mirror of https://github.com/k3s-io/k3s
746 lines
18 KiB
Go
746 lines
18 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package mat
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
"gonum.org/v1/gonum/lapack/lapack64"
|
||
)
|
||
|
||
var (
|
||
triDense *TriDense
|
||
_ Matrix = triDense
|
||
_ allMatrix = triDense
|
||
_ denseMatrix = triDense
|
||
_ Triangular = triDense
|
||
_ RawTriangular = triDense
|
||
_ MutableTriangular = triDense
|
||
|
||
_ NonZeroDoer = triDense
|
||
_ RowNonZeroDoer = triDense
|
||
_ ColNonZeroDoer = triDense
|
||
)
|
||
|
||
const badTriCap = "mat: bad capacity for TriDense"
|
||
|
||
// TriDense represents an upper or lower triangular matrix in dense storage
|
||
// format.
|
||
type TriDense struct {
|
||
mat blas64.Triangular
|
||
cap int
|
||
}
|
||
|
||
// Triangular represents a triangular matrix. Triangular matrices are always square.
|
||
type Triangular interface {
|
||
Matrix
|
||
// Triangle returns the number of rows/columns in the matrix and its
|
||
// orientation.
|
||
Triangle() (n int, kind TriKind)
|
||
|
||
// TTri is the equivalent of the T() method in the Matrix interface but
|
||
// guarantees the transpose is of triangular type.
|
||
TTri() Triangular
|
||
}
|
||
|
||
// A RawTriangular can return a blas64.Triangular representation of the receiver.
|
||
// Changes to the blas64.Triangular.Data slice will be reflected in the original
|
||
// matrix, changes to the N, Stride, Uplo and Diag fields will not.
|
||
type RawTriangular interface {
|
||
RawTriangular() blas64.Triangular
|
||
}
|
||
|
||
// A MutableTriangular can set elements of a triangular matrix.
|
||
type MutableTriangular interface {
|
||
Triangular
|
||
SetTri(i, j int, v float64)
|
||
}
|
||
|
||
var (
|
||
_ Matrix = TransposeTri{}
|
||
_ Triangular = TransposeTri{}
|
||
_ UntransposeTrier = TransposeTri{}
|
||
)
|
||
|
||
// TransposeTri is a type for performing an implicit transpose of a Triangular
|
||
// matrix. It implements the Triangular interface, returning values from the
|
||
// transpose of the matrix within.
|
||
type TransposeTri struct {
|
||
Triangular Triangular
|
||
}
|
||
|
||
// At returns the value of the element at row i and column j of the transposed
|
||
// matrix, that is, row j and column i of the Triangular field.
|
||
func (t TransposeTri) At(i, j int) float64 {
|
||
return t.Triangular.At(j, i)
|
||
}
|
||
|
||
// Dims returns the dimensions of the transposed matrix. Triangular matrices are
|
||
// square and thus this is the same size as the original Triangular.
|
||
func (t TransposeTri) Dims() (r, c int) {
|
||
c, r = t.Triangular.Dims()
|
||
return r, c
|
||
}
|
||
|
||
// T performs an implicit transpose by returning the Triangular field.
|
||
func (t TransposeTri) T() Matrix {
|
||
return t.Triangular
|
||
}
|
||
|
||
// Triangle returns the number of rows/columns in the matrix and its orientation.
|
||
func (t TransposeTri) Triangle() (int, TriKind) {
|
||
n, upper := t.Triangular.Triangle()
|
||
return n, !upper
|
||
}
|
||
|
||
// TTri performs an implicit transpose by returning the Triangular field.
|
||
func (t TransposeTri) TTri() Triangular {
|
||
return t.Triangular
|
||
}
|
||
|
||
// Untranspose returns the Triangular field.
