k3s/vendor/github.com/flannel-io/flannel/backend/vxlan/vxlan.go

227 lines
7.8 KiB
Go

// Copyright 2015 flannel authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !windows
package vxlan
// Some design notes and history:
// VXLAN encapsulates L2 packets (though flannel is L3 only so don't expect to be able to send L2 packets across hosts)
// The first versions of vxlan for flannel registered the flannel daemon as a handler for both "L2" and "L3" misses
// - When a container sends a packet to a new IP address on the flannel network (but on a different host) this generates
// an L2 miss (i.e. an ARP lookup)
// - The flannel daemon knows which flannel host the packet is destined for so it can supply the VTEP MAC to use.
// This is stored in the ARP table (with a timeout) to avoid constantly looking it up.
// - The packet can then be encapsulated but the host needs to know where to send it. This creates another callout from
// the kernal vxlan code to the flannel daemon to get the public IP that should be used for that VTEP (this gets called
// an L3 miss). The L2/L3 miss hooks are registered when the vxlan device is created. At the same time a device route
// is created to the whole flannel network so that non-local traffic is sent over the vxlan device.
//
// In this scheme the scaling of table entries (per host) is:
// - 1 route (for the configured network out the vxlan device)
// - One arp entry for each remote container that this host has recently contacted
// - One FDB entry for each remote host
//
// The second version of flannel vxlan removed the need for the L3MISS callout. When a new remote host is found (either
// during startup or when it's created), flannel simply adds the required entries so that no further lookup/callout is required.
//
//
// The latest version of the vxlan backend removes the need for the L2MISS too, which means that the flannel deamon is not
// listening for any netlink messages anymore. This improves reliability (no problems with timeouts if
// flannel crashes or restarts) and simplifies upgrades.
//
// How it works:
// Create the vxlan device but don't register for any L2MISS or L3MISS messages
// Then, as each remote host is discovered (either on startup or when they are added), do the following
// 1) Create routing table entry for the remote subnet. It goes via the vxlan device but also specifies a next hop (of the remote flannel host).
// 2) Create a static ARP entry for the remote flannel host IP address (and the VTEP MAC)
// 3) Create an FDB entry with the VTEP MAC and the public IP of the remote flannel daemon.
//
// In this scheme the scaling of table entries is linear to the number of remote hosts - 1 route, 1 arp entry and 1 FDB entry per host
//
// In this newest scheme, there is also the option of skipping the use of vxlan for hosts that are on the same subnet,
// this is called "directRouting"
import (
"encoding/json"
"fmt"
"net"
"sync"
"github.com/flannel-io/flannel/backend"
"github.com/flannel-io/flannel/pkg/ip"
"github.com/flannel-io/flannel/subnet"
"golang.org/x/net/context"
log "k8s.io/klog"
)
func init() {
backend.Register("vxlan", New)
}
const (
defaultVNI = 1
)
type VXLANBackend struct {
subnetMgr subnet.Manager
extIface *backend.ExternalInterface
}
func New(sm subnet.Manager, extIface *backend.ExternalInterface) (backend.Backend, error) {
backend := &VXLANBackend{
subnetMgr: sm,
extIface: extIface,
}
return backend, nil
}
func newSubnetAttrs(publicIP net.IP, publicIPv6 net.IP, vnid uint16, dev, v6Dev *vxlanDevice) (*subnet.LeaseAttrs, error) {
