/* * * Copyright (c) 2002 * John Maddock * * Use, modification and distribution are subject to the * Boost Software License, Version 1.0. (See accompanying file * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) * */ /* * LOCATION: see http://www.boost.org for most recent version. * FILE perl_matcher_common.cpp * VERSION see * DESCRIPTION: Definitions of perl_matcher member functions that are * specific to the non-recursive implementation. */ #ifndef BOOST_REGEX_V5_PERL_MATCHER_NON_RECURSIVE_HPP #define BOOST_REGEX_V5_PERL_MATCHER_NON_RECURSIVE_HPP #include #ifdef BOOST_REGEX_MSVC # pragma warning(push) # pragma warning(disable: 4706 4459) #if BOOST_REGEX_MSVC < 1910 #pragma warning(disable:4800) #endif #endif namespace boost{ namespace BOOST_REGEX_DETAIL_NS{ template inline void inplace_destroy(T* p) { (void)p; // warning suppression p->~T(); } struct saved_state { union{ unsigned int state_id; // this padding ensures correct alignment on 64-bit platforms: std::size_t padding1; std::ptrdiff_t padding2; void* padding3; }; saved_state(unsigned i) : state_id(i) {} }; template struct saved_matched_paren : public saved_state { int index; sub_match sub; saved_matched_paren(int i, const sub_match& s) : saved_state(1), index(i), sub(s){} }; template struct saved_position : public saved_state { const re_syntax_base* pstate; BidiIterator position; saved_position(const re_syntax_base* ps, BidiIterator pos, int i) : saved_state(i), pstate(ps), position(pos){} }; template struct saved_assertion : public saved_position { bool positive; saved_assertion(bool p, const re_syntax_base* ps, BidiIterator pos) : saved_position(ps, pos, saved_type_assertion), positive(p){} }; template struct saved_repeater : public saved_state { repeater_count count; saved_repeater(int i, repeater_count** s, BidiIterator start, int current_recursion_id) : saved_state(saved_state_repeater_count), count(i, s, start, current_recursion_id){} }; struct saved_extra_block : public saved_state { saved_state *base, *end; saved_extra_block(saved_state* b, saved_state* e) : saved_state(saved_state_extra_block), base(b), end(e) {} }; struct save_state_init { saved_state** stack; save_state_init(saved_state** base, saved_state** end) : stack(base) { *base = static_cast(get_mem_block()); *end = reinterpret_cast(reinterpret_cast(*base)+BOOST_REGEX_BLOCKSIZE); --(*end); (void) new (*end)saved_state(0); BOOST_REGEX_ASSERT(*end > *base); } ~save_state_init() { put_mem_block(*stack); *stack = 0; } }; template struct saved_single_repeat : public saved_state { std::size_t count; const re_repeat* rep; BidiIterator last_position; saved_single_repeat(std::size_t c, const re_repeat* r, BidiIterator lp, int arg_id) : saved_state(arg_id), count(c), rep(r), last_position(lp){} }; template struct saved_recursion : public saved_state { saved_recursion(int idx, const re_syntax_base* p, Results* pr, Results* pr2) : saved_state(14), recursion_id(idx), preturn_address(p), internal_results(*pr), prior_results(*pr2) {} int recursion_id; const re_syntax_base* preturn_address; Results internal_results, prior_results; }; struct saved_change_case : public saved_state { bool icase; saved_change_case(bool c) : saved_state(18), icase(c) {} }; struct incrementer { incrementer(unsigned* pu) : m_pu(pu) { ++*m_pu; } ~incrementer() { --*m_pu; } bool operator > (unsigned i) { return *m_pu > i; } private: unsigned* m_pu; }; template bool perl_matcher::match_all_states() { static matcher_proc_type const s_match_vtable[34] = { (&perl_matcher::match_startmark), &perl_matcher::match_endmark, &perl_matcher::match_literal, &perl_matcher::match_start_line, &perl_matcher::match_end_line, &perl_matcher::match_wild, &perl_matcher::match_match, &perl_matcher::match_word_boundary, &perl_matcher::match_within_word, &perl_matcher::match_word_start, &perl_matcher::match_word_end, &perl_matcher::match_buffer_start, &perl_matcher::match_buffer_end, &perl_matcher::match_backref, &perl_matcher::match_long_set, &perl_matcher::match_set, &perl_matcher::match_jump, &perl_matcher::match_alt, &perl_matcher::match_rep, &perl_matcher::match_combining, &perl_matcher::match_soft_buffer_end, &perl_matcher::match_restart_continue, // Although this next line *should* be evaluated at compile time, in practice // some compilers (VC++) emit run-time initialisation which breaks thread // safety, so use a dispatch function instead: //(::boost::is_random_access_iterator::value ? &perl_matcher::match_dot_repeat_fast : &perl_matcher::match_dot_repeat_slow), &perl_matcher::match_dot_repeat_dispatch, &perl_matcher::match_char_repeat, &perl_matcher::match_set_repeat, &perl_matcher::match_long_set_repeat, &perl_matcher::match_backstep, &perl_matcher::match_assert_backref, &perl_matcher::match_toggle_case, &perl_matcher::match_recursion, &perl_matcher::match_fail, &perl_matcher::match_accept, &perl_matcher::match_commit, &perl_matcher::match_then, }; incrementer inc(&m_recursions); if(inc > 80) raise_error(traits_inst, regex_constants::error_complexity); push_recursion_stopper(); do{ while(pstate) { matcher_proc_type proc = s_match_vtable[pstate->type]; ++state_count; if(!