|
||
func (t TransposeTri) Untranspose() Matrix {
|
||
return t.Triangular
|
||
}
|
||
|
||
func (t TransposeTri) UntransposeTri() Triangular {
|
||
return t.Triangular
|
||
}
|
||
|
||
// NewTriDense creates a new Triangular matrix with n rows and columns. If data == nil,
|
||
// a new slice is allocated for the backing slice. If len(data) == n*n, data is
|
||
// used as the backing slice, and changes to the elements of the returned TriDense
|
||
// will be reflected in data. If neither of these is true, NewTriDense will panic.
|
||
// NewTriDense will panic if n is zero.
|
||
//
|
||
// The data must be arranged in row-major order, i.e. the (i*c + j)-th
|
||
// element in the data slice is the {i, j}-th element in the matrix.
|
||
// Only the values in the triangular portion corresponding to kind are used.
|
||
func NewTriDense(n int, kind TriKind, data []float64) *TriDense {
|
||
if n <= 0 {
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
panic("mat: negative dimension")
|
||
}
|
||
if data != nil && len(data) != n*n {
|
||
panic(ErrShape)
|
||
}
|
||
if data == nil {
|
||
data = make([]float64, n*n)
|
||
}
|
||
uplo := blas.Lower
|
||
if kind == Upper {
|
||
uplo = blas.Upper
|
||
}
|
||
return &TriDense{
|
||
mat: blas64.Triangular{
|
||
N: n,
|
||
Stride: n,
|
||
Data: data,
|
||
Uplo: uplo,
|
||
Diag: blas.NonUnit,
|
||
},
|
||
cap: n,
|
||
}
|
||
}
|
||
|
||
func (t *TriDense) Dims() (r, c int) {
|
||
return t.mat.N, t.mat.N
|
||
}
|
||
|
||
// Triangle returns the dimension of t and its orientation. The returned
|
||
// orientation is only valid when n is not empty.
|
||
func (t *TriDense) Triangle() (n int, kind TriKind) {
|
||
return t.mat.N, t.triKind()
|
||
}
|
||
|
||
func (t *TriDense) isUpper() bool {
|
||
return isUpperUplo(t.mat.Uplo)
|
||
}
|
||
|
||
func (t *TriDense) triKind() TriKind {
|
||
return TriKind(isUpperUplo(t.mat.Uplo))
|
||
}
|
||
|
||
func isUpperUplo(u blas.Uplo) bool {
|
||
switch u {
|
||
case blas.Upper:
|
||
return true
|
||
case blas.Lower:
|
||
return false
|
||
default:
|
||
panic(badTriangle)
|
||
}
|
||
}
|
||
|
||
func uploToTriKind(u blas.Uplo) TriKind {
|
||
switch u {
|
||
case blas.Upper:
|
||
return Upper
|
||
case blas.Lower:
|
||
return Lower
|
||
default:
|
||
panic(badTriangle)
|
||
}
|
||
}
|
||
|
||
// asSymBlas returns the receiver restructured as a blas64.Symmetric with the
|
||
// same backing memory. Panics if the receiver is unit.
|
||
// This returns a blas64.Symmetric and not a *SymDense because SymDense can only
|
||
// be upper triangular.
|
||
func (t *TriDense) asSymBlas() blas64.Symmetric {
|
||
if t.mat.Diag == blas.Unit {
|
||
panic("mat: cannot convert unit TriDense into blas64.Symmetric")
|
||
}
|
||
return blas64.Symmetric{
|
||
N: t.mat.N,
|
||
Stride: t.mat.Stride,
|
||
Data: t.mat.Data,
|
||
Uplo: t.mat.Uplo,
|
||
}
|
||
}
|
||
|
||
// T performs an implicit transpose by returning the receiver inside a Transpose.
|
||
func (t *TriDense) T() Matrix {
|
||
return Transpose{t}
|
||
}
|
||
|
||
// TTri performs an implicit transpose by returning the receiver inside a TransposeTri.
