k3s/vendor/go.etcd.io/etcd/etcdserver/raft.go

784 lines
21 KiB
Go

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package etcdserver
import (
"encoding/json"
"expvar"
"fmt"
"log"
"sort"
"sync"
"time"
"go.etcd.io/etcd/etcdserver/api/membership"
"go.etcd.io/etcd/etcdserver/api/rafthttp"
pb "go.etcd.io/etcd/etcdserver/etcdserverpb"
"go.etcd.io/etcd/pkg/contention"
"go.etcd.io/etcd/pkg/logutil"
"go.etcd.io/etcd/pkg/pbutil"
"go.etcd.io/etcd/pkg/types"
"go.etcd.io/etcd/raft"
"go.etcd.io/etcd/raft/raftpb"
"go.etcd.io/etcd/wal"
"go.etcd.io/etcd/wal/walpb"
"go.uber.org/zap"
)
const (
// The max throughput of etcd will not exceed 100MB/s (100K * 1KB value).
// Assuming the RTT is around 10ms, 1MB max size is large enough.
maxSizePerMsg = 1 * 1024 * 1024
// Never overflow the rafthttp buffer, which is 4096.
// TODO: a better const?
maxInflightMsgs = 4096 / 8
)
var (
// protects raftStatus
raftStatusMu sync.Mutex
// indirection for expvar func interface
// expvar panics when publishing duplicate name
// expvar does not support remove a registered name
// so only register a func that calls raftStatus
// and change raftStatus as we need.
raftStatus func() raft.Status
)
func init() {
expvar.Publish("raft.status", expvar.Func(func() interface{} {
raftStatusMu.Lock()
defer raftStatusMu.Unlock()
return raftStatus()
}))
}
// apply contains entries, snapshot to be applied. Once
// an apply is consumed, the entries will be persisted to
// to raft storage concurrently; the application must read
// raftDone before assuming the raft messages are stable.
type apply struct {
entries []raftpb.Entry
snapshot raftpb.Snapshot
// notifyc synchronizes etcd server applies with the raft node
notifyc chan struct{}
}
type raftNode struct {
lg *zap.Logger
tickMu *sync.Mutex
raftNodeConfig
// a chan to send/receive snapshot
msgSnapC chan raftpb.Message
// a chan to send out apply
applyc chan apply
// a chan to send out readState
readStateC chan raft.ReadState
// utility
ticker *time.Ticker
// contention detectors for raft heartbeat message
td *contention.TimeoutDetector
stopped chan struct{}
done chan struct{}
}
type raftNodeConfig struct {
lg *zap.Logger
// to check if msg receiver is removed from cluster
isIDRemoved func(id uint64) bool
raft.Node
raftStorage *raft.MemoryStorage
storage Storage
heartbeat time.Duration // for logging
// transport specifies the transport to send and receive msgs to members.
// Sending messages MUST NOT block. It is okay to drop messages, since
// clients should timeout and reissue their messages.
// If transport is nil, server will panic.
transport rafthttp.Transporter
}
func newRaftNode(cfg raftNodeConfig) *raftNode {
var lg raft.Logger
if cfg.lg != nil {
lg = logutil.NewRaftLoggerZap(cfg.lg)
} else {
lcfg := logutil.DefaultZapLoggerConfig
var err error
lg, err = logutil.NewRaftLogger(&lcfg)
if err != nil {
log.Fatalf("cannot create raft logger %v", err)
}
}
raft.SetLogger(lg)
r := &raftNode{
lg: cfg.lg,
tickMu: new(sync.Mutex),
raftNodeConfig: cfg,
// set up contention detectors for raft heartbeat message.
