k3s/vendor/go.starlark.net/starlark/interp.go

638 lines
14 KiB
Go

package starlark
// This file defines the bytecode interpreter.
import (
"fmt"
"os"
"go.starlark.net/internal/compile"
"go.starlark.net/internal/spell"
"go.starlark.net/resolve"
"go.starlark.net/syntax"
)
const vmdebug = false // TODO(adonovan): use a bitfield of specific kinds of error.
// TODO(adonovan):
// - optimize position table.
// - opt: record MaxIterStack during compilation and preallocate the stack.
func (fn *Function) CallInternal(thread *Thread, args Tuple, kwargs []Tuple) (Value, error) {
if !resolve.AllowRecursion {
// detect recursion
for _, fr := range thread.stack[:len(thread.stack)-1] {
// We look for the same function code,
// not function value, otherwise the user could
// defeat the check by writing the Y combinator.
if frfn, ok := fr.Callable().(*Function); ok && frfn.funcode == fn.funcode {
return nil, fmt.Errorf("function %s called recursively", fn.Name())
}
}
}
f := fn.funcode
fr := thread.frameAt(0)
// Allocate space for stack and locals.
// Logically these do not escape from this frame
// (See https://github.com/golang/go/issues/20533.)
//
// This heap allocation looks expensive, but I was unable to get
// more than 1% real time improvement in a large alloc-heavy
// benchmark (in which this alloc was 8% of alloc-bytes)
// by allocating space for 8 Values in each frame, or
// by allocating stack by slicing an array held by the Thread
// that is expanded in chunks of min(k, nspace), for k=256 or 1024.
nlocals := len(f.Locals)
nspace := nlocals + f.MaxStack
space := make([]Value, nspace)
locals := space[:nlocals:nlocals] // local variables, starting with parameters
stack := space[nlocals:] // operand stack
// Digest arguments and set parameters.
err := setArgs(locals, fn, args, kwargs)
if err != nil {
return nil, thread.evalError(err)
}
fr.locals = locals
if vmdebug {
fmt.Printf("Entering %s @ %s\n", f.Name, f.Position(0))
fmt.Printf("%d stack, %d locals\n", len(stack), len(locals))
defer fmt.Println("Leaving ", f.Name)
}
// Spill indicated locals to cells.
// Each cell is a separate alloc to avoid spurious liveness.
for _, index := range f.Cells {
locals[index] = &cell{locals[index]}
}
// TODO(adonovan): add static check that beneath this point
// - there is exactly one return statement
// - there is no redefinition of 'err'.
var iterstack []Iterator // stack of active iterators
sp := 0
var pc uint32
var result Value
code := f.Code
loop:
for {
fr.pc = pc
op := compile.Opcode(code[pc])
pc++
var arg uint32
if op >= compile.OpcodeArgMin {
// TODO(adonovan): opt: profile this.
// Perhaps compiling big endian would be less work to decode?
for s := uint(0); ; s += 7 {
b := code[pc]
pc++
arg |= uint32(b&0x7f) << s
if b < 0x80 {
break
}
}
}
if vmdebug {
fmt.Fprintln(os.Stderr, stack[:sp]) // very verbose!