(this->*proc)()) { if(state_count > max_state_count) raise_error(traits_inst, regex_constants::error_complexity); if((m_match_flags & match_partial) && (position == last) && (position != search_base)) m_has_partial_match = true; bool successful_unwind = unwind(false); if((m_match_flags & match_partial) && (position == last) && (position != search_base)) m_has_partial_match = true; if(!successful_unwind) return m_recursive_result; } } }while(unwind(true)); return m_recursive_result; } template void perl_matcher::extend_stack() { if(used_block_count) { --used_block_count; saved_state* stack_base; saved_state* backup_state; stack_base = static_cast(get_mem_block()); backup_state = reinterpret_cast(reinterpret_cast(stack_base)+BOOST_REGEX_BLOCKSIZE); saved_extra_block* block = static_cast(backup_state); --block; (void) new (block) saved_extra_block(m_stack_base, m_backup_state); m_stack_base = stack_base; m_backup_state = block; } else raise_error(traits_inst, regex_constants::error_stack); } template inline void perl_matcher::push_matched_paren(int index, const sub_match& sub) { //BOOST_REGEX_ASSERT(index); saved_matched_paren* pmp = static_cast*>(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast*>(m_backup_state); --pmp; } (void) new (pmp)saved_matched_paren(index, sub); m_backup_state = pmp; } template inline void perl_matcher::push_case_change(bool c) { //BOOST_REGEX_ASSERT(index); saved_change_case* pmp = static_cast(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast(m_backup_state); --pmp; } (void) new (pmp)saved_change_case(c); m_backup_state = pmp; } template inline void perl_matcher::push_recursion_stopper() { saved_state* pmp = m_backup_state; --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = m_backup_state; --pmp; } (void) new (pmp)saved_state(saved_type_recurse); m_backup_state = pmp; } template inline void perl_matcher::push_assertion(const re_syntax_base* ps, bool positive) { saved_assertion* pmp = static_cast*>(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast*>(m_backup_state); --pmp; } (void) new (pmp)saved_assertion(positive, ps, position); m_backup_state = pmp; } template inline void perl_matcher::push_alt(const re_syntax_base* ps) { saved_position* pmp = static_cast*>(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast*>(m_backup_state); --pmp; } (void) new (pmp)saved_position(ps, position, saved_state_alt); m_backup_state = pmp; } template inline void perl_matcher::push_non_greedy_repeat(const re_syntax_base* ps) { saved_position* pmp = static_cast*>(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast*>(m_backup_state); --pmp; } (void) new (pmp)saved_position(ps, position, saved_state_non_greedy_long_repeat); m_backup_state = pmp; } template inline void perl_matcher::push_repeater_count(int i, repeater_count** s) { saved_repeater* pmp = static_cast*>(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast*>(m_backup_state); --pmp; } (void) new (pmp)saved_repeater(i, s, position, this->recursion_stack.empty() ? (INT_MIN + 3) : this->recursion_stack.back().idx); m_backup_state = pmp; } template inline void perl_matcher::push_single_repeat(std::size_t c, const re_repeat* r, BidiIterator last_position, int state_id) { saved_single_repeat* pmp = static_cast*>(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast*>(m_backup_state); --pmp; } (void) new (pmp)saved_single_repeat(c, r, last_position, state_id); m_backup_state = pmp; } template inline void perl_matcher::push_recursion(int idx, const re_syntax_base* p, results_type* presults, results_type* presults2) { saved_recursion* pmp = static_cast*>(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast*>(m_backup_state); --pmp; } (void) new (pmp)saved_recursion(idx, p, presults, presults2); m_backup_state = pmp; } template bool perl_matcher::match_toggle_case() { // change our case sensitivity: push_case_change(this->icase); this->icase = static_cast(pstate)->icase; pstate = pstate->next.p; return true; } template bool perl_matcher::match_startmark() { int index = static_cast(pstate)->index; icase = static_cast(pstate)->icase; switch(index) { case 0: pstate = pstate->next.p; break; case -1: case -2: { // forward lookahead assert: const re_syntax_base* next_pstate = static_cast(pstate->next.p)->alt.p->next.p; pstate = pstate->next.p->next.p; push_assertion(next_pstate, index == -1); break; } case -3: { // independent sub-expression, currently this is always recursive: bool old_independent = m_independent; m_independent = true; const re_syntax_base* next_pstate = static_cast(pstate->next.p)->alt.p->next.p; pstate = pstate->next.p->next.p; bool r = false; #if !defined(BOOST_NO_EXCEPTIONS) try{ #endif r = match_all_states(); if(!r && !m_independent) { // Must be unwinding from a COMMIT/SKIP/PRUNE and the independent // sub failed, need to unwind everything else: while(unwind(false)); return false; } #if !defined(BOOST_NO_EXCEPTIONS) } catch(...) { pstate = next_pstate; // unwind all pushed states, apart from anything else this // ensures that all the states are correctly destructed // not just the memory freed. while(unwind(true)) {} throw; } #endif pstate = next_pstate; m_independent = old_independent; #ifdef BOOST_REGEX_MATCH_EXTRA if(r && (m_match_flags & match_extra)) { // // our captures have been stored in *m_presult // we need to unpack them, and insert them // back in the right order when we unwind the stack: // match_results temp_match(*m_presult); unsigned i; for(i = 0; i < temp_match.size(); ++i) (*m_presult)[i].get_captures().clear(); // match everything else: #if !defined(BOOST_NO_EXCEPTIONS) try{ #endif r = match_all_states(); #if !defined(BOOST_NO_EXCEPTIONS) } catch(...) { pstate = next_pstate; // unwind all pushed states, apart from anything else this // ensures that all the states are correctly destructed // not just the memory freed. while(unwind(true)) {} throw; } #endif // now place the stored captures back: for(i = 0; i < temp_match.size(); ++i) { typedef typename sub_match::capture_sequence_type seq; seq& s1 = (*m_presult)[i].get_captures(); const seq& s2 = temp_match[i].captures(); s1.insert( s1.end(), s2.begin(), s2.end()); } } #endif return r; } case -4: { // conditional expression: const re_alt* alt = static_cast(pstate->next.p); BOOST_REGEX_ASSERT(alt->type == syntax_element_alt); pstate = alt->next.p; if(pstate->type == syntax_element_assert_backref) { if(!match_assert_backref()) pstate = alt->alt.p; break; } else { // zero width assertion, have to match this recursively: BOOST_REGEX_ASSERT(pstate->type == syntax_element_startmark); bool negated = static_cast(pstate)->index == -2; BidiIterator saved_position = position; const re_syntax_base* next_pstate = static_cast(pstate->next.p)->alt.p->next.p; pstate = pstate->next.p->next.p; #if !defined(BOOST_NO_EXCEPTIONS) try{ #endif bool r = match_all_states(); position = saved_position; if(negated) r = !r; if(r) pstate = next_pstate; else pstate = alt->alt.p; #if !defined(BOOST_NO_EXCEPTIONS) } catch(...) { pstate = next_pstate; // unwind all pushed states, apart from anything else this // ensures that all the states are correctly destructed // not just the memory freed. while(unwind(true)){} throw; } #endif break; } } case -5: { push_matched_paren(0, (*m_presult)[0]); m_presult->set_first(position, 0, true); pstate = pstate->next.p; break; } default: { BOOST_REGEX_ASSERT(index > 0); if((m_match_flags & match_nosubs) == 0) { push_matched_paren(index, (*m_presult)[index]); m_presult->set_first(position, index); } pstate = pstate->next.p; break; } } return true; } template bool perl_matcher::match_alt() { bool take_first, take_second; const re_alt* jmp = static_cast(pstate); // find out which of these two alternatives we need to take: if(position == last) { take_first = jmp->can_be_null & mask_take; take_second = jmp->can_be_null & mask_skip; } else { take_first = can_start(*position, jmp->_map, (unsigned char)mask_take); take_second = can_start(*position, jmp->_map, (unsigned char)mask_skip); } if(take_first) { // we can take the first alternative, // see if we need to push next alternative: if(take_second) { push_alt(jmp->alt.p); } pstate = pstate->next.p; return true; } if(take_second) { pstate = jmp->alt.p; return true; } return false; // neither option is possible } template bool perl_matcher::match_rep() { #ifdef BOOST_REGEX_MSVC #pragma warning(push) #pragma warning(disable:4127 4244) #endif #ifdef BOOST_BORLANDC #pragma option push -w-8008 -w-8066 -w-8004 #endif const re_repeat* rep = static_cast(pstate); // find out which of these two alternatives we need to take: bool take_first, take_second; if(position == last) { take_first = rep->can_be_null & mask_take; take_second = rep->can_be_null & mask_skip; } else { take_first = can_start(*position, rep->_map, (unsigned char)mask_take); take_second = can_start(*position, rep->_map, (unsigned char)mask_skip); } if((m_backup_state->state_id != saved_state_repeater_count) || (static_cast*>(m_backup_state)->count.get_id() != rep->state_id) || (next_count->get_id() != rep->state_id)) { // we're moving to a different repeat from the last // one, so set up a counter object: push_repeater_count(rep->state_id, &next_count); } // // If we've had at least one repeat already, and the last one // matched the NULL string then set the repeat count to // maximum: // next_count->check_null_repeat(position, rep->max); if(next_count->get_count() < rep->min) { // we must take the repeat: if(take_first) { // increase the counter: ++(*next_count); pstate = rep->next.p; return true; } return false; } bool greedy = (rep->greedy) && (!(m_match_flags & regex_constants::match_any) || m_independent); if(greedy) { // try and take the repeat if we can: if((next_count->get_count() < rep->max) && take_first) { if(take_second) { // store position in case we fail: push_alt(rep->alt.p); } // increase the counter: ++(*next_count); pstate = rep->next.p; return true; } else if(take_second) { pstate = rep->alt.p; return true; } return false; // can't take anything, fail... } else // non-greedy { // try and skip the repeat if we can: if(take_second) { if((next_count->get_count() < rep->max) && take_first) { // store position in case we fail: push_non_greedy_repeat(rep->next.p); } pstate = rep->alt.p; return true; } if((next_count->get_count() < rep->max) && take_first) { // increase the counter: ++(*next_count); pstate = rep->next.p; return true; } } return false; #ifdef BOOST_BORLANDC #pragma option pop #endif #ifdef BOOST_REGEX_MSVC #pragma warning(pop) #endif } template bool perl_matcher::match_dot_repeat_slow() { std::size_t count = 0; const re_repeat* rep = static_cast(pstate); re_syntax_base* psingle = rep->next.p; // match compulsory repeats first: while(count < rep->min) { pstate = psingle; if(!match_wild()) return false; ++count; } bool greedy = (rep->greedy) && (!(m_match_flags & regex_constants::match_any) || m_independent); if(greedy) { // repeat for as long as we can: while(count < rep->max) { pstate = psingle; if(!match_wild()) break; ++count; } // remember where we got to if this is a leading repeat: if((rep->leading) && (count < rep->max)) restart = position; // push backtrack info if available: if(count - rep->min) push_single_repeat(count, rep, position, saved_state_greedy_single_repeat); // jump to next state: pstate = rep->alt.p; return true; } else { // non-greedy, push state and return true if we can skip: if(count < rep->max) push_single_repeat(count, rep, position, saved_state_rep_slow_dot); pstate = rep->alt.p; return (position == last) ? (rep->can_be_null & mask_skip) : can_start(*position, rep->_map, mask_skip); } } template bool perl_matcher::match_dot_repeat_fast() { if(m_match_flags & match_not_dot_null) return match_dot_repeat_slow(); if((static_cast(pstate->next.p)->mask & match_any_mask) == 0) return match_dot_repeat_slow(); const re_repeat* rep = static_cast(pstate); bool greedy = (rep->greedy) && (!