// expect to send a heartbeat within 2 heartbeat intervals.
td: contention.NewTimeoutDetector(2 * cfg.heartbeat),
readStateC: make(chan raft.ReadState, 1),
msgSnapC: make(chan raftpb.Message, maxInFlightMsgSnap),
applyc: make(chan apply),
stopped: make(chan struct{}),
done: make(chan struct{}),
}
if r.heartbeat == 0 {
r.ticker = &time.Ticker{}
} else {
r.ticker = time.NewTicker(r.heartbeat)
}
return r
}
// raft.Node does not have locks in Raft package
func (r *raftNode) tick() {
r.tickMu.Lock()
r.Tick()
r.tickMu.Unlock()
}
// start prepares and starts raftNode in a new goroutine. It is no longer safe
// to modify the fields after it has been started.
func (r *raftNode) start(rh *raftReadyHandler) {
internalTimeout := time.Second
go func() {
defer r.onStop()
islead := false
for {
select {
case <-r.ticker.C:
r.tick()
case rd := <-r.Ready():
if rd.SoftState != nil {
newLeader := rd.SoftState.Lead != raft.None && rh.getLead() != rd.SoftState.Lead
if newLeader {
leaderChanges.Inc()
}
if rd.SoftState.Lead == raft.None {
hasLeader.Set(0)
} else {
hasLeader.Set(1)
}
rh.updateLead(rd.SoftState.Lead)
islead = rd.RaftState == raft.StateLeader
if islead {
isLeader.Set(1)
} else {
isLeader.Set(0)
}
rh.updateLeadership(newLeader)
r.td.Reset()
}
if len(rd.ReadStates) != 0 {
select {
case r.readStateC <- rd.ReadStates[len(rd.ReadStates)-1]:
case <-time.After(internalTimeout):
if r.lg != nil {
r.lg.Warn("timed out sending read state", zap.Duration("timeout", internalTimeout))
} else {
plog.Warningf("timed out sending read state")
}
case <-r.stopped:
return
}
}
notifyc := make(chan struct{}, 1)
ap := apply{
entries: rd.CommittedEntries,
snapshot: rd.Snapshot,
notifyc: notifyc,
}
updateCommittedIndex(&ap, rh)
select {
case r.applyc <- ap:
case <-r.stopped:
return
}
// the leader can write to its disk in parallel with replicating to the followers and them
// writing to their disks.
// For more details, check raft thesis 10.2.1
if islead {
// gofail: var raftBeforeLeaderSend struct{}
r.transport.Send(r.processMessages(rd.Messages))
}
// Must save the snapshot file and WAL snapshot entry before saving any other entries or hardstate to
// ensure that recovery after a snapshot restore is possible.
if !raft.IsEmptySnap(rd.Snapshot) {
// gofail: var raftBeforeSaveSnap struct{}
if err := r.storage.SaveSnap(rd.Snapshot); err != nil {
if r.lg != nil {
r.lg.Fatal("failed to save Raft snapshot", zap.Error(err))
} else {
plog.Fatalf("failed to save Raft snapshot %v", err)
}
}
// gofail: var raftAfterSaveSnap struct{}
}
// gofail: var raftBeforeSave struct{}
if err := r.storage.Save(rd.HardState, rd.Entries); err != nil {
if r.lg != nil {
r.lg.Fatal("failed to save Raft hard state and entries", zap.Error(err))
} else {
plog.Fatalf("failed to save state and entries error: %v", err)
}
}
if !raft.IsEmptyHardState(rd.HardState) {
proposalsCommitted.Set(float64(rd.HardState.Commit))
}
// gofail: var raftAfterSave struct{}
if !raft.IsEmptySnap(rd.Snapshot) {
// Force WAL to fsync its hard state before Release() releases
// old data from the WAL. Otherwise could get an error like:
// panic: tocommit(107) is out of range [lastIndex(84)]. Was the raft log corrupted, truncated, or lost?