|
||
func (t *TriDense) TTri() Triangular {
|
||
return TransposeTri{t}
|
||
}
|
||
|
||
func (t *TriDense) RawTriangular() blas64.Triangular {
|
||
return t.mat
|
||
}
|
||
|
||
// SetRawTriangular sets the underlying blas64.Triangular used by the receiver.
|
||
// Changes to elements in the receiver following the call will be reflected
|
||
// in the input.
|
||
//
|
||
// The supplied Triangular must not use blas.Unit storage format.
|
||
func (t *TriDense) SetRawTriangular(mat blas64.Triangular) {
|
||
if mat.Diag == blas.Unit {
|
||
panic("mat: cannot set TriDense with Unit storage format")
|
||
}
|
||
t.cap = mat.N
|
||
t.mat = mat
|
||
}
|
||
|
||
// Reset empties the matrix so that it can be reused as the
|
||
// receiver of a dimensionally restricted operation.
|
||
//
|
||
// Reset should not be used when the matrix shares backing data.
|
||
// See the Reseter interface for more information.
|
||
func (t *TriDense) Reset() {
|
||
// N and Stride must be zeroed in unison.
|
||
t.mat.N, t.mat.Stride = 0, 0
|
||
// Defensively zero Uplo to ensure
|
||
// it is set correctly later.
|
||
t.mat.Uplo = 0
|
||
t.mat.Data = t.mat.Data[:0]
|
||
}
|
||
|
||
// Zero sets all of the matrix elements to zero.
|
||
func (t *TriDense) Zero() {
|
||
if t.isUpper() {
|
||
for i := 0; i < t.mat.N; i++ {
|
||
zero(t.mat.Data[i*t.mat.Stride+i : i*t.mat.Stride+t.mat.N])
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < t.mat.N; i++ {
|
||
zero(t.mat.Data[i*t.mat.Stride : i*t.mat.Stride+i+1])
|
||
}
|
||
}
|
||
|
||
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
|
||
// receiver for size-restricted operations. The receiver can be emptied using
|
||
// Reset.
|
||
func (t *TriDense) IsEmpty() bool {
|
||
// It must be the case that t.Dims() returns
|
||
// zeros in this case. See comment in Reset().
|
||
return t.mat.Stride == 0
|
||
}
|
||
|
||
// untranspose untransposes a matrix if applicable. If a is an Untransposer, then
|
||
// untranspose returns the underlying matrix and true. If it is not, then it returns
|
||
// the input matrix and false.
|
||
func untransposeTri(a Triangular) (Triangular, bool) {
|
||
if ut, ok := a.(UntransposeTrier); ok {
|
||
return ut.UntransposeTri(), true
|
||
}
|
||
return a, false
|
||
}
|
||
|
||
// ReuseAsTri changes the receiver if it IsEmpty() to be of size n×n.
|
||
//
|
||
// ReuseAsTri re-uses the backing data slice if it has sufficient capacity,
|
||
// otherwise a new slice is allocated. The backing data is zero on return.
|
||
//
|
||
// ReuseAsTri panics if the receiver is not empty, and panics if
|
||
// the input size is less than one. To empty the receiver for re-use,
|
||
// Reset should be used.
|
||
func (t *TriDense) ReuseAsTri(n int, kind TriKind) {
|
||
if n <= 0 {
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
panic(ErrNegativeDimension)
|
||
}
|
||
if !t.IsEmpty() {
|
||
panic(ErrReuseNonEmpty)
|
||
}
|
||
t.reuseAsZeroed(n, kind)
|
||
}
|
||
|
||
// reuseAsNonZeroed resizes a zero receiver to an n×n triangular matrix with the given
|
||
// orientation. If the receiver is non-zero, reuseAsNonZeroed checks that the receiver
|
||
// is the correct size and orientation.
|
||
func (t *TriDense) reuseAsNonZeroed(n int, kind TriKind) {
|
||
// reuseAsNonZeroed must be kept in sync with reuseAsZeroed.