(m_match_flags & regex_constants::match_any) || m_independent); std::size_t count = static_cast((std::min)(static_cast(std::distance(position, last)), greedy ? rep->max : rep->min)); if(rep->min > count) { position = last; return false; // not enough text left to match } std::advance(position, count); if(greedy) { if((rep->leading) && (count < rep->max)) restart = position; // push backtrack info if available: if(count - rep->min) push_single_repeat(count, rep, position, saved_state_greedy_single_repeat); // jump to next state: pstate = rep->alt.p; return true; } else { // non-greedy, push state and return true if we can skip: if(count < rep->max) push_single_repeat(count, rep, position, saved_state_rep_fast_dot); pstate = rep->alt.p; return (position == last) ? (rep->can_be_null & mask_skip) : can_start(*position, rep->_map, mask_skip); } } template bool perl_matcher::match_char_repeat() { #ifdef BOOST_REGEX_MSVC #pragma warning(push) #pragma warning(disable:4127) #endif #ifdef BOOST_BORLANDC #pragma option push -w-8008 -w-8066 -w-8004 #endif const re_repeat* rep = static_cast(pstate); BOOST_REGEX_ASSERT(1 == static_cast(rep->next.p)->length); const char_type what = *reinterpret_cast(static_cast(rep->next.p) + 1); std::size_t count = 0; // // start by working out how much we can skip: // bool greedy = (rep->greedy) && (!(m_match_flags & regex_constants::match_any) || m_independent); std::size_t desired = greedy ? rep->max : rep->min; if(::boost::is_random_access_iterator::value) { BidiIterator end = position; // Move end forward by "desired", preferably without using distance or advance if we can // as these can be slow for some iterator types. std::size_t len = (desired == (std::numeric_limits::max)()) ? 0u : std::distance(position, last); if(desired >= len) end = last; else std::advance(end, desired); BidiIterator origin(position); while((position != end) && (traits_inst.translate(*position, icase) == what)) { ++position; } count = (unsigned)std::distance(origin, position); } else { while((count < desired) && (position != last) && (traits_inst.translate(*position, icase) == what)) { ++position; ++count; } } if(count < rep->min) return false; if(greedy) { if((rep->leading) && (count < rep->max)) restart = position; // push backtrack info if available: if(count - rep->min) push_single_repeat(count, rep, position, saved_state_greedy_single_repeat); // jump to next state: pstate = rep->alt.p; return true; } else { // non-greedy, push state and return true if we can skip: if(count < rep->max) push_single_repeat(count, rep, position, saved_state_rep_char); pstate = rep->alt.p; return (position == last) ? (rep->can_be_null & mask_skip) : can_start(*position, rep->_map, mask_skip); } #ifdef BOOST_BORLANDC #pragma option pop #endif #ifdef BOOST_REGEX_MSVC #pragma warning(pop) #endif } template bool perl_matcher::match_set_repeat() { #ifdef BOOST_REGEX_MSVC #pragma warning(push) #pragma warning(disable:4127) #endif #ifdef BOOST_BORLANDC #pragma option push -w-8008 -w-8066 -w-8004 #endif const re_repeat* rep = static_cast(pstate); const unsigned char* map = static_cast(rep->next.p)->_map; std::size_t count = 0; // // start by working out how much we can skip: // bool greedy = (rep->greedy) && (!(m_match_flags & regex_constants::match_any) || m_independent); std::size_t desired = greedy ? rep->max : rep->min; if(::boost::is_random_access_iterator::value) { BidiIterator end = position; // Move end forward by "desired", preferably without using distance or advance if we can // as these can be slow for some iterator types. std::size_t len = (desired == (std::numeric_limits::max)()) ? 0u : std::distance(position, last); if(desired >= len) end = last; else std::advance(end, desired); BidiIterator origin(position); while((position != end) && map[static_cast(traits_inst.translate(*position, icase))]) { ++position; } count = (unsigned)std::distance(origin, position); } else { while((count < desired) && (position != last) && map[static_cast(traits_inst.translate(*position, icase))]) { ++position; ++count; } } if(count < rep->min) return false; if(greedy) { if((rep->leading) && (count < rep->max)) restart = position; // push backtrack info if available: if(count - rep->min) push_single_repeat(count, rep, position, saved_state_greedy_single_repeat); // jump to next state: pstate = rep->alt.p; return true; } else { // non-greedy, push state and return true if we can skip: if(count < rep->max) push_single_repeat(count, rep, position, saved_state_rep_short_set); pstate = rep->alt.p; return (position == last) ? (rep->can_be_null & mask_skip) : can_start(*position, rep->_map, mask_skip); } #ifdef BOOST_BORLANDC #pragma option pop #endif #ifdef BOOST_REGEX_MSVC #pragma warning(pop) #endif } template bool perl_matcher::match_long_set_repeat() { #ifdef BOOST_REGEX_MSVC #pragma warning(push) #pragma warning(disable:4127) #endif #ifdef BOOST_BORLANDC #pragma option push -w-8008 -w-8066 -w-8004 #endif typedef typename traits::char_class_type m_type; const re_repeat* rep = static_cast(pstate); const re_set_long* set = static_cast*>(pstate->next.p); std::size_t count = 0; // // start by working out how much we can skip: // bool greedy = (rep->greedy) && (!