// See https://github.com/etcd-io/etcd/issues/10219 for more details.
if err := r.storage.Sync(); err != nil {
if r.lg != nil {
r.lg.Fatal("failed to sync Raft snapshot", zap.Error(err))
} else {
plog.Fatalf("failed to sync Raft snapshot %v", err)
}
}
// etcdserver now claim the snapshot has been persisted onto the disk
notifyc <- struct{}{}
// gofail: var raftBeforeApplySnap struct{}
r.raftStorage.ApplySnapshot(rd.Snapshot)
if r.lg != nil {
r.lg.Info("applied incoming Raft snapshot", zap.Uint64("snapshot-index", rd.Snapshot.Metadata.Index))
} else {
plog.Infof("raft applied incoming snapshot at index %d", rd.Snapshot.Metadata.Index)
}
// gofail: var raftAfterApplySnap struct{}
if err := r.storage.Release(rd.Snapshot); err != nil {
if r.lg != nil {
r.lg.Fatal("failed to release Raft wal", zap.Error(err))
} else {
plog.Fatalf("failed to release Raft wal %v", err)
}
}
// gofail: var raftAfterWALRelease struct{}
}
r.raftStorage.Append(rd.Entries)
if !islead {
// finish processing incoming messages before we signal raftdone chan
msgs := r.processMessages(rd.Messages)
// now unblocks 'applyAll' that waits on Raft log disk writes before triggering snapshots
notifyc <- struct{}{}
// Candidate or follower needs to wait for all pending configuration
// changes to be applied before sending messages.
// Otherwise we might incorrectly count votes (e.g. votes from removed members).
// Also slow machine's follower raft-layer could proceed to become the leader
// on its own single-node cluster, before apply-layer applies the config change.
// We simply wait for ALL pending entries to be applied for now.
// We might improve this later on if it causes unnecessary long blocking issues.
waitApply := false
for _, ent := range rd.CommittedEntries {
if ent.Type == raftpb.EntryConfChange {
waitApply = true
break
}
}
if waitApply {
// blocks until 'applyAll' calls 'applyWait.Trigger'
// to be in sync with scheduled config-change job
// (assume notifyc has cap of 1)
select {
case notifyc <- struct{}{}:
case <-r.stopped:
return
}
}
// gofail: var raftBeforeFollowerSend struct{}
r.transport.Send(msgs)
} else {
// leader already processed 'MsgSnap' and signaled
notifyc <- struct{}{}
}
r.Advance()
case <-r.stopped:
return
}
}
}()
}
func updateCommittedIndex(ap *apply, rh *raftReadyHandler) {
var ci uint64
if len(ap.entries) != 0 {
ci = ap.entries[len(ap.entries)-1].Index
}
if ap.snapshot.Metadata.Index > ci {
ci = ap.snapshot.Metadata.Index
}
if ci != 0 {
rh.updateCommittedIndex(ci)
}
}
func (r *raftNode) processMessages(ms []raftpb.Message) []raftpb.Message {
sentAppResp := false
for i := len(ms) - 1; i >= 0; i-- {
if r.isIDRemoved(ms[i].To) {
ms[i].To = 0
}
if ms[i].Type == raftpb.MsgAppResp {
if sentAppResp {
ms[i].To = 0
} else {
sentAppResp = true
}
}
if ms[i].Type == raftpb.MsgSnap {
// There are two separate data store: the store for v2, and the KV for v3.
// The msgSnap only contains the most recent snapshot of store without KV.
// So we need to redirect the msgSnap to etcd server main loop for merging in the
// current store snapshot and KV snapshot.
select {
case r.msgSnapC <- ms[i]:
default:
// drop msgSnap if the inflight chan if full.
}
ms[i].To = 0
}
if ms[i].Type == raftpb.MsgHeartbeat {
ok, exceed := r.td.Observe(ms[i].To)
if !ok {
// TODO: limit request rate.