leaseAttrs := &subnet.LeaseAttrs{
BackendType: "vxlan",
}
if publicIP != nil && dev != nil {
data, err := json.Marshal(&vxlanLeaseAttrs{
VNI: vnid,
VtepMAC: hardwareAddr(dev.MACAddr()),
})
if err != nil {
return nil, err
}
leaseAttrs.PublicIP = ip.FromIP(publicIP)
leaseAttrs.BackendData = json.RawMessage(data)
}
if publicIPv6 != nil && v6Dev != nil {
data, err := json.Marshal(&vxlanLeaseAttrs{
VNI: vnid,
VtepMAC: hardwareAddr(v6Dev.MACAddr()),
})
if err != nil {
return nil, err
}
leaseAttrs.PublicIPv6 = ip.FromIP6(publicIPv6)
leaseAttrs.BackendV6Data = json.RawMessage(data)
}
return leaseAttrs, nil
}
func (be *VXLANBackend) RegisterNetwork(ctx context.Context, wg *sync.WaitGroup, config *subnet.Config) (backend.Network, error) {
// Parse our configuration
cfg := struct {
VNI int
Port int
GBP bool
Learning bool
DirectRouting bool
}{
VNI: defaultVNI,
}
if len(config.Backend) > 0 {
if err := json.Unmarshal(config.Backend, &cfg); err != nil {
return nil, fmt.Errorf("error decoding VXLAN backend config: %v", err)
}
}
log.Infof("VXLAN config: VNI=%d Port=%d GBP=%v Learning=%v DirectRouting=%v", cfg.VNI, cfg.Port, cfg.GBP, cfg.Learning, cfg.DirectRouting)
var dev, v6Dev *vxlanDevice
var err error
if config.EnableIPv4 {
devAttrs := vxlanDeviceAttrs{
vni: uint32(cfg.VNI),
name: fmt.Sprintf("flannel.%v", cfg.VNI),
vtepIndex: be.extIface.Iface.Index,
vtepAddr: be.extIface.IfaceAddr,
vtepPort: cfg.Port,
gbp: cfg.GBP,
learning: cfg.Learning,
}
dev, err = newVXLANDevice(&devAttrs)
if err != nil {
return nil, err
}
dev.directRouting = cfg.DirectRouting
}
if config.EnableIPv6 {
v6DevAttrs := vxlanDeviceAttrs{
vni: uint32(cfg.VNI),
name: fmt.Sprintf("flannel-v6.%v", cfg.VNI),
vtepIndex: be.extIface.Iface.Index,
vtepAddr: be.extIface.IfaceV6Addr,
vtepPort: cfg.Port,
gbp: cfg.GBP,
learning: cfg.Learning,
}
v6Dev, err = newVXLANDevice(&v6DevAttrs)
if err != nil {
return nil, err
}
v6Dev.directRouting = cfg.DirectRouting
}
subnetAttrs, err := newSubnetAttrs(be.extIface.ExtAddr, be.extIface.ExtV6Addr, uint16(cfg.VNI), dev, v6Dev)
if err != nil {
return nil, err
}
lease, err := be.subnetMgr.AcquireLease(ctx, subnetAttrs)
switch err {
case nil:
case context.Canceled, context.DeadlineExceeded:
return nil, err
default:
return nil, fmt.Errorf("failed to acquire lease: %v", err)
}
// Ensure that the device has a /32 address so that no broadcast routes are created.
// This IP is just used as a source address for host to workload traffic (so
// the return path for the traffic has an address on the flannel network to use as the destination)
if config.EnableIPv4 {
if err := dev.Configure(ip.IP4Net{IP: lease.Subnet.IP, PrefixLen: 32}, config.Network); err != nil {
return nil, fmt.Errorf("failed to configure interface %s: %w", dev.link.Attrs().Name, err)
}
}
if config.EnableIPv6 {
if err := v6Dev.ConfigureIPv6(ip.IP6Net{IP: lease.IPv6Subnet.IP, PrefixLen: 128}, config.IPv6Network); err != nil {
return nil, fmt.Errorf("failed to configure interface %s: %w", v6Dev.link.Attrs().Name, err)
}
}
return newNetwork(be.subnetMgr, be.extIface, dev, v6Dev, ip.IP4Net{}, lease)
}
// So we can make it JSON (un)marshalable
type hardwareAddr net.HardwareAddr
func (hw hardwareAddr) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf("%q", net.HardwareAddr(hw))), nil
}
func (hw *hardwareAddr) UnmarshalJSON(bytes []byte) error {
if len(bytes) < 2 || bytes[0] != '"' || bytes[len(bytes)-1] != '"' {
return fmt.Errorf("error parsing hardware addr")
}
bytes = bytes[1 : len(bytes)-1]
mac, err := net.ParseMAC(string(bytes))
if err != nil {
return err
}
*hw = hardwareAddr(mac)
return nil
}