match end-of sequence, // either way no need to calculate distances: if((p1->matched == false) && (p2->matched == true)) break; if((p1->matched == true) && (p2->matched == false)) return; continue; } } else if(p2->first == l_end) { // p1 better than p2, and no need to calculate distances: return; } base1 = std::distance(l_base, p1->first); base2 = std::distance(l_base, p2->first); BOOST_REGEX_ASSERT(base1 >= 0); BOOST_REGEX_ASSERT(base2 >= 0); if(base1 < base2) return; if(base2 < base1) break; len1 = std::distance((BidiIterator)p1->first, (BidiIterator)p1->second); len2 = std::distance((BidiIterator)p2->first, (BidiIterator)p2->second); BOOST_REGEX_ASSERT(len1 >= 0); BOOST_REGEX_ASSERT(len2 >= 0); if((len1 != len2) || ((p1->matched == false) && (p2->matched == true))) break; if((p1->matched == true) && (p2->matched == false)) return; } if(i == size()) return; if(base2 < base1) *this = m; else if((len2 > len1) || ((p1->matched == false) && (p2->matched == true)) ) *this = m; } template void swap(match_results& a, match_results& b) { a.swap(b); } template std::basic_ostream& operator << (std::basic_ostream& os, const match_results& s) { return (os << s.str()); } #ifdef BOOST_REGEX_MSVC #pragma warning(pop) #endif } // namespace boost #endif