(m_match_flags & regex_constants::match_any) || m_independent); std::size_t desired = greedy ? rep->max : rep->min; if(::boost::is_random_access_iterator::value) { BidiIterator end = position; // Move end forward by "desired", preferably without using distance or advance if we can // as these can be slow for some iterator types. std::size_t len = (desired == (std::numeric_limits::max)()) ? 0u : std::distance(position, last); if(desired >= len) end = last; else std::advance(end, desired); BidiIterator origin(position); while((position != end) && (position != re_is_set_member(position, last, set, re.get_data(), icase))) { ++position; } count = (unsigned)std::distance(origin, position); } else { while((count < desired) && (position != last) && (position != re_is_set_member(position, last, set, re.get_data(), icase))) { ++position; ++count; } } if(count < rep->min) return false; if(greedy) { if((rep->leading) && (count < rep->max)) restart = position; // push backtrack info if available: if(count - rep->min) push_single_repeat(count, rep, position, saved_state_greedy_single_repeat); // jump to next state: pstate = rep->alt.p; return true; } else { // non-greedy, push state and return true if we can skip: if(count < rep->max) push_single_repeat(count, rep, position, saved_state_rep_long_set); pstate = rep->alt.p; return (position == last) ? (rep->can_be_null & mask_skip) : can_start(*position, rep->_map, mask_skip); } #ifdef BOOST_BORLANDC #pragma option pop #endif #ifdef BOOST_REGEX_MSVC #pragma warning(pop) #endif } template bool perl_matcher::match_recursion() { BOOST_REGEX_ASSERT(pstate->type == syntax_element_recurse); // // See if we've seen this recursion before at this location, if we have then // we need to prevent infinite recursion: // for(typename std::vector >::reverse_iterator i = recursion_stack.rbegin(); i != recursion_stack.rend(); ++i) { if(i->idx == static_cast(static_cast(pstate)->alt.p)->index) { if(i->location_of_start == position) return false; break; } } // // Backup call stack: // push_recursion_pop(); // // Set new call stack: // if(recursion_stack.capacity() == 0) { recursion_stack.reserve(50); } recursion_stack.push_back(recursion_info()); recursion_stack.back().preturn_address = pstate->next.p; recursion_stack.back().results = *m_presult; pstate = static_cast(pstate)->alt.p; recursion_stack.back().idx = static_cast(pstate)->index; recursion_stack.back().location_of_start = position; //if(static_cast(pstate)->state_id > 0) { push_repeater_count(-(2 + static_cast(pstate)->index), &next_count); } return true; } template bool perl_matcher::match_endmark() { int index = static_cast(pstate)->index; icase = static_cast(pstate)->icase; if(index > 0) { if((m_match_flags & match_nosubs) == 0) { m_presult->set_second(position, index); } if(!recursion_stack.empty()) { if(index == recursion_stack.back().idx) { pstate = recursion_stack.back().preturn_address; *m_presult = recursion_stack.back().results; push_recursion(recursion_stack.back().idx, recursion_stack.back().preturn_address, m_presult, &recursion_stack.back().results); recursion_stack.pop_back(); push_repeater_count(-(2 + index), &next_count); } } } else if((index < 0) && (index != -4)) { // matched forward lookahead: pstate = 0; return true; } pstate = pstate->next.p; return true; } template bool perl_matcher::match_match() { if(!recursion_stack.empty()) { BOOST_REGEX_ASSERT(0 == recursion_stack.back().idx); pstate = recursion_stack.back().preturn_address; push_recursion(recursion_stack.back().idx, recursion_stack.back().preturn_address, m_presult, &recursion_stack.back().results); *m_presult = recursion_stack.back().results; recursion_stack.pop_back(); return true; } if((m_match_flags & match_not_null) && (position == (*m_presult)[0].first)) return false; if((m_match_flags & match_all) && (position != last)) return false; if((m_match_flags & regex_constants::match_not_initial_null) && (position == search_base)) return false; m_presult->set_second(position); pstate = 0; m_has_found_match = true; if((m_match_flags & match_posix) == match_posix) { m_result.maybe_assign(*m_presult); if((m_match_flags & match_any) == 0) return false; } #ifdef BOOST_REGEX_MATCH_EXTRA if(match_extra & m_match_flags) { for(unsigned i = 0; i < m_presult->size(); ++i) if((*m_presult)[i].matched) ((*m_presult)[i]).get_captures().push_back((*m_presult)[i]); } #endif return true; } template bool perl_matcher::match_commit() { // Ideally we would just junk all the states that are on the stack, // however we might not unwind correctly in that case, so for now, // just mark that we don't backtrack into whatever is left (or rather // we'll unwind it unconditionally without pausing to try other matches). switch(static_cast(pstate)->action) { case commit_commit: restart = last; break; case commit_skip: if(base != position) { restart = position; // Have to decrement restart since it will get incremented again later: --restart; } break; case commit_prune: break; } saved_state* pmp = m_backup_state; --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = m_backup_state; --pmp; } (void) new (pmp)saved_state(16); m_backup_state = pmp; pstate = pstate->next.p; return true; } template bool perl_matcher::match_then() { // Just leave a mark that we need to skip to next alternative: saved_state* pmp = m_backup_state; --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = m_backup_state; --pmp; } (void) new (pmp)saved_state(17); m_backup_state = pmp; pstate = pstate->next.p; return true; } template bool perl_matcher::skip_until_paren(int index, bool have_match) { while(pstate) { if(pstate->type == syntax_element_endmark) { if(static_cast(pstate)->index == index) { if(have_match) return this->match_endmark(); pstate = pstate->next.p; return true; } else { // Unenclosed closing ), occurs when (*ACCEPT) is inside some other // parenthesis which may or may not have other side effects associated with it. const re_syntax_base* sp = pstate; match_endmark(); if(!pstate) { unwind(true); // unwind may leave pstate NULL if we've unwound a forward lookahead, in which // case just move to the next state and keep looking... if (!pstate) pstate = sp->next.p; } } continue; } else if(pstate->type == syntax_element_match) return true; else if(pstate->type == syntax_element_startmark) { int idx = static_cast(pstate)->index; pstate = pstate->next.p; skip_until_paren(idx, false); continue; } pstate = pstate->next.p; } return true; } /**************************************************************************** Unwind and associated procedures follow, these perform what normal stack unwinding does in the recursive implementation. ****************************************************************************/ template bool perl_matcher::unwind(bool have_match) { static unwind_proc_type const s_unwind_table[19] = { &perl_matcher::unwind_end, &perl_matcher::unwind_paren, &perl_matcher::unwind_recursion_stopper, &perl_matcher::unwind_assertion, &perl_matcher::unwind_alt, &perl_matcher::unwind_repeater_counter, &perl_matcher::unwind_extra_block, &perl_matcher::unwind_greedy_single_repeat, &perl_matcher::unwind_slow_dot_repeat, &perl_matcher::unwind_fast_dot_repeat, &perl_matcher::unwind_char_repeat, &perl_matcher::unwind_short_set_repeat, &perl_matcher::unwind_long_set_repeat, &perl_matcher::unwind_non_greedy_repeat, &perl_matcher::unwind_recursion, &perl_matcher::unwind_recursion_pop, &perl_matcher::unwind_commit, &perl_matcher::unwind_then, &perl_matcher::unwind_case, }; m_recursive_result = have_match; m_unwound_lookahead = false; m_unwound_alt = false; unwind_proc_type unwinder; bool cont; // // keep unwinding our stack until we have something to do: // do { unwinder = s_unwind_table[m_backup_state->state_id]; cont = (this->*unwinder)(m_recursive_result); }while(cont); // // return true if we have more states to try: // return pstate ? true : false; } template bool perl_matcher::unwind_end(bool) { pstate = 0; // nothing left to search return false; // end of stack nothing more to search } template bool perl_matcher::unwind_case(bool) { saved_change_case* pmp = static_cast(m_backup_state); icase = pmp->icase; boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp++); m_backup_state = pmp; return true; } template bool perl_matcher::unwind_paren(bool have_match) { saved_matched_paren* pmp = static_cast*>(m_backup_state); // restore previous values if no match was found: if(!have_match) { m_presult->set_first(pmp->sub.first, pmp->index, pmp->index == 0); m_presult->set_second(pmp->sub.second, pmp->index, pmp->sub.matched, pmp->index == 0); } #ifdef BOOST_REGEX_MATCH_EXTRA // // we have a match, push the capture information onto the stack: // else if(pmp->sub.matched && (match_extra & m_match_flags)) ((*m_presult)[pmp->index]).get_captures().push_back(pmp->sub); #endif // unwind stack: m_backup_state = pmp+1; boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp); return true; // keep looking } template bool perl_matcher::unwind_recursion_stopper(bool) { boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(m_backup_state++); pstate = 0; // nothing left to search return false; // end of stack nothing more to search } template bool perl_matcher::unwind_assertion(bool r) { saved_assertion* pmp = static_cast*>(m_backup_state); pstate = pmp->pstate; position = pmp->position; bool result = (r == pmp->positive); m_recursive_result = pmp->positive ? r : !r; boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp++); m_backup_state = pmp; m_unwound_lookahead = true; return !result; // return false if the assertion was matched to stop search. } template bool perl_matcher::unwind_alt(bool r) { saved_position* pmp = static_cast*>(m_backup_state); if(!r) { pstate = pmp->pstate; position = pmp->position; } boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp++); m_backup_state = pmp; m_unwound_alt = !r; return r; } template bool perl_matcher::unwind_repeater_counter(bool) { saved_repeater* pmp = static_cast*>(m_backup_state); boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp++); m_backup_state = pmp; return true; // keep looking } template bool perl_matcher::unwind_extra_block(bool) { saved_extra_block* pmp = static_cast(m_backup_state); void* condemmed = m_stack_base; m_stack_base = pmp->base; m_backup_state = pmp->end; boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp); put_mem_block(condemmed); return true; // keep looking } template inline void perl_matcher::destroy_single_repeat() { saved_single_repeat* p = static_cast*>(m_backup_state); boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(p++); m_backup_state = p; } template bool perl_matcher::unwind_greedy_single_repeat(bool r) { saved_single_repeat* pmp = static_cast*>(m_backup_state); // if we have a match, just discard this state: if(r) { destroy_single_repeat(); return true; } const re_repeat* rep = pmp->rep; std::size_t count = pmp->count; BOOST_REGEX_ASSERT(rep->next.p != 0); BOOST_REGEX_ASSERT(rep->alt.p != 0); count -= rep->min; if((m_match_flags & match_partial) && (position == last)) m_has_partial_match = true; BOOST_REGEX_ASSERT(count); position = pmp->last_position; // backtrack till we can skip out: do { --position; --count; ++state_count; }while(count && !can_start(*position, rep->_map, mask_skip)); // if we've hit base, destroy this state: if(count == 0) { destroy_single_repeat(); if(!can_start(*position, rep->_map, mask_skip)) return true; } else { pmp->count = count + rep->min; pmp->last_position = position; } pstate = rep->alt.p; return false; } template bool perl_matcher::unwind_slow_dot_repeat(bool r) { saved_single_repeat* pmp = static_cast*>(m_backup_state); // if we have a match, just discard this state: if(r) { destroy_single_repeat(); return true; } const re_repeat* rep = pmp->rep; std::size_t count = pmp->count; BOOST_REGEX_ASSERT(rep->type == syntax_element_dot_rep); BOOST_REGEX_ASSERT(rep->next.p != 0); BOOST_REGEX_ASSERT(rep->alt.p != 0); BOOST_REGEX_ASSERT(rep->next.p->type == syntax_element_wild); BOOST_REGEX_ASSERT(count < rep->max); pstate = rep->next.p; position = pmp->last_position; if(position != last) { // wind forward until we can skip out of the repeat: do { if(!match_wild()) { // failed repeat match, discard this state and look for another: destroy_single_repeat(); return true; } ++count; ++state_count; pstate = rep->next.p; }while((count < rep->max) && (position != last) && !can_start(*position, rep->_map, mask_skip)); } if(position == last) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if((m_match_flags & match_partial) && (position == last) && (position != search_base)) m_has_partial_match = true; if(0 == (rep->can_be_null & mask_skip)) return true; } else if(count == rep->max) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if(!can_start(*position, rep->_map, mask_skip)) return true; } else { pmp->count = count; pmp->last_position = position; } pstate = rep->alt.p; return false; } template bool perl_matcher::unwind_fast_dot_repeat(bool r) { saved_single_repeat* pmp = static_cast*>(m_backup_state); // if we have a match, just discard this state: if(r) { destroy_single_repeat(); return true; } const re_repeat* rep = pmp->rep; std::size_t count = pmp->count; BOOST_REGEX_ASSERT(count < rep->max); position = pmp->last_position; if(position != last) { // wind forward until we can skip out of the repeat: do { ++position; ++count; ++state_count; }while((count < rep->max) && (position != last) && !can_start(*position, rep->_map, mask_skip)); } // remember where we got to if this is a leading repeat: if((rep->leading) && (count < rep->max)) restart = position; if(position == last) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if((m_match_flags & match_partial) && (position == last) && (position != search_base)) m_has_partial_match = true; if(0 == (rep->can_be_null & mask_skip)) return true; } else if(count == rep->max) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if(!can_start(*position, rep->_map, mask_skip)) return true; } else { pmp->count = count; pmp->last_position = position; } pstate = rep->alt.p; return false; } template bool perl_matcher::unwind_char_repeat(bool r) { saved_single_repeat* pmp = static_cast*>(m_backup_state); // if we have a match, just discard this state: if(r) { destroy_single_repeat(); return true; } const re_repeat* rep = pmp->rep; std::size_t count = pmp->count; pstate = rep->next.p; const char_type what = *reinterpret_cast(static_cast(pstate) + 1); position = pmp->last_position; BOOST_REGEX_ASSERT(rep->type == syntax_element_char_rep); BOOST_REGEX_ASSERT(rep->next.p != 0); BOOST_REGEX_ASSERT(rep->alt.p != 0); BOOST_REGEX_ASSERT(rep->next.p->type == syntax_element_literal); BOOST_REGEX_ASSERT(count < rep->max); if(position != last) { // wind forward until we can skip out of the repeat: do { if(traits_inst.translate(*position, icase) != what) { // failed repeat match, discard this state and look for another: destroy_single_repeat(); return true; } ++count; ++ position; ++state_count; pstate = rep->next.p; }while((count < rep->max) && (position != last) && !can_start(*position, rep->_map, mask_skip)); } // remember where we got to if this is a leading repeat: if((rep->leading) && (count < rep->max)) restart = position; if(position == last) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if((m_match_flags & match_partial) && (position == last) && (position != search_base)) m_has_partial_match = true; if(0 == (rep->can_be_null & mask_skip)) return true; } else if(count == rep->max) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if(!can_start(*position, rep->_map, mask_skip)) return true; } else { pmp->count = count; pmp->last_position = position; } pstate = rep->alt.p; return false; } template bool perl_matcher::unwind_short_set_repeat(bool r) { saved_single_repeat* pmp = static_cast*>(m_backup_state); // if we have a match, just discard this state: if(r) { destroy_single_repeat(); return true; } const re_repeat* rep = pmp->rep; std::size_t count = pmp->count; pstate = rep->next.p; const unsigned char* map = static_cast(rep->next.p)->_map; position = pmp->last_position; BOOST_REGEX_ASSERT(rep->type == syntax_element_short_set_rep); BOOST_REGEX_ASSERT(rep->next.p != 0); BOOST_REGEX_ASSERT(rep->alt.p != 0); BOOST_REGEX_ASSERT(rep->next.p->type == syntax_element_set); BOOST_REGEX_ASSERT(count < rep->max); if(position != last) { // wind forward until we can skip out of the repeat: do { if(!map[static_cast(traits_inst.translate(*position, icase))]) { // failed