if r.lg != nil {
r.lg.Warn(
"leader failed to send out heartbeat on time; took too long, leader is overloaded likely from slow disk",
zap.String("to", fmt.Sprintf("%x", ms[i].To)),
zap.Duration("heartbeat-interval", r.heartbeat),
zap.Duration("expected-duration", 2*r.heartbeat),
zap.Duration("exceeded-duration", exceed),
)
} else {
plog.Warningf("failed to send out heartbeat on time (exceeded the %v timeout for %v, to %x)", r.heartbeat, exceed, ms[i].To)
plog.Warningf("server is likely overloaded")
}
heartbeatSendFailures.Inc()
}
}
}
return ms
}
func (r *raftNode) apply() chan apply {
return r.applyc
}
func (r *raftNode) stop() {
r.stopped <- struct{}{}
<-r.done
}
func (r *raftNode) onStop() {
r.Stop()
r.ticker.Stop()
r.transport.Stop()
if err := r.storage.Close(); err != nil {
if r.lg != nil {
r.lg.Panic("failed to close Raft storage", zap.Error(err))
} else {
plog.Panicf("raft close storage error: %v", err)
}
}
close(r.done)
}
// for testing
func (r *raftNode) pauseSending() {
p := r.transport.(rafthttp.Pausable)
p.Pause()
}
func (r *raftNode) resumeSending() {
p := r.transport.(rafthttp.Pausable)
p.Resume()
}
// advanceTicks advances ticks of Raft node.
// This can be used for fast-forwarding election
// ticks in multi data-center deployments, thus
// speeding up election process.
func (r *raftNode) advanceTicks(ticks int) {
for i := 0; i < ticks; i++ {
r.tick()
}
}
func startNode(cfg ServerConfig, cl *membership.RaftCluster, ids []types.ID) (id types.ID, n raft.Node, s *raft.MemoryStorage, w *wal.WAL) {
var err error
member := cl.MemberByName(cfg.Name)
metadata := pbutil.MustMarshal(
&pb.Metadata{
NodeID: uint64(member.ID),
ClusterID: uint64(cl.ID()),
},
)
if w, err = wal.Create(cfg.Logger, cfg.WALDir(), metadata); err != nil {
if cfg.Logger != nil {
cfg.Logger.Panic("failed to create WAL", zap.Error(err))
} else {
plog.Panicf("create wal error: %v", err)
}
}
if cfg.UnsafeNoFsync {
w.SetUnsafeNoFsync()
}
peers := make([]raft.Peer, len(ids))
for i, id := range ids {
var ctx []byte
ctx, err = json.Marshal((*cl).Member(id))
if err != nil {
if cfg.Logger != nil {
cfg.Logger.Panic("failed to marshal member", zap.Error(err))
} else {
plog.Panicf("marshal member should never fail: %v", err)
}
}
peers[i] = raft.Peer{ID: uint64(id), Context: ctx}
}
id = member.ID
if cfg.Logger != nil {
cfg.Logger.Info(
"starting local member",
zap.String("local-member-id", id.String()),
zap.String("cluster-id", cl.ID().String()),
)
} else {
plog.Infof("starting member %s in cluster %s", id, cl.ID())
}
s = raft.NewMemoryStorage()
c := &raft.Config{
ID: uint64(id),
ElectionTick: cfg.ElectionTicks,
HeartbeatTick: 1,
Storage: s,
MaxSizePerMsg: maxSizePerMsg,
MaxInflightMsgs: maxInflightMsgs,
CheckQuorum: true,
PreVote: cfg.PreVote,
}
if cfg.Logger != nil {
// called after capnslog setting in "init" function
if cfg.LoggerConfig != nil {
c.Logger, err = logutil.NewRaftLogger(cfg.LoggerConfig)