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
ul := blas.Lower
|
||
if kind == Upper {
|
||
ul = blas.Upper
|
||
}
|
||
if t.mat.N > t.cap {
|
||
panic(badTriCap)
|
||
}
|
||
if t.IsEmpty() {
|
||
t.mat = blas64.Triangular{
|
||
N: n,
|
||
Stride: n,
|
||
Diag: blas.NonUnit,
|
||
Data: use(t.mat.Data, n*n),
|
||
Uplo: ul,
|
||
}
|
||
t.cap = n
|
||
return
|
||
}
|
||
if t.mat.N != n {
|
||
panic(ErrShape)
|
||
}
|
||
if t.mat.Uplo != ul {
|
||
panic(ErrTriangle)
|
||
}
|
||
}
|
||
|
||
// reuseAsZeroed resizes a zero receiver to an n×n triangular matrix with the given
|
||
// orientation. If the receiver is non-zero, reuseAsZeroed checks that the receiver
|
||
// is the correct size and orientation. It then zeros out the matrix data.
|
||
func (t *TriDense) reuseAsZeroed(n int, kind TriKind) {
|
||
// reuseAsZeroed must be kept in sync with reuseAsNonZeroed.
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
ul := blas.Lower
|
||
if kind == Upper {
|
||
ul = blas.Upper
|
||
}
|
||
if t.mat.N > t.cap {
|
||
panic(badTriCap)
|
||
}
|
||
if t.IsEmpty() {
|
||
t.mat = blas64.Triangular{
|
||
N: n,
|
||
Stride: n,
|
||
Diag: blas.NonUnit,
|
||
Data: useZeroed(t.mat.Data, n*n),
|
||
Uplo: ul,
|
||
}
|
||
t.cap = n
|
||
return
|
||
}
|
||
if t.mat.N != n {
|
||
panic(ErrShape)
|
||
}
|
||
if t.mat.Uplo != ul {
|
||
panic(ErrTriangle)
|
||
}
|
||
t.Zero()
|
||
}
|
||
|
||
// isolatedWorkspace returns a new TriDense matrix w with the size of a and
|
||
// returns a callback to defer which performs cleanup at the return of the call.
|
||
// This should be used when a method receiver is the same pointer as an input argument.
|
||
func (t *TriDense) isolatedWorkspace(a Triangular) (w *TriDense, restore func()) {
|
||
n, kind := a.Triangle()
|
||
if n == 0 {
|
||
panic(ErrZeroLength)
|
||
}
|
||
w = getWorkspaceTri(n, kind, false)
|
||
return w, func() {
|
||
t.Copy(w)
|
||
putWorkspaceTri(w)
|
||
}
|
||
}
|
||
|
||
// DiagView returns the diagonal as a matrix backed by the original data.
|
||
func (t *TriDense) DiagView() Diagonal {
|
||
if t.mat.Diag == blas.Unit {
|
||
panic("mat: cannot take view of Unit diagonal")
|
||
}
|
||
n := t.mat.N
|
||
return &DiagDense{
|
||
mat: blas64.Vector{
|
||
N: n,
|
||
Inc: t.mat.Stride + 1,
|
||
Data: t.mat.Data[:(n-1)*t.mat.Stride+n],
|
||
},
|
||
}
|
||
}
|
||
|
||
// Copy makes a copy of elements of a into the receiver. It is similar to the
|
||
// built-in copy; it copies as much as the overlap between the two matrices and
|
||
// returns the number of rows and columns it copied. Only elements within the
|
||
// receiver's non-zero triangle are set.
|
||
//
|
||
// See the Copier interface for more information.
