You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
notepad-plus-plus/scintilla/scripts/GenerateCaseConvert.py

128 lines
4.6 KiB

#!/usr/bin/env python3
# Script to generate CaseConvert.cxx from Python's Unicode data
# Should be run rarely when a Python with a new version of Unicode data is available.
# Requires Python 3.3 or later
# Should not be run with old versions of Python.
# Current best approach divides case conversions into two cases:
# simple symmetric and complex.
# Simple symmetric is where a lower and upper case pair convert to each
# other and the folded form is the same as the lower case.
# There are 1006 symmetric pairs.
# These are further divided into ranges (stored as lower, upper, range length,
# range pitch and singletons (stored as lower, upper).
# Complex is for cases that don't fit the above: where there are multiple
# characters in one of the forms or fold is different to lower or
# lower(upper(x)) or upper(lower(x)) are not x. These are represented as UTF-8
# strings with original, folded, upper, and lower separated by '|'.
# There are 126 complex cases.
import itertools, string, sys
from FileGenerator import Regenerate
def contiguousRanges(l, diff):
# l is s list of lists
# group into lists where first element of each element differs by diff
out = [[l[0]]]
for s in l[1:]:
if s[0] != out[-1][-1][0] + diff:
out.append([])
out[-1].append(s)
return out
def flatten(listOfLists):
"Flatten one level of nesting"
return itertools.chain.from_iterable(listOfLists)
def conversionSets():
# For all Unicode characters, see whether they have case conversions
# Return 2 sets: one of simple symmetric conversion cases and another
# with complex cases.
complexes = []
symmetrics = []
for ch in range(sys.maxunicode + 1):
if ch >= 0xd800 and ch <= 0xDBFF:
continue
if ch >= 0xdc00 and ch <= 0xDFFF:
continue
uch = chr(ch)
fold = uch.casefold()
upper = uch.upper()
lower = uch.lower()
symmetric = False
if uch != upper and len(upper) == 1 and uch == lower and uch == fold:
lowerUpper = upper.lower()
foldUpper = upper.casefold()
if lowerUpper == foldUpper and lowerUpper == uch:
symmetric = True
symmetrics.append((ch, ord(upper), ch - ord(upper)))
if uch != lower and len(lower) == 1 and uch == upper and lower == fold:
upperLower = lower.upper()
if upperLower == uch:
symmetric = True
if fold == uch:
fold = ""
if upper == uch:
upper = ""
if lower == uch:
lower = ""
if (fold or upper or lower) and not symmetric:
complexes.append((uch, fold, upper, lower))
return symmetrics, complexes
def groupRanges(symmetrics):
# Group the symmetrics into groups where possible, returning a list
# of ranges and a list of symmetrics that didn't fit into a range
def distance(s):
return s[2]
groups = []
uniquekeys = []
for k, g in itertools.groupby(symmetrics, distance):
groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)
contiguousGroups = flatten([contiguousRanges(g, 1) for g in groups])
longGroups = [(x[0][0], x[0][1], len(x), 1) for x in contiguousGroups if len(x) > 4]
oneDiffs = [s for s in symmetrics if s[2] == 1]
contiguousOnes = flatten([contiguousRanges(g, 2) for g in [oneDiffs]])
longOneGroups = [(x[0][0], x[0][1], len(x), 2) for x in contiguousOnes if len(x) > 4]
rangeGroups = sorted(longGroups+longOneGroups, key=lambda s: s[0])
rangeCoverage = list(flatten([range(r[0], r[0]+r[2]*r[3], r[3]) for r in rangeGroups]))
nonRanges = [(l, u) for l, u, _d in symmetrics if l not in rangeCoverage]
return rangeGroups, nonRanges
def escape(s):
return "".join((chr(c) if chr(c) in string.ascii_letters else "\\x%x" % c) for c in s.encode('utf-8'))
def updateCaseConvert():
symmetrics, complexes = conversionSets()
rangeGroups, nonRanges = groupRanges(symmetrics)
print(len(rangeGroups), "ranges")
rangeLines = ["%d,%d,%d,%d," % x for x in rangeGroups]
print(len(nonRanges), "non ranges")
nonRangeLines = ["%d,%d," % x for x in nonRanges]
print(len(symmetrics), "symmetric")
complexLines = ['"%s|%s|%s|%s|"' % tuple(escape(t) for t in x) for x in complexes]
print(len(complexLines), "complex")
Regenerate("../src/CaseConvert.cxx", "//", rangeLines, nonRangeLines, complexLines)
updateCaseConvert()