repeat match, discard this state and look for another: destroy_single_repeat(); return true; } ++count; ++ position; ++state_count; pstate = rep->next.p; }while((count < rep->max) && (position != last) && !can_start(*position, rep->_map, mask_skip)); } // remember where we got to if this is a leading repeat: if((rep->leading) && (count < rep->max)) restart = position; if(position == last) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if((m_match_flags & match_partial) && (position == last) && (position != search_base)) m_has_partial_match = true; if(0 == (rep->can_be_null & mask_skip)) return true; } else if(count == rep->max) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if(!can_start(*position, rep->_map, mask_skip)) return true; } else { pmp->count = count; pmp->last_position = position; } pstate = rep->alt.p; return false; } template bool perl_matcher::unwind_long_set_repeat(bool r) { typedef typename traits::char_class_type m_type; saved_single_repeat* pmp = static_cast*>(m_backup_state); // if we have a match, just discard this state: if(r) { destroy_single_repeat(); return true; } const re_repeat* rep = pmp->rep; std::size_t count = pmp->count; pstate = rep->next.p; const re_set_long* set = static_cast*>(pstate); position = pmp->last_position; BOOST_REGEX_ASSERT(rep->type == syntax_element_long_set_rep); BOOST_REGEX_ASSERT(rep->next.p != 0); BOOST_REGEX_ASSERT(rep->alt.p != 0); BOOST_REGEX_ASSERT(rep->next.p->type == syntax_element_long_set); BOOST_REGEX_ASSERT(count < rep->max); if(position != last) { // wind forward until we can skip out of the repeat: do { if(position == re_is_set_member(position, last, set, re.get_data(), icase)) { // failed repeat match, discard this state and look for another: destroy_single_repeat(); return true; } ++position; ++count; ++state_count; pstate = rep->next.p; }while((count < rep->max) && (position != last) && !can_start(*position, rep->_map, mask_skip)); } // remember where we got to if this is a leading repeat: if((rep->leading) && (count < rep->max)) restart = position; if(position == last) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if((m_match_flags & match_partial) && (position == last) && (position != search_base)) m_has_partial_match = true; if(0 == (rep->can_be_null & mask_skip)) return true; } else if(count == rep->max) { // can't repeat any more, remove the pushed state: destroy_single_repeat(); if(!can_start(*position, rep->_map, mask_skip)) return true; } else { pmp->count = count; pmp->last_position = position; } pstate = rep->alt.p; return false; } template bool perl_matcher::unwind_non_greedy_repeat(bool r) { saved_position* pmp = static_cast*>(m_backup_state); if(!r) { position = pmp->position; pstate = pmp->pstate; ++(*next_count); } boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp++); m_backup_state = pmp; return r; } template bool perl_matcher::unwind_recursion(bool r) { // We are backtracking back inside a recursion, need to push the info // back onto the recursion stack, and do so unconditionally, otherwise // we can get mismatched pushes and pops... saved_recursion* pmp = static_cast*>(m_backup_state); if (!r) { recursion_stack.push_back(recursion_info()); recursion_stack.back().idx = pmp->recursion_id; recursion_stack.back().preturn_address = pmp->preturn_address; recursion_stack.back().results = pmp->prior_results; recursion_stack.back().location_of_start = position; *m_presult = pmp->internal_results; } boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp++); m_backup_state = pmp; return true; } template bool perl_matcher::unwind_recursion_pop(bool r) { // Backtracking out of a recursion, we must pop state off the recursion // stack unconditionally to ensure matched pushes and pops: saved_state* pmp = static_cast(m_backup_state); if (!r && !recursion_stack.empty()) { *m_presult = recursion_stack.back().results; position = recursion_stack.back().location_of_start; recursion_stack.pop_back(); } boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(pmp++); m_backup_state = pmp; return true; } template void perl_matcher::push_recursion_pop() { saved_state* pmp = static_cast(m_backup_state); --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = static_cast(m_backup_state); --pmp; } (void) new (pmp)saved_state(15); m_backup_state = pmp; } template bool perl_matcher::unwind_commit(bool b) { boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(m_backup_state++); while(unwind(b) && !m_unwound_lookahead){} if(m_unwound_lookahead && pstate) { // // If we stop because we just unwound an assertion, put the // commit state back on the stack again: // m_unwound_lookahead = false; saved_state* pmp = m_backup_state; --pmp; if(pmp < m_stack_base) { extend_stack(); pmp = m_backup_state; --pmp; } (void) new (pmp)saved_state(16); m_backup_state = pmp; } // This prevents us from stopping when we exit from an independent sub-expression: m_independent = false; return false; } template bool perl_matcher::unwind_then(bool b) { // Unwind everything till we hit an alternative: boost::BOOST_REGEX_DETAIL_NS::inplace_destroy(m_backup_state++); bool result = false; result = unwind(b); while(result && !m_unwound_alt) { result = unwind(b); } // We're now pointing at the next alternative, need one more backtrack // since *all* the other alternatives must fail once we've reached a THEN clause: if(result && m_unwound_alt) unwind(b); return false; } } // namespace BOOST_REGEX_DETAIL_NS } // namespace boost #ifdef BOOST_REGEX_MSVC # pragma warning(pop) #endif #endif