compile.PrintOp(f, fr.pc, op, arg)
}
switch op {
case compile.NOP:
// nop
case compile.DUP:
stack[sp] = stack[sp-1]
sp++
case compile.DUP2:
stack[sp] = stack[sp-2]
stack[sp+1] = stack[sp-1]
sp += 2
case compile.POP:
sp--
case compile.EXCH:
stack[sp-2], stack[sp-1] = stack[sp-1], stack[sp-2]
case compile.EQL, compile.NEQ, compile.GT, compile.LT, compile.LE, compile.GE:
op := syntax.Token(op-compile.EQL) + syntax.EQL
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
ok, err2 := Compare(op, x, y)
if err2 != nil {
err = err2
break loop
}
stack[sp] = Bool(ok)
sp++
case compile.PLUS,
compile.MINUS,
compile.STAR,
compile.SLASH,
compile.SLASHSLASH,
compile.PERCENT,
compile.AMP,
compile.PIPE,
compile.CIRCUMFLEX,
compile.LTLT,
compile.GTGT,
compile.IN:
binop := syntax.Token(op-compile.PLUS) + syntax.PLUS
if op == compile.IN {
binop = syntax.IN // IN token is out of order
}
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
z, err2 := Binary(binop, x, y)
if err2 != nil {
err = err2
break loop
}
stack[sp] = z
sp++
case compile.UPLUS, compile.UMINUS, compile.TILDE:
var unop syntax.Token
if op == compile.TILDE {
unop = syntax.TILDE
} else {
unop = syntax.Token(op-compile.UPLUS) + syntax.PLUS
}
x := stack[sp-1]
y, err2 := Unary(unop, x)
if err2 != nil {
err = err2
break loop
}
stack[sp-1] = y
case compile.INPLACE_ADD:
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
// It's possible that y is not Iterable but
// nonetheless defines x+y, in which case we
// should fall back to the general case.
var z Value
if xlist, ok := x.(*List); ok {
if yiter, ok := y.(Iterable); ok {
if err = xlist.checkMutable("apply += to"); err != nil {
break loop
}
listExtend(xlist, yiter)
z = xlist
}
}
if z == nil {
z, err = Binary(syntax.PLUS, x, y)
if err != nil {
break loop
}
}
stack[sp] = z
sp++
case compile.NONE:
stack[sp] = None
sp++
case compile.TRUE:
stack[sp] = True
sp++
case compile.FALSE:
stack[sp] = False
sp++
case compile.MANDATORY:
stack[sp] = mandatory{}
sp++
case compile.JMP:
pc = arg
case compile.CALL, compile.CALL_VAR, compile.CALL_KW, compile.CALL_VAR_KW:
var kwargs Value
if op == compile.CALL_KW || op == compile.CALL_VAR_KW {
kwargs = stack[sp-1]
sp--
}
var args Value
if op == compile.CALL_VAR || op == compile.CALL_VAR_KW {
args = stack[sp-1]
sp--
}
// named args (pairs)
var kvpairs []Tuple
if nkvpairs := int(arg & 0xff); nkvpairs > 0 {
kvpairs = make([]Tuple, 0, nkvpairs)
kvpairsAlloc := make(Tuple, 2*nkvpairs) // allocate a single backing array
sp -= 2 * nkvpairs
for i := 0; i < nkvpairs; i++ {
pair := kvpairsAlloc[:2:2]
kvpairsAlloc = kvpairsAlloc[2:]
pair[0] = stack[sp+2*i] // name
pair[1] = stack[sp+2*i+1] // value
kvpairs = append(kvpairs, pair)
}
}
if kwargs != nil {
// Add key/value items from **kwargs dictionary.
dict, ok := kwargs.(IterableMapping)
if !ok {
err = fmt.Errorf("argument after ** must be a mapping, not %s", kwargs.Type())
break loop
}
items := dict.Items()
for _, item := range items {
if _, ok := item[0].(String); !ok {
err = fmt.Errorf("keywords must be strings, not %s", item[0].Type())
break loop
}
}
if len(kvpairs) == 0 {
kvpairs = items
} else {
kvpairs = append(kvpairs, items...)
}
}
// positional args
var positional Tuple
if npos := int(arg >> 8); npos > 0 {
positional = make(Tuple, npos)
sp -= npos
copy(positional, stack[sp:])
}
if args != nil {
// Add elements from *args sequence.