|
||
func (t *TriDense) Copy(a Matrix) (r, c int) {
|
||
r, c = a.Dims()
|
||
r = min(r, t.mat.N)
|
||
c = min(c, t.mat.N)
|
||
if r == 0 || c == 0 {
|
||
return 0, 0
|
||
}
|
||
|
||
switch a := a.(type) {
|
||
case RawMatrixer:
|
||
amat := a.RawMatrix()
|
||
if t.isUpper() {
|
||
for i := 0; i < r; i++ {
|
||
copy(t.mat.Data[i*t.mat.Stride+i:i*t.mat.Stride+c], amat.Data[i*amat.Stride+i:i*amat.Stride+c])
|
||
}
|
||
} else {
|
||
for i := 0; i < r; i++ {
|
||
copy(t.mat.Data[i*t.mat.Stride:i*t.mat.Stride+i+1], amat.Data[i*amat.Stride:i*amat.Stride+i+1])
|
||
}
|
||
}
|
||
case RawTriangular:
|
||
amat := a.RawTriangular()
|
||
aIsUpper := isUpperUplo(amat.Uplo)
|
||
tIsUpper := t.isUpper()
|
||
switch {
|
||
case tIsUpper && aIsUpper:
|
||
for i := 0; i < r; i++ {
|
||
copy(t.mat.Data[i*t.mat.Stride+i:i*t.mat.Stride+c], amat.Data[i*amat.Stride+i:i*amat.Stride+c])
|
||
}
|
||
case !tIsUpper && !aIsUpper:
|
||
for i := 0; i < r; i++ {
|
||
copy(t.mat.Data[i*t.mat.Stride:i*t.mat.Stride+i+1], amat.Data[i*amat.Stride:i*amat.Stride+i+1])
|
||
}
|
||
default:
|
||
for i := 0; i < r; i++ {
|
||
t.set(i, i, amat.Data[i*amat.Stride+i])
|
||
}
|
||
}
|
||
default:
|
||
isUpper := t.isUpper()
|
||
for i := 0; i < r; i++ {
|
||
if isUpper {
|
||
for j := i; j < c; j++ {
|
||
t.set(i, j, a.At(i, j))
|
||
}
|
||
} else {
|
||
for j := 0; j <= i; j++ {
|
||
t.set(i, j, a.At(i, j))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return r, c
|
||
}
|
||
|
||
// InverseTri computes the inverse of the triangular matrix a, storing the result
|
||
// into the receiver. If a is ill-conditioned, a Condition error will be returned.
|
||
// Note that matrix inversion is numerically unstable, and should generally be
|
||
// avoided where possible, for example by using the Solve routines.
|
||
func (t *TriDense) InverseTri(a Triangular) error {
|
||
t.checkOverlapMatrix(a)
|
||
n, _ := a.Triangle()
|
||
t.reuseAsNonZeroed(a.Triangle())
|
||
t.Copy(a)
|
||
work := getFloats(3*n, false)
|
||
iwork := getInts(n, false)
|
||
cond := lapack64.Trcon(CondNorm, t.mat, work, iwork)
|
||
putFloats(work)
|
||
putInts(iwork)
|
||
if math.IsInf(cond, 1) {
|
||
return Condition(cond)
|
||
}
|
||
ok := lapack64.Trtri(t.mat)
|
||
if !ok {
|
||
return Condition(math.Inf(1))
|
||
}
|
||
if cond > ConditionTolerance {
|
||
return Condition(cond)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// MulTri takes the product of triangular matrices a and b and places the result
|
||
// in the receiver. The size of a and b must match, and they both must have the
|
||
// same TriKind, or Mul will panic.
|
||
func (t *TriDense) MulTri(a, b Triangular) {
|
||
n, kind := a.Triangle()
|
||
nb, kindb := b.Triangle()
|
||
if n != nb {
|
||
panic(ErrShape)
|
||
}
|
||
if kind != kindb {
|
||
panic(ErrTriangle)
|
||
}
|
||
|
||
aU, _ := untransposeTri(a)
|
||
bU, _ := untransposeTri(b)
|
||
t.checkOverlapMatrix(bU)
|
||
t.checkOverlapMatrix(aU)
|
||
t.reuseAsNonZeroed(n, kind)
|
||
var restore func()
|
||
if t == aU {
|
||
t, restore = t.isolatedWorkspace(aU)
|
||
defer restore()
|
||
} else if t == bU {
|
||
t, restore = t.isolatedWorkspace(bU)
|
||
defer restore()
|
||
}
|
||
|
||
// Inspect types here, helps keep the loops later clean(er).