if err != nil {
log.Fatalf("cannot create raft logger %v", err)
}
} else if cfg.LoggerCore != nil && cfg.LoggerWriteSyncer != nil {
c.Logger = logutil.NewRaftLoggerFromZapCore(cfg.LoggerCore, cfg.LoggerWriteSyncer)
}
}
if len(peers) == 0 {
n = raft.RestartNode(c)
} else {
n = raft.StartNode(c, peers)
}
raftStatusMu.Lock()
raftStatus = n.Status
raftStatusMu.Unlock()
return id, n, s, w
}
func restartNode(cfg ServerConfig, snapshot *raftpb.Snapshot) (types.ID, *membership.RaftCluster, raft.Node, *raft.MemoryStorage, *wal.WAL) {
var walsnap walpb.Snapshot
if snapshot != nil {
walsnap.Index, walsnap.Term = snapshot.Metadata.Index, snapshot.Metadata.Term
}
w, id, cid, st, ents := readWAL(cfg.Logger, cfg.WALDir(), walsnap, cfg.UnsafeNoFsync)
if cfg.Logger != nil {
cfg.Logger.Info(
"restarting local member",
zap.String("cluster-id", cid.String()),
zap.String("local-member-id", id.String()),
zap.Uint64("commit-index", st.Commit),
)
} else {
plog.Infof("restarting member %s in cluster %s at commit index %d", id, cid, st.Commit)
}
cl := membership.NewCluster(cfg.Logger, "")
cl.SetID(id, cid)
s := raft.NewMemoryStorage()
if snapshot != nil {
s.ApplySnapshot(*snapshot)
}
s.SetHardState(st)
s.Append(ents)
c := &raft.Config{
ID: uint64(id),
ElectionTick: cfg.ElectionTicks,
HeartbeatTick: 1,
Storage: s,
MaxSizePerMsg: maxSizePerMsg,
MaxInflightMsgs: maxInflightMsgs,
CheckQuorum: true,
PreVote: cfg.PreVote,
}
if cfg.Logger != nil {
// called after capnslog setting in "init" function
var err error
if cfg.LoggerConfig != nil {
c.Logger, err = logutil.NewRaftLogger(cfg.LoggerConfig)
if err != nil {
log.Fatalf("cannot create raft logger %v", err)
}
} else if cfg.LoggerCore != nil && cfg.LoggerWriteSyncer != nil {
c.Logger = logutil.NewRaftLoggerFromZapCore(cfg.LoggerCore, cfg.LoggerWriteSyncer)
}
}
n := raft.RestartNode(c)
raftStatusMu.Lock()
raftStatus = n.Status
raftStatusMu.Unlock()
return id, cl, n, s, w
}
func restartAsStandaloneNode(cfg ServerConfig, snapshot *raftpb.Snapshot) (types.ID, *membership.RaftCluster, raft.Node, *raft.MemoryStorage, *wal.WAL) {
var walsnap walpb.Snapshot
if snapshot != nil {
walsnap.Index, walsnap.Term = snapshot.Metadata.Index, snapshot.Metadata.Term
}
w, id, cid, st, ents := readWAL(cfg.Logger, cfg.WALDir(), walsnap, cfg.UnsafeNoFsync)
// discard the previously uncommitted entries
for i, ent := range ents {
if ent.Index > st.Commit {
if cfg.Logger != nil {
cfg.Logger.Info(
"discarding uncommitted WAL entries",
zap.Uint64("entry-index", ent.Index),
zap.Uint64("commit-index-from-wal", st.Commit),
zap.Int("number-of-discarded-entries", len(ents)-i),
)
} else {
plog.Infof("discarding %d uncommitted WAL entries ", len(ents)-i)
}
ents = ents[:i]
break
}
}
// force append the configuration change entries
toAppEnts := createConfigChangeEnts(
cfg.Logger,
getIDs(cfg.Logger, snapshot, ents),
uint64(id),
st.Term,
st.Commit,
)
ents = append(ents, toAppEnts...)
