k3s/vendor/gonum.org/v1/gonum/mat/lq.go

270 lines
7.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badLQ = "mat: invalid LQ factorization"
// LQ is a type for creating and using the LQ factorization of a matrix.
type LQ struct {
lq *Dense
tau []float64
cond float64
}
func (lq *LQ) updateCond(norm lapack.MatrixNorm) {
// Since A = L*Q, and Q is orthogonal, we get for the condition number κ
// κ(A) := |A| |A^-1| = |L*Q| |(L*Q)^-1| = |L| |Qᵀ * L^-1|
// = |L| |L^-1| = κ(L),
// where we used that fact that Q^-1 = Qᵀ. However, this assumes that
// the matrix norm is invariant under orthogonal transformations which
// is not the case for CondNorm. Hopefully the error is negligible: κ
// is only a qualitative measure anyway.
m := lq.lq.mat.Rows
work := getFloats(3*m, false)
iwork := getInts(m, false)
l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
v := lapack64.Trcon(norm, l.mat, work, iwork)
lq.cond = 1 / v
putFloats(work)
putInts(iwork)
}
// Factorize computes the LQ factorization of an m×n matrix a where m <= n. The LQ
// factorization always exists even if A is singular.
//
// The LQ decomposition is a factorization of the matrix A such that A = L * Q.
// The matrix Q is an orthonormal n×n matrix, and L is an m×n lower triangular matrix.
// L and Q can be extracted using the LTo and QTo methods.
func (lq *LQ) Factorize(a Matrix) {
lq.factorize(a, CondNorm)
}
func (lq *LQ) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m > n {
panic(ErrShape)
}
k := min(m, n)
if lq.lq == nil {
lq.lq = &Dense{}
}
lq.lq.CloneFrom(a)
work := []float64{0}
lq.tau = make([]float64, k)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
putFloats(work)
lq.updateCond(norm)
}
// isValid returns whether the receiver contains a factorization.
func (lq *LQ) isValid() bool {
return lq.lq != nil && !lq.lq.IsEmpty()
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (lq *LQ) Cond() float64 {
if !lq.isValid() {
panic(badLQ)
}
return lq.cond
}
// TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal
// and upper triangular matrices.
// LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition.
//
// If dst is empty, LTo will resize dst to be r×c. When dst is
// non-empty, LTo will panic if dst is not r×c. LTo will also panic
// if the receiver does not contain a successful factorization.
func (lq *LQ) LTo(dst *Dense) {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
// Disguise the LQ as a lower triangular.
t := &TriDense{
mat: blas64.Triangular{
N: r,
Stride: lq.lq.mat.Stride,
Data: lq.lq.mat.Data,
Uplo: blas.Lower,
Diag: blas.NonUnit,
},
cap: lq.lq.capCols,
}
dst.Copy(t)
if r == c {
return
}
// Zero right of the triangular.
for i := 0; i < r; i++ {
zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c])
}
}
// QTo extracts the n×n orthonormal matrix Q from an LQ decomposition.
//
// If dst is empty, QTo will resize dst to be c×c. When dst is
// non-empty, QTo will panic if dst is not c×c. QTo will also panic
// if the receiver does not contain a successful factorization.
func (lq *LQ) QTo(dst *Dense) {
if !lq.isValid() {
panic(badLQ)
}
_, c := lq.lq.Dims()
if dst.IsEmpty() {
dst.ReuseAs(c, c)
} else {
r2, c2 := dst.Dims()
if c != r2 || c != c2 {
panic(ErrShape)
}
dst.Zero()
}
q := dst.mat
// Set Q = I.
ldq := q.Stride
for i := 0; i < c; i++ {
q.Data[i*ldq+i] = 1
}
// Construct Q from the elementary reflectors.
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work))
putFloats(work)
}
// SolveTo finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its LQ factorized
// form. If A is singular or near-singular a Condition error is returned.
// See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
// If trans == false, find the minimum norm solution of A * X = B.
// If trans == true, find X such that ||A*X - B||_2 is minimized.
// The solution matrix, X, is stored in place into dst.
// SolveTo will panic if the receiver does not contain a factorization.
func (lq *LQ) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
br, bc := b.Dims()
// The LQ solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into x at the end.
if trans {
if c != br {
panic(ErrShape)
}
dst.reuseAsNonZeroed(r, bc)
} else {
if r != br {
panic(ErrShape)
}
dst.reuseAsNonZeroed(c, bc)
}
// Do not need to worry about overlap between x and b because w has its own
// independent storage.
w := getWorkspace(max(r, c), bc, false)
w.Copy(b)
t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
if trans {
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, len(work))
putFloats(work)
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
} else {
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
for i := r; i < c; i++ {
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
}
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, len(work))
putFloats(work)
}
// x was set above to be the correct size for the result.
dst.Copy(w)
putWorkspace(w)
if lq.cond > ConditionTolerance {
return Condition(lq.cond)
}
return nil
}
// SolveVecTo finds a minimum-norm solution to a system of linear equations.
// See LQ.SolveTo for the full documentation.
// SolveToVec will panic if the receiver does not contain a factorization.
func (lq *LQ) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
bm := Matrix(b)
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
b := VecDense{mat: bmat}
bm = b.asDense()
}
if trans {
dst.reuseAsNonZeroed(r)
} else {
dst.reuseAsNonZeroed(c)
}
return lq.SolveTo(dst.asDense(), trans, bm)
}