|
||
_, aDiag := aU.(Diagonal)
|
||
_, bDiag := bU.(Diagonal)
|
||
// If they are both diagonal only need 1 loop.
|
||
// All diagonal matrices are Upper.
|
||
// TODO: Add fast paths for DiagDense.
|
||
if aDiag && bDiag {
|
||
t.Zero()
|
||
for i := 0; i < n; i++ {
|
||
t.SetTri(i, i, a.At(i, i)*b.At(i, i))
|
||
}
|
||
return
|
||
}
|
||
|
||
// Now we know at least one matrix is non-diagonal.
|
||
// And all diagonal matrices are all Upper.
|
||
// The both-diagonal case is handled above.
|
||
// TODO: Add fast paths for Dense variants.
|
||
if kind == Upper {
|
||
for i := 0; i < n; i++ {
|
||
for j := i; j < n; j++ {
|
||
switch {
|
||
case aDiag:
|
||
t.SetTri(i, j, a.At(i, i)*b.At(i, j))
|
||
case bDiag:
|
||
t.SetTri(i, j, a.At(i, j)*b.At(j, j))
|
||
default:
|
||
var v float64
|
||
for k := i; k <= j; k++ {
|
||
v += a.At(i, k) * b.At(k, j)
|
||
}
|
||
t.SetTri(i, j, v)
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
for j := 0; j <= i; j++ {
|
||
var v float64
|
||
for k := j; k <= i; k++ {
|
||
v += a.At(i, k) * b.At(k, j)
|
||
}
|
||
t.SetTri(i, j, v)
|
||
}
|
||
}
|
||
}
|
||
|
||
// ScaleTri multiplies the elements of a by f, placing the result in the receiver.
|
||
// If the receiver is non-zero, the size and kind of the receiver must match
|
||
// the input, or ScaleTri will panic.
|
||
func (t *TriDense) ScaleTri(f float64, a Triangular) {
|
||
n, kind := a.Triangle()
|
||
t.reuseAsNonZeroed(n, kind)
|
||
|
||
// TODO(btracey): Improve the set of fast-paths.
|
||
switch a := a.(type) {
|
||
case RawTriangular:
|
||
amat := a.RawTriangular()
|
||
if t != a {
|
||
t.checkOverlap(generalFromTriangular(amat))
|
||
}
|
||
if kind == Upper {
|
||
for i := 0; i < n; i++ {
|
||
ts := t.mat.Data[i*t.mat.Stride+i : i*t.mat.Stride+n]
|
||
as := amat.Data[i*amat.Stride+i : i*amat.Stride+n]
|
||
for i, v := range as {
|
||
ts[i] = v * f
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
ts := t.mat.Data[i*t.mat.Stride : i*t.mat.Stride+i+1]
|
||
as := amat.Data[i*amat.Stride : i*amat.Stride+i+1]
|
||
for i, v := range as {
|
||
ts[i] = v * f
|
||
}
|
||
}
|
||
return
|
||
default:
|
||
t.checkOverlapMatrix(a)
|
||
isUpper := kind == Upper
|
||
for i := 0; i < n; i++ {
|
||
if isUpper {
|
||
for j := i; j < n; j++ {
|
||
t.set(i, j, f*a.At(i, j))
|
||
}
|
||
} else {
|
||
for j := 0; j <= i; j++ {
|
||
t.set(i, j, f*a.At(i, j))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Trace returns the trace of the matrix.
|
||
func (t *TriDense) Trace() float64 {
|
||
// TODO(btracey): could use internal asm sum routine.
