k3s/vendor/gonum.org/v1/gonum/mat/symband.go

254 lines
7.0 KiB
Go

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
var (
symBandDense *SymBandDense
_ Matrix = symBandDense
_ allMatrix = symBandDense
_ denseMatrix = symBandDense
_ Symmetric = symBandDense
_ Banded = symBandDense
_ SymBanded = symBandDense
_ RawSymBander = symBandDense
_ MutableSymBanded = symBandDense
_ NonZeroDoer = symBandDense
_ RowNonZeroDoer = symBandDense
_ ColNonZeroDoer = symBandDense
)
// SymBandDense represents a symmetric band matrix in dense storage format.
type SymBandDense struct {
mat blas64.SymmetricBand
}
// SymBanded is a symmetric band matrix interface type.
type SymBanded interface {
Banded
// Symmetric returns the number of rows/columns in the matrix.
Symmetric() int
// SymBand returns the number of rows/columns in the matrix, and the size of
// the bandwidth.
SymBand() (n, k int)
}
// MutableSymBanded is a symmetric band matrix interface type that allows elements
// to be altered.
type MutableSymBanded interface {
SymBanded
SetSymBand(i, j int, v float64)
}
// A RawSymBander can return a blas64.SymmetricBand representation of the receiver.
// Changes to the blas64.SymmetricBand.Data slice will be reflected in the original
// matrix, changes to the N, K, Stride and Uplo fields will not.
type RawSymBander interface {
RawSymBand() blas64.SymmetricBand
}
// NewSymBandDense creates a new SymBand matrix with n rows and columns. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == n*(k+1),
// data is used as the backing slice, and changes to the elements of the returned
// SymBandDense will be reflected in data. If neither of these is true, NewSymBandDense
// will panic. k must be at least zero and less than n, otherwise NewSymBandDense will panic.
//
// The data must be arranged in row-major order constructed by removing the zeros
// from the rows outside the band and aligning the diagonals. SymBandDense matrices
// are stored in the upper triangle. For example, the matrix
// 1 2 3 0 0 0
// 2 4 5 6 0 0
// 3 5 7 8 9 0
// 0 6 8 10 11 12
// 0 0 9 11 13 14
// 0 0 0 12 14 15
// becomes (* entries are never accessed)
// 1 2 3
// 4 5 6
// 7 8 9
// 10 11 12
// 13 14 *
// 15 * *
// which is passed to NewSymBandDense as []float64{1, 2, ..., 15, *, *, *} with k=2.
// Only the values in the band portion of the matrix are used.
func NewSymBandDense(n, k int, data []float64) *SymBandDense {
if n <= 0 || k < 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic("mat: negative dimension")
}
if k+1 > n {
panic("mat: band out of range")
}
bc := k + 1
if data != nil && len(data) != n*bc {
panic(ErrShape)
}
if data == nil {
data = make([]float64, n*bc)
}
return &SymBandDense{
mat: blas64.SymmetricBand{
N: n,
K: k,
Stride: bc,
Uplo: blas.Upper,
Data: data,
},
}
}
// Dims returns the number of rows and columns in the matrix.
func (s *SymBandDense) Dims() (r, c int) {
return s.mat.N, s.mat.N
}
// Symmetric returns the size of the receiver.
func (s *SymBandDense) Symmetric() int {
return s.mat.N
}
// Bandwidth returns the bandwidths of the matrix.
func (s *SymBandDense) Bandwidth() (kl, ku int) {
return s.mat.K, s.mat.K
}
// SymBand returns the number of rows/columns in the matrix, and the size of
// the bandwidth.
func (s *SymBandDense) SymBand() (n, k int) {
return s.mat.N, s.mat.K
}
// T implements the Matrix interface. Symmetric matrices, by definition, are
// equal to their transpose, and this is a no-op.
func (s *SymBandDense) T() Matrix {
return s
}
// TBand implements the Banded interface.
func (s *SymBandDense) TBand() Banded {
return s
}
// RawSymBand returns the underlying blas64.SymBand used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in returned blas64.SymBand.
func (s *SymBandDense) RawSymBand() blas64.SymmetricBand {
return s.mat
}
// SetRawSymBand sets the underlying blas64.SymmetricBand used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in the input.
//
// The supplied SymmetricBand must use blas.Upper storage format.
func (s *SymBandDense) SetRawSymBand(mat blas64.SymmetricBand) {
if mat.Uplo != blas.Upper {
panic("mat: blas64.SymmetricBand does not have blas.Upper storage")
}
s.mat = mat
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (s *SymBandDense) IsEmpty() bool {
return s.mat.Stride == 0
}
// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (s *SymBandDense) Reset() {
s.mat.N = 0
s.mat.K = 0
s.mat.Stride = 0
s.mat.Uplo = 0
s.mat.Data = s.mat.Data[:0:0]
}
// Zero sets all of the matrix elements to zero.
func (s *SymBandDense) Zero() {
for i := 0; i < s.mat.N; i++ {
u := min(1+s.mat.K, s.mat.N-i)
zero(s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+u])
}
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (s *SymBandDense) DiagView() Diagonal {
n := s.mat.N
return &DiagDense{
mat: blas64.Vector{
N: n,
Inc: s.mat.Stride,
Data: s.mat.Data[:(n-1)*s.mat.Stride+1],
},
}
}
// DoNonZero calls the function fn for each of the non-zero elements of s. The function fn
// takes a row/column index and the element value of s at (i, j).
func (s *SymBandDense) DoNonZero(fn func(i, j int, v float64)) {
for i := 0; i < s.mat.N; i++ {
for j := max(0, i-s.mat.K); j < min(s.mat.N, i+s.mat.K+1); j++ {
v := s.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
}
// DoRowNonZero calls the function fn for each of the non-zero elements of row i of s. The function fn
// takes a row/column index and the element value of s at (i, j).
func (s *SymBandDense) DoRowNonZero(i int, fn func(i, j int, v float64)) {
if i < 0 || s.mat.N <= i {
panic(ErrRowAccess)
}
for j := max(0, i-s.mat.K); j < min(s.mat.N, i+s.mat.K+1); j++ {
v := s.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
// DoColNonZero calls the function fn for each of the non-zero elements of column j of s. The function fn
// takes a row/column index and the element value of s at (i, j).
func (s *SymBandDense) DoColNonZero(j int, fn func(i, j int, v float64)) {
if j < 0 || s.mat.N <= j {
panic(ErrColAccess)
}
for i := 0; i < s.mat.N; i++ {
if i-s.mat.K <= j && j < i+s.mat.K+1 {
v := s.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
}
// Trace returns the trace.
func (s *SymBandDense) Trace() float64 {
rb := s.RawSymBand()
var tr float64
for i := 0; i < rb.N; i++ {
tr += rb.Data[i*rb.Stride]
}
return tr
}