iter := Iterate(args)
if iter == nil {
err = fmt.Errorf("argument after * must be iterable, not %s", args.Type())
break loop
}
var elem Value
for iter.Next(&elem) {
positional = append(positional, elem)
}
iter.Done()
}
function := stack[sp-1]
if vmdebug {
fmt.Printf("VM call %s args=%s kwargs=%s @%s\n",
function, positional, kvpairs, f.Position(fr.pc))
}
thread.endProfSpan()
z, err2 := Call(thread, function, positional, kvpairs)
thread.beginProfSpan()
if err2 != nil {
err = err2
break loop
}
if vmdebug {
fmt.Printf("Resuming %s @ %s\n", f.Name, f.Position(0))
}
stack[sp-1] = z
case compile.ITERPUSH:
x := stack[sp-1]
sp--
iter := Iterate(x)
if iter == nil {
err = fmt.Errorf("%s value is not iterable", x.Type())
break loop
}
iterstack = append(iterstack, iter)
case compile.ITERJMP:
iter := iterstack[len(iterstack)-1]
if iter.Next(&stack[sp]) {
sp++
} else {
pc = arg
}
case compile.ITERPOP:
n := len(iterstack) - 1
iterstack[n].Done()
iterstack = iterstack[:n]
case compile.NOT:
stack[sp-1] = !stack[sp-1].Truth()
case compile.RETURN:
result = stack[sp-1]
break loop
case compile.SETINDEX:
z := stack[sp-1]
y := stack[sp-2]
x := stack[sp-3]
sp -= 3
err = setIndex(x, y, z)
if err != nil {
break loop
}
case compile.INDEX:
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
z, err2 := getIndex(x, y)
if err2 != nil {
err = err2
break loop
}
stack[sp] = z
sp++
case compile.ATTR:
x := stack[sp-1]
name := f.Prog.Names[arg]
y, err2 := getAttr(x, name)
if err2 != nil {
err = err2
break loop
}
stack[sp-1] = y
case compile.SETFIELD:
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
name := f.Prog.Names[arg]
if err2 := setField(x, name, y); err2 != nil {
err = err2
break loop
}
case compile.MAKEDICT:
stack[sp] = new(Dict)
sp++
case compile.SETDICT, compile.SETDICTUNIQ:
dict := stack[sp-3].(*Dict)
k := stack[sp-2]
v := stack[sp-1]
sp -= 3
oldlen := dict.Len()
if err2 := dict.SetKey(k, v); err2 != nil {
err = err2
break loop
}
if op == compile.SETDICTUNIQ && dict.Len() == oldlen {
err = fmt.Errorf("duplicate key: %v", k)
break loop
}
case compile.APPEND:
elem := stack[sp-1]
list := stack[sp-2].(*List)
sp -= 2
list.elems = append(list.elems, elem)
case compile.SLICE:
x := stack[sp-4]
lo := stack[sp-3]
hi := stack[sp-2]
step := stack[sp-1]
sp -= 4
res, err2 := slice(x, lo, hi, step)
if err2 != nil {
err = err2
break loop
}
stack[sp] = res
sp++
case compile.UNPACK:
n := int(arg)
iterable := stack[sp-1]
sp--
iter := Iterate(iterable)
if iter == nil {
err = fmt.Errorf("got %s in sequence assignment", iterable.Type())
break loop
}
i := 0
sp += n
for i < n && iter.Next(&stack[sp-1-i]) {
i++
}
var dummy Value
if iter.Next(&dummy) {
// NB: Len may return -1 here in obscure cases.