// force commit newly appended entries
err := w.Save(raftpb.HardState{}, toAppEnts)
if err != nil {
if cfg.Logger != nil {
cfg.Logger.Fatal("failed to save hard state and entries", zap.Error(err))
} else {
plog.Fatalf("%v", err)
}
}
if len(ents) != 0 {
st.Commit = ents[len(ents)-1].Index
}
if cfg.Logger != nil {
cfg.Logger.Info(
"forcing restart member",
zap.String("cluster-id", cid.String()),
zap.String("local-member-id", id.String()),
zap.Uint64("commit-index", st.Commit),
)
} else {
plog.Printf("forcing restart of member %s in cluster %s at commit index %d", id, cid, st.Commit)
}
cl := membership.NewCluster(cfg.Logger, "")
cl.SetID(id, cid)
s := raft.NewMemoryStorage()
if snapshot != nil {
s.ApplySnapshot(*snapshot)
}
s.SetHardState(st)
s.Append(ents)
c := &raft.Config{
ID: uint64(id),
ElectionTick: cfg.ElectionTicks,
HeartbeatTick: 1,
Storage: s,
MaxSizePerMsg: maxSizePerMsg,
MaxInflightMsgs: maxInflightMsgs,
CheckQuorum: true,
PreVote: cfg.PreVote,
}
if cfg.Logger != nil {
// called after capnslog setting in "init" function
if cfg.LoggerConfig != nil {
c.Logger, err = logutil.NewRaftLogger(cfg.LoggerConfig)
if err != nil {
log.Fatalf("cannot create raft logger %v", err)
}
} else if cfg.LoggerCore != nil && cfg.LoggerWriteSyncer != nil {
c.Logger = logutil.NewRaftLoggerFromZapCore(cfg.LoggerCore, cfg.LoggerWriteSyncer)
}
}
n := raft.RestartNode(c)
raftStatus = n.Status
return id, cl, n, s, w
}
// getIDs returns an ordered set of IDs included in the given snapshot and
// the entries. The given snapshot/entries can contain two kinds of
// ID-related entry:
// - ConfChangeAddNode, in which case the contained ID will be added into the set.
// - ConfChangeRemoveNode, in which case the contained ID will be removed from the set.
func getIDs(lg *zap.Logger, snap *raftpb.Snapshot, ents []raftpb.Entry) []uint64 {
ids := make(map[uint64]bool)
if snap != nil {
for _, id := range snap.Metadata.ConfState.Voters {
ids[id] = true
}
}
for _, e := range ents {
if e.Type != raftpb.EntryConfChange {
continue
}
var cc raftpb.ConfChange
pbutil.MustUnmarshal(&cc, e.Data)
switch cc.Type {
case raftpb.ConfChangeAddNode:
ids[cc.NodeID] = true
case raftpb.ConfChangeRemoveNode:
delete(ids, cc.NodeID)
case raftpb.ConfChangeUpdateNode:
// do nothing
default:
if lg != nil {
lg.Panic("unknown ConfChange Type", zap.String("type", cc.Type.String()))
} else {
plog.Panicf("ConfChange Type should be either ConfChangeAddNode or ConfChangeRemoveNode!")
}
}
}
sids := make(types.Uint64Slice, 0, len(ids))
for id := range ids {
sids = append(sids, id)
}
sort.Sort(sids)
return []uint64(sids)
}
// createConfigChangeEnts creates a series of Raft entries (i.e.
// EntryConfChange) to remove the set of given IDs from the cluster. The ID
// `self` is _not_ removed, even if present in the set.
// If `self` is not inside the given ids, it creates a Raft entry to add a
// default member with the given `self`.
func createConfigChangeEnts(lg *zap.Logger, ids []uint64, self uint64, term, index uint64) []raftpb.Entry {
found := false
for _, id := range ids {
if id == self {
found = true
}
}
var ents []raftpb.Entry
next := index + 1
// NB: always add self first, then remove other nodes. Raft will panic if the
// set of voters ever becomes empty.
if !found {
m := membership.Member{
ID: types.ID(self),
RaftAttributes: membership.RaftAttributes{PeerURLs: []string{"http://localhost:2380"}},
}
ctx, err := json.Marshal(m)
if err != nil {
if lg != nil {
lg.Panic("failed to marshal member", zap.Error(err))
} else {
plog.Panicf("marshal member should never fail: %v", err)
}
}
cc := &raftpb.ConfChange{
Type: raftpb.ConfChangeAddNode,
NodeID: self,
Context: ctx,
}
e := raftpb.Entry{
Type: raftpb.EntryConfChange,
Data: pbutil.MustMarshal(cc),
Term: term,
Index: next,
}
ents = append(ents, e)
next++
}
for _, id := range ids {
if id == self {
continue
}
cc := &raftpb.ConfChange{
Type: raftpb.ConfChangeRemoveNode,
NodeID: id,
}
e := raftpb.Entry{
Type: raftpb.EntryConfChange,
Data: pbutil.MustMarshal(cc),
Term: term,
Index: next,
}
ents = append(ents, e)
next++
}
return ents
}