|
||
var v float64
|
||
for i := 0; i < t.mat.N; i++ {
|
||
v += t.mat.Data[i*t.mat.Stride+i]
|
||
}
|
||
return v
|
||
}
|
||
|
||
// copySymIntoTriangle copies a symmetric matrix into a TriDense
|
||
func copySymIntoTriangle(t *TriDense, s Symmetric) {
|
||
n, upper := t.Triangle()
|
||
ns := s.Symmetric()
|
||
if n != ns {
|
||
panic("mat: triangle size mismatch")
|
||
}
|
||
ts := t.mat.Stride
|
||
if rs, ok := s.(RawSymmetricer); ok {
|
||
sd := rs.RawSymmetric()
|
||
ss := sd.Stride
|
||
if upper {
|
||
if sd.Uplo == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
copy(t.mat.Data[i*ts+i:i*ts+n], sd.Data[i*ss+i:i*ss+n])
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
for j := i; j < n; j++ {
|
||
t.mat.Data[i*ts+j] = sd.Data[j*ss+i]
|
||
}
|
||
}
|
||
return
|
||
}
|
||
if sd.Uplo == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
for j := 0; j <= i; j++ {
|
||
t.mat.Data[i*ts+j] = sd.Data[j*ss+i]
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
copy(t.mat.Data[i*ts:i*ts+i+1], sd.Data[i*ss:i*ss+i+1])
|
||
}
|
||
return
|
||
}
|
||
if upper {
|
||
for i := 0; i < n; i++ {
|
||
for j := i; j < n; j++ {
|
||
t.mat.Data[i*ts+j] = s.At(i, j)
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
for j := 0; j <= i; j++ {
|
||
t.mat.Data[i*ts+j] = s.At(i, j)
|
||
}
|
||
}
|
||
}
|
||
|
||
// DoNonZero calls the function fn for each of the non-zero elements of t. The function fn
|
||
// takes a row/column index and the element value of t at (i, j).
|
||
func (t *TriDense) DoNonZero(fn func(i, j int, v float64)) {
|
||
if t.isUpper() {
|
||
for i := 0; i < t.mat.N; i++ {
|
||
for j := i; j < t.mat.N; j++ {
|
||
v := t.at(i, j)
|
||
if v != 0 {
|
||
fn(i, j, v)
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < t.mat.N; i++ {
|
||
for j := 0; j <= i; j++ {
|
||
v := t.at(i, j)
|
||
if v != 0 {
|
||
fn(i, j, v)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// DoRowNonZero calls the function fn for each of the non-zero elements of row i of t. The function fn
|
||
// takes a row/column index and the element value of t at (i, j).
|
||
func (t *TriDense) DoRowNonZero(i int, fn func(i, j int, v float64)) {
|
||
if i < 0 || t.mat.N <= i {
|
||
panic(ErrRowAccess)
|
||
}
|
||
if t.isUpper() {
|
||
for j := i; j < t.mat.N; j++ {
|
||
v := t.at(i, j)
|
||
if v != 0 {
|
||
fn(i, j, v)
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for j := 0; j <= i; j++ {
|
||
v := t.at(i, j)
|
||
if v != 0 {
|
||
fn(i, j, v)
|
||
}
|
||
}
|
||
}
|
||
|
||
// DoColNonZero calls the function fn for each of the non-zero elements of column j of t. The function fn
|
||
// takes a row/column index and the element value of t at (i, j).
|
||
func (t *TriDense) DoColNonZero(j int, fn func(i, j int, v float64)) {
|
||
if j < 0 || t.mat.N <= j {
|
||
panic(ErrColAccess)
|
||
}
|
||
if t.isUpper() {
|
||
for i := 0; i <= j; i++ {
|
||
v := t.at(i, j)
|
||
if v != 0 {
|
||
fn(i, j, v)
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := j; i < t.mat.N; i++ {
|
||
v := t.at(i, j)
|
||
if v != 0 {
|
||
fn(i, j, v)
|
||
}
|
||
}
|
||
}
|