err = fmt.Errorf("too many values to unpack (got %d, want %d)", Len(iterable), n)
break loop
}
iter.Done()
if i < n {
err = fmt.Errorf("too few values to unpack (got %d, want %d)", i, n)
break loop
}
case compile.CJMP:
if stack[sp-1].Truth() {
pc = arg
}
sp--
case compile.CONSTANT:
stack[sp] = fn.module.constants[arg]
sp++
case compile.MAKETUPLE:
n := int(arg)
tuple := make(Tuple, n)
sp -= n
copy(tuple, stack[sp:])
stack[sp] = tuple
sp++
case compile.MAKELIST:
n := int(arg)
elems := make([]Value, n)
sp -= n
copy(elems, stack[sp:])
stack[sp] = NewList(elems)
sp++
case compile.MAKEFUNC:
funcode := f.Prog.Functions[arg]
tuple := stack[sp-1].(Tuple)
n := len(tuple) - len(funcode.Freevars)
defaults := tuple[:n:n]
freevars := tuple[n:]
stack[sp-1] = &Function{
funcode: funcode,
module: fn.module,
defaults: defaults,
freevars: freevars,
}
case compile.LOAD:
n := int(arg)
module := string(stack[sp-1].(String))
sp--
if thread.Load == nil {
err = fmt.Errorf("load not implemented by this application")
break loop
}
thread.endProfSpan()
dict, err2 := thread.Load(thread, module)
thread.beginProfSpan()
if err2 != nil {
err = wrappedError{
msg: fmt.Sprintf("cannot load %s: %v", module, err2),
cause: err2,
}
break loop
}
for i := 0; i < n; i++ {
from := string(stack[sp-1-i].(String))
v, ok := dict[from]
if !ok {
err = fmt.Errorf("load: name %s not found in module %s", from, module)
if n := spell.Nearest(from, dict.Keys()); n != "" {
err = fmt.Errorf("%s (did you mean %s?)", err, n)
}
break loop
}
stack[sp-1-i] = v
}
case compile.SETLOCAL:
locals[arg] = stack[sp-1]
sp--
case compile.SETCELL:
x := stack[sp-2]
y := stack[sp-1]
sp -= 2
y.(*cell).v = x
case compile.SETGLOBAL:
fn.module.globals[arg] = stack[sp-1]
sp--
case compile.LOCAL:
x := locals[arg]
if x == nil {
err = fmt.Errorf("local variable %s referenced before assignment", f.Locals[arg].Name)
break loop
}
stack[sp] = x
sp++
case compile.FREE:
stack[sp] = fn.freevars[arg]
sp++
case compile.CELL:
x := stack[sp-1]
stack[sp-1] = x.(*cell).v
case compile.GLOBAL:
x := fn.module.globals[arg]
if x == nil {
err = fmt.Errorf("global variable %s referenced before assignment", f.Prog.Globals[arg].Name)
break loop
}
stack[sp] = x
sp++
case compile.PREDECLARED:
name := f.Prog.Names[arg]
x := fn.module.predeclared[name]
if x == nil {
err = fmt.Errorf("internal error: predeclared variable %s is uninitialized", name)
break loop
}
stack[sp] = x
sp++
case compile.UNIVERSAL:
stack[sp] = Universe[f.Prog.Names[arg]]
sp++
default:
err = fmt.Errorf("unimplemented: %s", op)
break loop
}
}
// ITERPOP the rest of the iterator stack.
for _, iter := range iterstack {
iter.Done()
}
fr.locals = nil
return result, err
}
type wrappedError struct {
msg string
cause error
}
func (e wrappedError) Error() string {
return e.msg
}
// Implements the xerrors.Wrapper interface
// https://godoc.org/golang.org/x/xerrors#Wrapper
func (e wrappedError) Unwrap() error {
return e.cause
}
// mandatory is a sentinel value used in a function's defaults tuple
// to indicate that a (keyword-only) parameter is mandatory.
type mandatory struct{}
func (mandatory) String() string { return "mandatory" }
func (mandatory) Type() string { return "mandatory" }
func (mandatory) Freeze() {} // immutable
func (mandatory) Truth() Bool { return False }
func (mandatory) Hash() (uint32, error) { return 0, nil }
// A cell is a box containing a Value.
// Local variables marked as cells hold their value indirectly
// so that they may be shared by outer and inner nested functions.
// Cells are always accessed using indirect CELL/SETCELL instructions.
// The FreeVars tuple contains only cells.
// The FREE instruction always yields a cell.
type cell struct{ v Value }
func (c *cell) String() string { return "cell" }
func (c *cell) Type() string { return "cell" }
func (c *cell) Freeze() {
if c.v != nil {
c.v.Freeze()
}
}
func (c *cell) Truth() Bool { panic("unreachable") }
func (c *cell) Hash() (uint32, error) { panic("unreachable") }